

healthy all life long

NCDVAC

Evaluation of new vaccines and development of appropriate vaccination schedules for Newcastle disease

9th Animal Health Symposium – 26/03/24

Evaluation of the current serological status of hobby birds

Recruitment of participants

29 hobby flocks sampled:

Ę

- 11 sampled on-site
- 18 sampled at slaughterhouse

Province	Number of flocks (owner, n=11)	Number of flocks (slaughterhouse, n=18)
Hainaut	2	0
Liège	2	0
Luxembourg	2	16
Namur	4	1

All flocks sampled on-site:

- Had an outside access
- Were not re-vaccinated (anterior vaccinal status unknown)
- Type of chicken is unknown

Serological evaluation

Ę

19 flocks (9 from slaughterhouse) with at least 1 positive case (ELISA)

Hobby flocks serology: positivity ratio ELISA/HI (superimposed) 100-% POS ELISA % positive samples % POS HI Serological evaluation of hobby flocks by ELISA (n=263) and HI (n=101) 50 **NEG H NEG ELISA** POS ELISA POS HI 50% 62% 38% 50% * 5 6 1 8 9 10 1 13 13 18 15 10 1 18 19 N V ზ **Positive farms** Discrepancies between ELISA and HI results **V**sciensano

38% of birds with ND antibodies

Half were older than 1 year

Potential residual antibodies elicited by anterior vaccination

Possible contact with wild birds

Perspectives

> Better understanding of observed immunity levels

Potential role of wild birds: assessment of the circulation of NDV

Development of alternative vaccination approaches in layer and broiler chickens

Vaccinal protection of Belgian poultry – Snapshot evaluation

SPF/FOD funded research

- Long living birds
 - General detection of humoral IR (3x vaccinated)
 - No morbidity / mortality
 - Excretion Transmission to sentinels
 - Clinical protection Risk of silent circulation
 - ~ Antigenic mismatch of vaccine
- Short living birds
 - Poor humoral IR (2x vaccinated live)
 - Minimal clinical protection
 Mortality + systemic infection
 - Excretion Transmission to sentinels
 - Poor efficacy Ineffective vaccinal output
 - ~ MDA-interference

Commercial layer chickens challenge: viral excretion

Commercial broiler chickens challenge: survival rate

The genetic gap between vaccinal and wild strains

Dimitrov et al.

- Genetic gap:
 - <u>2018 BE field strain</u>: genotype VII.2
 - Vaccinal strains: genotypes I or II
- Antigenic mismatch

	Genotype (number of analyzed sequences)	No. of base substitutions per site (SE) ³								
		I	п	ш	IV	v	VI	VII	VIII	
	I (n=136)									
	II (n=154)	0.129								
	III (n=8)	0.115	0.144							
	IV (n=4)	0.102	0.131	0.082						
	V (n=87)	0.192	0.211	0.181	0.147					
	VI (n=222)	0.189	0.210	0.184	0.140	0.165				
	VII (n=460)	0.187	0.218	0.179	0.143	0.164	0.139			
	VIII (n=5)	0.145	0.169	0.136	0.097	0.131	0.124	0.129		
CLASS II	IX (n=25)	0.107	0.132	0.094	0.078	0.173	0.177	0.173	0.127	

8

Aims of the study

- Easily editable, matched emergency vaccine for long-living birds
 - VLP-based vaccine: safe and adaptable

Production and characterisation of 3 vAOAV-1 VLPs: VLP-F, VLP-HN, VLP-F-HN

- Alternative vaccination protocols for short-living birds How to overcome passive immunity?
 - Delayed vaccination
 - Combined vaccination

VLPs as matched emergency vaccines

L

- Evaluation as boost vaccines in commercial <u>vaccinated</u> layers (26-week-old)
 - Live vaccine at 2+7 weeks, inactivated at 12 weeks

VLP-HN shows better boost efficacy

Ļ

11

Alternative vaccination protocols for broilers

Early gap immunity, primo-vaccination neutralised by MDAs

• Delayed vaccination

- Combined vaccination
- Optimal vaccination time based on Deventer formula
 - Vaccination age = 19-day-old
- Yolks or blood samples from dams could be used as replacement (with correction factor)

Experimental groups		Vaccination time points				
		D14	D19			
G1 – Classic « field » vaccination (control)	Live	Live	/			
G2 – Delayed vaccination	/	/	Live			
G3 - Delayed + inactivated vaccination	/	/	Live + inactivated			
G4 – Delayed + VLP vaccination	/	/	Live + VLP-HN			

VLP-HN improves vaccination efficacy

Ē

Commercial ELISA NDV-S: Full NDV + F antigen

VLP-HN might provide better clinical protection

Conventional broilers challenge Seroneutralisation of vAOAV-1 on DF-1 cells

VLP-HN (G4)

- Better in vivo protection potential
- To be tested in challenge experiment

(Based on 18 animals) 5,77 log2

Key messages

VLPs as a safe and easily adaptable vaccination tool

Layer experiment

- Added value of matched vaccines as emergency boost for long and short living birds
- Co-expression of F & HN on VLPs impacts the boost efficacy
- Proof of concept: matched vaccines can be used in case of other velogenic incursions

Broiler experiment

- Single delayed and classical vaccination: similar levels of immunity
- Combined matched-VLP vaccination: best humoral IR and levels of neutralising Abs
- Deventer formula can be used in the scope of ND vaccination

Perspectives

- Is the clinical protection improved by a matched vaccine in broilers?
- Preparedness: larger scale production (baculovirus system)
- Evaluation of the relevance of a primo-vaccination at hatch for broilers

Contact

Project coordinator: Mieke Steensels • mieke.steensels@sciensano.be • +32 479 87 13 34 PhD student: Colas Soldan • colas.soldan@sciensano.be • +32 493 60 14 26 DGZ: Joke Van Raemdonck • joke.vanraemdonck@dgz.be • +32 78 05 05 23 CER Group: Caroline Martinet • c.martinet@cergroupe.be • +32 84 22 03 16 ARSIA: Marc Saulmont • marc.saulmont@arsia.be • +32 83 23 05 15

Sciensano • Rue Juliette Wytsmanstraat 14 • 1050 Brussels • Belgium T +32 2 642 51 11 • T Press +32 2 642 54 20 • info@sciensano.be • www.sciensano.be