TY - JOUR T1 - Engineering a nanopore with co-chaperonin function. JF - Sci Adv Y1 - 2015 A1 - Ho, Ching-Wen A1 - Van Meervelt, Veerle A1 - Tsai, Keng-Chang A1 - Pieter-Jan De Temmerman A1 - Jan Mast A1 - Maglia, Giovanni AB -

The emergence of an enzymatic function can reveal functional insights and allows the engineering of biological systems with enhanced properties. We engineered an alpha hemolysin nanopore to function as GroES, a protein that, in complex with GroEL, forms a two-stroke protein-folding nanomachine. The transmembrane co-chaperonin was prepared by recombination of GroES functional elements with the nanopore, suggesting that emergent functions in molecular machines can be added bottom-up by incorporating modular elements into preexisting protein scaffolds. The binding of a single-ring version of GroEL to individual GroES nanopores prompted large changes to the unitary nanopore current, most likely reflecting the allosteric transitions of the chaperonin apical domains. One of the GroEL-induced current levels showed fast fluctuations (<1 ms), a characteristic that might be instrumental for efficient substrate encapsulation or folding. In the presence of unfolded proteins, the pattern of current transitions changed, suggesting a possible mechanism in which the free energy of adenosine triphosphate binding and hydrolysis is expended only when substrate proteins are occupied.

VL - 1 CP - 11 U1 - http://www.ncbi.nlm.nih.gov/pubmed/26824063?dopt=Abstract M3 - 10.1126/sciadv.1500905 ER -