sciensano.be
Publié sur sciensano.be (https://www.sciensano.be)

Accueil > Biblio > Induction of in vivo functional Db-restricted cytolytic T cell activity against a putative phosphate transport receptor of Mycobacterium tuberculosis.

Induction of in vivo functional Db-restricted cytolytic T cell activity against a putative phosphate transport receptor of Mycobacterium tuberculosis. [1]

Peer reviewed scientific article

SCIENSANO

Auteurs

Marta Romano [2]; Olivier J Denis [3]; D'Souza, Sushila [4]; Wang, Xiao-Ming [5]; Ottenhoff, Tom H M [6]; Brulet, Jean-Marc [7]; Huygen, Kris [8]

Mots-clés

  1. Amino Acid Sequence [9]
  2. Animals [10]
  3. Antibodies, Bacterial [11]
  4. ATP-Binding Cassette Transporters [12]
  5. Bacterial Proteins [13]
  6. Epitopes, T-Lymphocyte [14]
  7. H-2 Antigens [15]
  8. Histocompatibility Antigen H-2D [16]
  9. Interferon-gamma [17]
  10. Interleukin-2 [18]
  11. mice [19]
  12. Mice, Inbred C57BL [20]
  13. Molecular Sequence Data [21]
  14. Mycobacterium tuberculosis [22]
  15. T-Lymphocytes, Cytotoxic [23]
  16. Th1 Cells [24]
  17. Tuberculosis Vaccines [25]
  18. Vaccines, DNA [26]

Résumé:

Using plasmid vaccination with DNA encoding the putative phosphate transport receptor PstS-3 from Mycobacterium tuberculosis and 36 overlapping 20-mer peptides spanning the entire PstS-3 sequence, we determined the immunodominant Th1-type CD4(+) T cell epitopes in C57BL/10 mice, as measured by spleen cell IL-2 and IFN-gamma production. Furthermore, a potent IFN-gamma-inducing, D(b)-restricted CD8(+) epitope was identified using MHC class I mutant B6.C-H-2(bm13) mice and intracellular IFN-gamma and whole blood CD8(+) T cell tetramer staining. Using adoptive transfer of CFSE-labeled, peptide-…
Lire la suite

Résumé

Using plasmid vaccination with DNA encoding the putative phosphate transport receptor PstS-3 from Mycobacterium tuberculosis and 36 overlapping 20-mer peptides spanning the entire PstS-3 sequence, we determined the immunodominant Th1-type CD4(+) T cell epitopes in C57BL/10 mice, as measured by spleen cell IL-2 and IFN-gamma production. Furthermore, a potent IFN-gamma-inducing, D(b)-restricted CD8(+) epitope was identified using MHC class I mutant B6.C-H-2(bm13) mice and intracellular IFN-gamma and whole blood CD8(+) T cell tetramer staining. Using adoptive transfer of CFSE-labeled, peptide-pulsed syngeneic spleen cells from naive animals into DNA vaccinated or M. tuberculosis-infected recipients, we demonstrated a functional in vivo CTL activity against this D(b)-restricted PstS-3 epitope. IFN-gamma ELISPOT responses to this epitope were also detected in tuberculosis-infected mice. The CD4(+) and CD8(+) T cell epitopes defined for PstS-3 were completely specific and not recognized in mice vaccinated with either PstS-1 or PstS-2 DNA. The H-2 haplotype exerted a strong influence on immune reactivity to the PstS-3 Ag, and mice of the H-2(b, p, and f) haplotype produced significant Ab and Th1-type cytokine levels, whereas mice of H-2(d, k, r, s, and q) haplotype were completely unreactive. Low responsiveness against PstS-3 in MHC class II mutant B6.C-H-2(bm12) mice could be overcome by DNA vaccination. IFN-gamma-producing CD8(+) T cells could also be detected against the D(b)-restricted epitope in H-2(p) haplotype mice. These results highlight the potential of DNA vaccination for the induction and characterization of CD4(+) and particularly CD8(+) T cell responses against mycobacterial Ags.

Associated health topics:


Source URL:https://www.sciensano.be/fr/biblio/induction-vivo-functional-db-restricted-cytolytic-t-cell-activity-against-a-putative-phosphate

Liens
[1] https://www.sciensano.be/fr/biblio/induction-vivo-functional-db-restricted-cytolytic-t-cell-activity-against-a-putative-phosphate [2] https://www.sciensano.be/fr/people/marta-romano/biblio [3] https://www.sciensano.be/fr/people/olivier-denis/biblio [4] https://www.sciensano.be/fr/biblio?f%5Bauthor%5D=36489&f%5Bsearch%5D=D%27Souza%2C%20Sushila [5] https://www.sciensano.be/fr/biblio?f%5Bauthor%5D=49590&f%5Bsearch%5D=Wang%2C%20Xiao-Ming [6] https://www.sciensano.be/fr/biblio?f%5Bauthor%5D=49593&f%5Bsearch%5D=Ottenhoff%2C%20Tom%20H%20M [7] https://www.sciensano.be/fr/biblio?f%5Bauthor%5D=49596&f%5Bsearch%5D=Brulet%2C%20Jean-Marc [8] https://www.sciensano.be/fr/biblio?f%5Bauthor%5D=33714&f%5Bsearch%5D=Huygen%2C%20Kris [9] https://www.sciensano.be/fr/biblio?f%5Bkeyword%5D=3630&f%5Bsearch%5D=Amino%20Acid%20Sequence [10] https://www.sciensano.be/fr/biblio?f%5Bkeyword%5D=423&f%5Bsearch%5D=Animals [11] https://www.sciensano.be/fr/biblio?f%5Bkeyword%5D=28281&f%5Bsearch%5D=Antibodies%2C%20Bacterial [12] https://www.sciensano.be/fr/biblio?f%5Bkeyword%5D=24759&f%5Bsearch%5D=ATP-Binding%20Cassette%20Transporters [13] https://www.sciensano.be/fr/biblio?f%5Bkeyword%5D=2412&f%5Bsearch%5D=Bacterial%20Proteins [14] https://www.sciensano.be/fr/biblio?f%5Bkeyword%5D=28266&f%5Bsearch%5D=Epitopes%2C%20T-Lymphocyte [15] https://www.sciensano.be/fr/biblio?f%5Bkeyword%5D=28305&f%5Bsearch%5D=H-2%20Antigens [16] https://www.sciensano.be/fr/biblio?f%5Bkeyword%5D=28308&f%5Bsearch%5D=Histocompatibility%20Antigen%20H-2D [17] https://www.sciensano.be/fr/biblio?f%5Bkeyword%5D=19095&f%5Bsearch%5D=Interferon-gamma [18] https://www.sciensano.be/fr/biblio?f%5Bkeyword%5D=21717&f%5Bsearch%5D=Interleukin-2 [19] https://www.sciensano.be/fr/biblio?f%5Bkeyword%5D=2454&f%5Bsearch%5D=mice [20] https://www.sciensano.be/fr/biblio?f%5Bkeyword%5D=28188&f%5Bsearch%5D=Mice%2C%20Inbred%20C57BL [21] https://www.sciensano.be/fr/biblio?f%5Bkeyword%5D=4668&f%5Bsearch%5D=Molecular%20Sequence%20Data [22] https://www.sciensano.be/fr/biblio?f%5Bkeyword%5D=2769&f%5Bsearch%5D=Mycobacterium%20tuberculosis [23] https://www.sciensano.be/fr/biblio?f%5Bkeyword%5D=28293&f%5Bsearch%5D=T-Lymphocytes%2C%20Cytotoxic [24] https://www.sciensano.be/fr/biblio?f%5Bkeyword%5D=21978&f%5Bsearch%5D=Th1%20Cells [25] https://www.sciensano.be/fr/biblio?f%5Bkeyword%5D=28269&f%5Bsearch%5D=Tuberculosis%20Vaccines [26] https://www.sciensano.be/fr/biblio?f%5Bkeyword%5D=28275&f%5Bsearch%5D=Vaccines%2C%20DNA