TY - JOUR T1 - Mycobacterium tuberculosis complex genetic diversity: mining the fourth international spoligotyping database (SpolDB4) for classification, population genetics and epidemiology36758 JF - BMC.Microbiol. Y1 - 2006 A1 - Brudey,K. A1 - Driscoll,J.R. A1 - Rigouts,L. A1 - Prodinger,W.M. A1 - A. Gori A1 - Al-Hajoj,S.A. A1 - Allix,C. A1 - Aristimuno,L. A1 - Arora,J. A1 - Baumanis,V. A1 - Binder,L. A1 - Cafrune,P. A1 - Cataldi,A. A1 - Cheong,S. A1 - Diel,R. A1 - Ellermeier,C. A1 - Evans,J.T. A1 - M. Fauville A1 - Ferdinand,S. A1 - V. de Garcia A1 - Garzelli,C. A1 - Gazzola,L. A1 - Gomes,H.M. A1 - M.C. Gutierrez A1 - Hawkey,P.M. A1 - van Helden,P.D. A1 - Kadival,G.V. A1 - B.N. Kreiswirth A1 - K. Kremer A1 - Kubin,M. A1 - Kulkarni,S.P. A1 - Liens,B. A1 - Lillebaek,T. A1 - Ho,M.L. A1 - Martin,C. A1 - Mokrousov,I. A1 - Narvskaia,O. A1 - Ngeow,Y.F. A1 - Naumann,L. A1 - Niemann,S. A1 - Parwati,I. A1 - Rahim,Z. A1 - Rasolofo-Razanamparany,V. A1 - Rasolonavalona,T. A1 - Rossetti,M.L. A1 - Rusch-Gerdes,S. A1 - Sajduda,A. A1 - Samper,S. A1 - Shemyakin,I.G. A1 - Singh,U.B. A1 - Somoskovi,A. A1 - R.A. Skuce A1 - D. van Soolingen A1 - Streicher,E.M. A1 - Suffys,P.N. A1 - Tortoli,E. A1 - Tracevska,T. A1 - Vincent,V. A1 - Victor,T.C. A1 - R. Warren A1 - Yap,S.F. A1 - Zaman,K. A1 - Portaels,F. A1 - Rastogi,N. A1 - Sola,C. KW - a KW - an KW - analysi KW - analysis KW - approach KW - approaches KW - article KW - AS KW - classification KW - Clinical KW - Combination KW - Computational Biology KW - conceptual framework KW - Countries KW - CRISPR KW - Database KW - Databases KW - Databases,Factual KW - de KW - diversity KW - electronic KW - EPIDEMIOLOGICAL KW - epidemiology KW - ET KW - families KW - Family KW - Genetic KW - genetics KW - Genetics,Population KW - Genome KW - Genotype KW - Geographical KW - global KW - Guadeloupe KW - history KW - im KW - International KW - IS KW - isolation & purification KW - IT KW - journal KW - KNOWLEDGE KW - Laboratories KW - map KW - MODEL KW - models KW - Molecular KW - Molecular Epidemiology KW - Mycobacterium KW - Mycobacterium tuberculosis KW - need KW - Network KW - ON KW - Phylogeny KW - Polymorphism,Genetic KW - POPULATION KW - population structure KW - POPULATION-STRUCTURE KW - Populations KW - present KW - prevalence KW - recombination KW - Research KW - Research Support KW - result KW - results KW - SB - IM KW - Serotyping KW - Short KW - status KW - strain KW - structure KW - Technique KW - tuberculose KW - Tuberculosis AB - BACKGROUND: The Direct Repeat locus of the Mycobacterium tuberculosis complex (MTC) is a member of the CRISPR (Clustered regularly interspaced short palindromic repeats) sequences family. Spoligotyping is the widely used PCR-based reverse-hybridization blotting technique that assays the genetic diversity of this locus and is useful both for clinical laboratory, molecular epidemiology, evolutionary and population genetics. It is easy, robust, cheap, and produces highly diverse portable numerical results, as the result of the combination of (1) Unique Events Polymorphism (UEP) (2) Insertion-Sequence-mediated genetic recombination. Genetic convergence, although rare, was also previously demonstrated. Three previous international spoligotype databases had partly revealed the global and local geographical structures of MTC bacilli populations, however, there was a need for the release of a new, more representative and extended, international spoligotyping database. RESULTS: The fourth international spoligotyping database, SpolDB4, describes 1939 shared-types (STs) representative of a total of 39,295 strains from 122 countries, which are tentatively classified into 62 clades/lineages using a mixed expert-based and bioinformatical approach. The SpolDB4 update adds 26 new potentially phylogeographically-specific MTC genotype families. It provides a clearer picture of the current MTC genomes diversity as well as on the relationships between the genetic attributes investigated (spoligotypes) and the infra-species classification and evolutionary history of the species. Indeed, an independent Naive-Bayes mixture-model analysis has validated main of the previous supervised SpolDB3 classification results, confirming the usefulness of both supervised and unsupervised models as an approach to understand MTC population structure. Updated results on the epidemiological status of spoligotypes, as well as genetic prevalence maps on six main lineages are also shown. Our results suggests the existence of fine geographical genetic clines within MTC populations, that could mirror the passed and present Homo sapiens sapiens demographical and mycobacterial co-evolutionary history whose structure could be further reconstructed and modelled, thereby providing a large-scale conceptual framework of the global TB Epidemiologic Network. CONCLUSION: Our results broaden the knowledge of the global phylogeography of the MTC complex. SpolDB4 should be a very useful tool to better define the identity of a given MTC clinical isolate, and to better analyze the links between its current spreading and previous evolutionary history. The building and mining of extended MTC polymorphic genetic databases is in progress VL - 6 U1 - 38094 M3 - http://dx.doi.org/10.1186/1471-2180-6-23 ER -