The spread of Plasmodium falciparum isolates carrying mutations in the kelch13 (Pfkelch13) gene associated with artemisinin resistance (PfART-R) in southeast Asia threatens malaria control and elimination efforts. Emergence of PfART-R in Africa would result in a major public health problem. In this systematic review, we investigate the frequency and spatial distribution of Pfkelch13 mutants in Africa, including mutants linked to PfART-R in southeast Asia. Seven databases were searched (PubMed, Embase, Scopus, African Journal Online, African Index Medicus, Bioline, and Web of Science) for relevant articles about polymorphisms of the Pfkelch13 gene in Africa before January, 2019. Following PRISMA guidelines, 53 studies that sequenced the Pfkelch13 gene of 23 100 sample isolates in 41 sub-Saharan African countries were included. The Pfkelch13 sequence was highly polymorphic (292 alleles, including 255 in the Pfkelch13-propeller domain) but with mutations occurring at very low relative frequencies. Non-synonymous mutations were found in only 626 isolates (2·7%) from west, central, and east Africa. According to WHO, nine different mutations linked to PfART-R in southeast Asia (Phe446Ile, Cys469Tyr, Met476Ile, Arg515Lys, Ser522Cys, Pro553Leu, Val568Gly, Pro574Leu, and Ala675Val) were detected, mainly in east Africa. Several other Pfkelch13 mutations, such as those structurally similar to southeast Asia PfART-R mutations, were also identified, but their relevance for drug resistance is still unknown. This systematic review shows that Africa, thought to not have established PfART-R, reported resistance-related mutants in the past 5 years. Surveillance using PfART-R molecular markers can provide valuable decision-making information to sustain the effectiveness of artemisinin in Africa.