
Food and Chemical Toxicology 166 (2022) 113118

Available online 20 May 2022
0278-6915/© 2022 Published by Elsevier Ltd.

Modeling the migration of chemicals from food contact materials to food: 
The MERLIN-expo/VERMEER toolbox 

P. Ciffroy a,*, B. Mertens b,c, E. Van Hoeck b, I. Van Overmeire b, E. Johansson d, B. Alfonso d, 
D. Baderna e, G. Selvestrel e, E. Benfenati e 
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A B S T R A C T   

Evaluating the migration of chemicals from food contact materials (FCM) into food is a key step in the safety 
assessment of such materials. In this paper, a simple mechanistic model describing the migration of chemicals 
from FCM to food was combined with quantitative property-property relationships (QPPRs) for the prediction of 
diffusion coefficients and FCM-Food partition coefficients. The aim of the present study was to evaluate the 
performance of these operational models in the prediction of a chemical’s concentration in food in contact with a 
plastic monolayer FCM. A comparison to experimental migration values reported in literature was conducted. 
Deterministic simulations showed a good match between predicted and experimental values. The tested models 
can be used to provide insights in the amount and the type of toxicological data that are needed for the safety 
evaluation of the FCM substance. Uncertainty in QPPRs used for describing the processes of both diffusion in 
FCM and partition at the FCM-Food interface was included in the analysis. Combining uncertainty in QPPR 
predictions, it was shown that the third quartile (75th percentile) derived from probabilistic calculations can be 
used as a conservative value in the prediction of chemical concentration in food, with reasonable safety factors.   

1. Introduction 

Food contact materials (FCM) are omnipresent in everyday life. 
Despite their multiple benefits in food handling and processing, the 
safety of these FCM should be assessed as migration of compounds from 
FCM into the food has clearly been established (Muncke et al., 2020). 
Although migration generally occurs in relatively small amounts, life
long exposure to low levels of these food contaminants may lead to 
serious adverse human health effects (Van Bossuyt et al., 2019). In 
Europe, a specific regulation exists only for plastic FCM, including a 
positive list (Annex I) of substances authorized for use as starting 
product (EU, 2011). Migration of substances included in Annex I should 
be below the specific migration limit (SML), if available. These SML 
values have been derived based on toxicological data submitted by the 
applicant. The type and amount of toxicological data depends on the 
estimated exposure, which is driven by the level of migration of the 
chemical from the FCM into the food (EFSA, 2008). In case migration of 

a chemical is below 0.05 mg/kg food, exposure is considered to be low 
and only limited toxicological testing is required. However, if migration 
becomes higher, additional toxicological information needs to be pro
vided by the applicant. 

Consequently, evaluating the migration of chemicals from FCMs into 
food is a key step in the safety assessment of such materials. Migration of 
chemical substances within FCM and at the FCM-food interface is driven 
both by kinetic diffusion and thermodynamic partitioning between the 
FCM and the food. The kinetic dimension of migration determines how 
fast the migration process occurs, while the thermodynamic dimension 
has an impact on the magnitude of the transfer of chemicals at equi
librium. Various models have been developed to integrate such diffusion 
and partitioning processes, thereby taking into account the effect of the 
plastic FCM material, nature of food or beverage, temperature, media 
thicknesses and the initial amount of chemical in the FCM (Brandsch 
et al., 2002, 2015; Helmroth et al., 2002; Begley et al., 2005; Barnes 
et al., 2006; Oldring et al., 2014; Poças et al., 2008; Biryol et al., 2017; 
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Ernstoff et al., 2017; Gavriil et al., 2018). Some of these models are used 
for regulatory purposes and are assumed to be based on conservative 
assumptions. However, some gaps can be identified. Firstly, some of the 
models are purely empirical and are not based on explicit mechanistic 
foundations, making their extrapolation to other conditions (i.e. other 
materials, time scales, etc.) difficult. For example, Biryol et al. (2017) 
developed an empirical linear regression model for migration at equi
librium by fitting available migration measurements. By construction, 
this model is unable to provide kinetic information since it is based on 
data at equilibrium only. Secondly, in the absence of adequate models 
for the prediction of partition coefficients at the FCM-food interface 
(which govern the thermodynamic dimension indicated above), most 
models are based on default partition coefficient values, not specific to 
the substances tested. For example, Begley et al. (2005) developed a 
model considering ‘worst case’ partition coefficients: in absence of 
specific data, partition coefficient is assumed to be equal to 1, which 
means that the substance is very soluble in food, leading to the highest 
migration predictions. Third, models for predicting diffusion coefficients 
(which govern the kinetic dimension indicated above) were generally 
only calibrated and applicable to a small number of FCMs, mainly plastic 
materials. For example, models proposed by Begley et al. (2005) are 
applicable for low-density and high-density polyethylene (LDPE, HDPE), 
polyethylene terephthalate and naphtalate (PET, PEN), polypropylenes 
(PP), general-purpose and high-impact polystyrene (PS, HIPS), and 
polyamide (PA). Finally, it remains difficult to estimate the confidence 
level associated with the results of models since many parameters used 
in migration modeling (in particular diffusion or partition coefficients) 
may show large uncertainty. Yet, available codes are not designed for 
conducting global multi-parametric uncertainty analysis since param
eter values are set at ‘best estimate’ or ‘default’ values. Simulations 
performed with ‘best estimates’ or ‘default’ parameter values only do 
not provide a good indication of the confidence level associated with the 
model results. A model can indeed give good results ‘on average’, but the 
confidence interval can range over orders of magnitude. Uncertainty 
assessment is then essential for the performance evaluation of a model 
and for decision-making. 

Recent papers present the basis for improving these models and 
extending their applicability domain. Ozaki et al. (2010) and Ernstoff 
et al. (2017) combined food and chemical factors to derive predictive 
models for FCM/food partition coefficients. Huang and Jolliet (2019) 
refined the approach previously developed by Ernstoff et al. (2017) and 
developed a quantitative property-property relationship (QPPR) for 
predicting FCM/food partition coefficients, extending the number of 
materials of concern and introducing the temperature dependency. 
Instead of using default and/or ‘worst case’ partition coefficients, it is 
therefore possible to exploit this QPPR to determine values specific to 
the substances and conditions tested, thus improving the relevance of 
predictions. In addition, Huang et al. (2017) developed a QPPR for 
predicting diffusion coefficients in FCM as a function of material type. 
This model covers a wide range of substance-material combinations, i.e. 
87 original materials grouped into 32 consolidated material types. It 
therefore opens up the perspective of simulating the migration of 
chemicals from a wider range of FCMs. Finally, each abovementioned 
QPPR integrates information about prediction uncertainty. Combining 
such uncertainties in a common tool can then provide a global overview 
of the confidence level in predictions of chemical concentrations in food. 

To our knowledge, these recent developments have not been inte
grated into a global migration model including uncertainty assessment, 
nor have they been compared with ‘old’ models and experimental data. 
To bridge this gap, a migration model was implemented in the MERLIN- 
Expo/VERMEER platform. The MERLIN-Expo tool (https://merlin-expo. 
eu/) is presented in detail in Ciffroy et al. (2016) and has already been 
used for various applications dealing with environmental and human 
health exposure issues (Giubilato et al., 2016; Radomyski et al., 2016; 
Fierens et al., 2016; Van Holderbeke et al., 2016; Ciffroy and Benedetti, 
2018). Briefly, the MERLIN-Expo tool is a library of models providing an 

integrated assessment tool for state-of-the-art exposure assessment for 
environment, biota and humans. In the frame of the European 
Life-VERMEER project, the MERLIN-Expo tool was merged with the 
VEGA tool, which is a library of QSAR models predicting 
physico-chemical, fate and (eco)toxicological parameters of chemicals 
(https://www.vegahub.eu/). The new integrated tool resulting from the 
merging of MERLIN-Expo and VEGA was called VERMEER FCM, 
allowing a comprehensive analysis of uncertainties occurring at the 
different steps of the assessment. In this context, a migration model 
predicting the transfer of chemicals from FCM to food was incorporated 
in the MERLIN-Expo library. Focus was put on widely used migration 
models that require a limited amount of input parameters and on QPPR 
models able to provide parameter estimations for a wide range of 
chemicals and FCMs. A comparison to experimental migration values 
was conducted using the database published by Begley et al. (2005). 
Considering this background, the main objective of this study was to 
evaluate global performance of this new integrated model, including 
uncertainty assessment. 

2. Material and methods 

2.1. The migration model 

A one-dimensional (1D) diffusion model simulating the transfer of 
chemicals from a monolayer plastic FCM layer and food was considered 
here. The governing partial differential equation describing diffusion is 
the second Fick’s Law: 

∂Ci

∂t
=Di.

∂2Ci

∂x2 (1)  

where Ci is the concentration of the chemical in compartment i (in mg. 
g− 1); Di is the diffusion coefficient in compartment i (in m2.s− 1). 

When only one FCM layer is considered, the mass-balance equation 
based on Fick’s second law (Equation (1)) satisfies an analytical solu
tion, as described in Crank (1979) and adapted in Piringer (2007): 

mFood(t) =mFCM,0.

(
ρFCM .α

ρFood + ρFCM .α

)

.

[

1 −
∑∞

n=1

2α.(1 + α)
1 + α + α2q2

n
exp

(

− DFCM .t.
q2

n

d2
FCM

)]

(2)  

where mFood(t) represents the amount of the migrating chemical after the 
contact time t in food (mg); mFCM,0 is the initial amount of the chemical 
in FCM (mg); with the volumes VFCM and VFood of FCM and food (cm3). 

α (unitless) represents the ratio: 

α=
VFood

VFCM .KFCM,Food
=

dFood

dFCM .KFCM,Food
(3)  

with KFCM,Food representing the partition coefficient of the chemical be
tween FCM and food; dFood is the thickness of the food layer (cm); dFCM is 
the thickness of the FCM layer (cm). 

The parameters qn involved in Equation (2) are the positive roots of 
the transcendent equation: tan(qn) = − αqn. Solutions of this latter 
trigonometric identity are tabulated for some values of α, but approxi
mated solutions were used in the present model, i.e. (Equation (4)): 

for α ≪ 1, qn ≈
nπ

1 + α  

else, qn ≈

[

n −
α

2(1 + α)

]

π (4) 

According to Piringer (2007), solutions of Equation (2) converge 
rapidly for long diffusion times, while for short times, e.g., at the 
beginning of diffusion (T = 0.001), approximately 50 qn terms are 
needed. Ernstoff et al. (2017) observed that few roots were needed (e.g. 
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5 to 50.000) when α is high (α> 10). Instead, for very low α (<0.001), 
even 1 million roots resulted in several orders of magnitude over
estimation during short time scales (i.e. in the first 24 h). Thus, the main 
obstacle for solving Equation (2) could be the computation time for 
some cases. Having highlighted this issue, Ernstoff et al. (2017) devel
oped an alternative analytical solution based on empirical solutions of 
Equation (2) for predefined ranges of α values. However, we did not 
identify major gaps in computation times for our applications with the 
Ecolego® software (https://www.ecolego.se/) used for coding and 
running the model and the original solution (Equation (2)) was therefore 
maintained. 

2.2. Models for estimating the diffusion coefficient 

For running the diffusion transport equation (Equation (2)), diffusion 
coefficient in FCM DFCM must be determined for the targeted chemical 
and for each type of FCM material. Two alternative approaches, the EU- 
approved (Oldring et al., 2014) and the recent Huang’s approaches 
respectively, were considered for estimating the diffusion coefficient. 
The EU-approved approach is applicable for a restricted number of FCMs 
(i.e. those indicated in the introduction) while the Huang’s model was 
calibrated for a wider range of FCMs, opening the perspective of 
extending the applicability domain of a migration model. 

2.2.1. Piringer’s model for estimating the diffusion coefficient 
A simplified, empirical approach to obtain diffusion coefficients for 

the migration modelling was approved in the EU (Oldring et al., 2014), 
for the cases where only little or no data exist for the system of interest. 
The concerned model was the semi-empirical model proposed by Pir
inger (2007) for safe overestimation of diffusion coefficients. Safe 
overestimation means that the model is theoretically optimized to pre
dict or overpredict most of the diffusion coefficient data used for the 
development of the model. The model correlates diffusion coefficient 
with the relative molecular mass, M, of the chemical migrating in FCM, 
with a matrix-specific parameter, noted AFCM, and with the absolute 
temperature, T. An equation for DFCM in a reference amorphous poly
olefin material was developed by Brandsch et al. (2002) and extended to 
some other FCMs: 

DFCM =Dref .exp
(

AFCM − 0.1351.M2/3 + 0.003.M −
10454 + τPiringer

T

)

(5)  

with the unit reference diffusion coefficient, Dref = 1 m2.s− 1 (or Dref =

10000 cm2.s− 1 or Dref = 8.64.108 cm2.d− 1); AFCM is a standard polymer- 
specific diffusivity parameter (unitless); M is the relative molecular mass 
of the migrating chemical (Da); T is the temperature (in K); τPiringer is the 
specific contribution of the polymer matrix to the diffusion activation 
energy (K). 

The diffusion coefficient then results from three contributions: the 
term exp(AFCM) describes the contribution of the polymer matrix of the 
FCM; the term exp(− 0.1351.M2/3 +0.003.M) describes the effect of the 

migrating chemical incorporated in the FCM; the term exp
(
−

10454+τPiringer
T

)
describes the effect of temperature. 

The parameter AFCM is specific to the FCM material. It may be 
assimilated to a ‘conductance’ of the polymer matrix towards the 
diffusion of the migrating chemical. 

The molecular mass is used as estimator for the molecular volume, 
which represents the real parameter determining the diffusion. For 
deriving the influence of molecular mass on diffusion coefficient 
through the term exp( − 0.1351.M2/3 + 0.003.M), the starting point was 
the development of an equation for n-alkanes with the elementary 
composition CiH2i+2 (Piringer, 2007). Piringer (2007) correlated the 
diffusion coefficient to the cross-sectional area of the diffusing molecule, 
representing the relative resistance of the polymer matrix against the 
movement of the diffusing molecule. In the special situation of 

n-alkanes, this area can be represented by the term 0.1351.M2/3. A 
slower decrease of the diffusion coefficient DFCM was however observed 
at high molecular masses. The correction factor 0.003.M was therefore 
introduced. 

The effect of temperature was simulated according to the Arrhenius 
relationship: D = D0.exp

(
− Ea

RT
)
, where D0 is the hypothetical diffusion 

coefficient at very high temperature, Ea is the activation energy of 
diffusion (J.mol− 1), R the gas constant (J.mol− 1.K) and T the tempera
ture (K). A reference activation energy of Ea = 86.9 kJ.mol− 1, corre
sponding to the diffusion process in the reference amorphous polyolefin 
matrix, divided by R leads to the reference value 10,454 K in Equation 
(5). The parameter τPiringer with the dimension Kelvin accounts for a 
specific contribution of the polymer matrix to the diffusion activation 
energy. Depending on the nature of the polymer, this contribution may 
lead to higher or respectively lower Ea than the reference activation 
energy of 86.9 kJ mol− 1. 

2.2.2. Huang’s model for estimating the diffusion coefficient 
The Piringer’s relationship (Equation (5)) is the most commonly used 

model for estimating the diffusion coefficient. It was calibrated however 
only for a limited set of FCM, i.e. only plastic materials. In order to 
extend the applicability of the VERMEER FCM tool described here, an 
alternative model was tested, i.e. the model proposed by Huang et al. 
(2017). Huang et al. (2017) developed a QPPR for predicting diffusion 
coefficients in FCM (plastics and others) as a function of molecular mass, 
M, of the chemical migrating in FCM, temperature and material type. 
Using the full dataset (1103 records), which has the advantage of 
covering a wide range of chemical-FCM combinations (158 chemicals 
and 87 original food contact materials grouped into 32 consolidated 
food contact material types), the final QPPR model for predicting the 
diffusion coefficient in solid materials is expressed as follows: 

log10(DFCM)= 6.39 − 2.49.log10(M) +
τHuang − 3486

T
+ b (6)  

where b is a material-specific coefficient. It may be observed that the 
approach selected for representing the temperature dependence is 
mathematically consistent with those initially proposed by Piringer 
(2007). 

2.3. Model for estimating the partition between FCM and food 

In a two-phase food/FCM system, transfer of the migrating chemical 
from one phase to the other occurs to reach thermodynamic equilibrium. 
This thermodynamic equilibrium is described by a partition coefficient 
KFCM,Food defined as the ratio at equilibrium of the migrating chemical 
concentration in FCM, CFCM, to its equilibrium concentration, in the food 
phase, CFood, i.e.: 

KFCM,Food =

(
ρFCM.CFCM

ρFood.CFood

)

equ
(7)  

where CFCM is the concentration of the chemical in FCM (mg.g− 1); CFood 
is the concentration of the chemical in Food (mg.g− 1); ρFCM is the FCM 
density (g.cm− 3); ρFood is the Food density (g.cm− 3). 

KFCM,Food is higher than one when more chemical is absorbed into the 
polymer than in the food. For food safety, a large KFCM,Food limits 
migration from FCM material to food; conversely, a lower KFCM,Food in
dicates that more chemical is associated to the food. Partition co
efficients depend on the solubility coefficient of the chemical for both 
the FCM and food. 

Seiler et al. (2014) showed that certain characteristics of foodstuffs 
such as fat, water or carbohydrate content dominate their solubility for 
organic chemicals. Solubility of migrating chemicals for foods may be 
correlated with ethanol–water mixtures. In the present model, the 
ethanol-equivalency (EtOHequ) is therefore used as the food proxy. 
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Ozaki et al. (2010) and Ernstoff et al. (2017) combined food and 
chemical factors (i.e. food EtOHequ and migrant Kow) to derive predictive 
models for FCM/food partition coefficients. Huang and Jolliet (2019) 
refined the approach previously developed by Ernstoff et al. (2017), 
extending the number of materials of concern and introducing the 
temperature dependency of KFCM,Food. They finally built the following 
generic QPPR model: 

log 10
(
KFCM,Food

)
=

− 1.96+ 1.16.log(Kow) − 0.0059.EtOHequ − 0.0079.log(Kow).EtOHequ

+ 805.
(

1
T
−

1
298.15

)

(8) 

This model was selected for the MERLIN-Expo FCM model because it 
is based on a large number of data, and statistical analysis of the QPPR is 
explicitly provided (see 2.5). 

2.4. Parameter values 

Parameters required for predicting diffusion coefficients by the Pir
inger’s relationship (i.e. the standard polymer-specific diffusivity 
parameter AFCM and the Specific contribution of the polymer matrix to 
the diffusion activation energy τPiringer - Equation (5)) or by the Huang’s 
relationship (i.e. the material-specific coefficient b and the Specific 
contribution of the polymer matrix to the diffusion activation energy 
τHuang - Equation (6)) are taken from Begley et al. (2005) and Huang et al. 
(2017). 

A statistical treatment was however necessary for deriving mean 
values for the AFCM parameter. Indeed, Begley et al. (2005) fitted 
experimental release data (i.e. kinetic release of chemicals into food 
simulants from FCMs), and derived AFCM values for each experiment 
separately (Ernstoff et al., 2017). However, a preliminary qualitative 
analysis of the data available in Begley et al. (2005) suggested the 
presence of one or several outliers for most of the investigated FCMs (for 
example, the AFCM values estimated by Begley et al. (2005) from 
different experiments for PA were − 7.7, − 2.2, − 3.7, − 4.6, − 3.9, − 3.7, 
− 3.9, showing a relative homogeneity, except for the ‘-7.7’ value). 
Outliers are data that are extremely large or small relative to the rest of 
the data and are therefore suspected of misrepresenting the data popu
lation. Our purpose here was not to investigate the sources of the outliers 
or to decide whether they were true or false. For our testing exercise, we 
instead chose to remove them from the datasets because they could lead 
to a distortion of the estimates of population parameters, such as mean. 
The Grubb’s test was used to identify the potential presence of outliers in 
Begley’s datasets. The Grubb’s test statistic is defined as G = Xmax − X

s (or 

G = X− Xmin
s ), where X and s refer to the sample mean and standard de

viation, respectively. The hypothesis of no outliers is rejected at signif

icance level α (here α = 0.05 was chosen) if G > N− 1̅̅̅
N

√

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
t2
α
/N

,N− 2

N− 2+t2α
/N

,N− 2

√

, where 

t2
α/N

,N− 2 is the upper critical value of the t-distribution with N-2 degrees of 

freedom and a significance level of α/N. Mean values for the AFCM 

parameter were then calculated after removing outliers. 
Parameter values are reported in the Supporting Information. 

2.5. Uncertainty in QPPR models 

2.5.1. Uncertainty in QPPR for diffusion and partition coefficients 
Models developed by Huang et al. (2017, 2019) for predicting 

diffusion coefficients (Equation (6)) and partition coefficients (Equation 
(8)) are based on QPPRs. The above-mentioned QPPR models are based 
on linear regressions fitted by ordinary least squares. Huang et al. (2017, 
2019) provided the statistical summaries of their regression models, in 
particular the number of data in the training set (n = 1103 and n =

1847) and the standard error (SE = 1.17 and SE = 0.9 respectively). 
Taking into account the theory on regression, the uncertainty in the 
prediction can be estimated. Assuming identical, independent and nor
mally distributed errors, the uncertainty in the prediction of the variable 
log10(DFCM) (respectively log10(KFCM,Food)) can be defined from the pre
dictive mean log10(DFCM) (respectively log10(KFCM,Food)) and standard 
error of predictions SE[log10(DFCM)] (respectively SE[log10(KFCM,Food)]), i. 
e. 

log10(DFCM)= log10(DFCM) + tn− k− 1.SE[log10(DFCM)] (9)  

log10
(
KFCM,Food

)
= log10

(
KFCM,Food

)
+ tn′ − k′ − 1.SE

[
log10

(
KFCM,Food

)]
(10)  

where tn− k− 1 is the student t-distribution with n-k-1 degrees of freedom, 
n is the number of data in the training set, k is the number of descriptors 
in the model (and k+1 is the intercept plus the number of descriptors). 
Here n = 1103; k = 3; SE = 1.17 for the QPPR for diffusion coefficient, 
and n’ = 1847; k’ = 3; SE = 0.9 for the QPPR for partition coefficient. 

Uncertainty variables noted εlog(DFCM) and εlog(KFCM,Food) are then defined 
as: 

εlog(DFCM ) = SE.t1099 = 1.17.t1099 (11)  

εlog(KFCM,Food) = SE.t1843 = 0.9.t1843 (12)  

and the predicted log10(DFCM) and log(KFCM,Food) can be calculated as 
follows, with the random variables εlog(DFCM) and εlog(KFCM,Food) reflecting the 
uncertainty in the prediction: 

log10(DFCM)= 6.39 − 2.49.log10(M) +
τHuang − 3486

T
+ b + εlog(DFCM ) (13)  

log
(
KFCM,Food

)
= − 1.96+1.16.log(Kow)− 0.059.EtOHequ

− 0.0079.log(Kow).EtOHequ+805.
(

1
T
−

1
298.15

)

+εlog(KFCM,Food)

(14)  

2.5.2. Uncertainty in QPPR for octanol-water partition coefficient 
Equation (14) requires the previous determination of the octanol- 

water partition coefficient. In our work, the Moriguchi et al.‘s QSAR 
model (Moriguchi et al., 1992, 1994) available in the VEGA toolbox 
(Benfenati et al., 2019) was used. This QSAR model is based on a mul
tiple regression considering 13 molecular descriptors. The version 
implemented in the VEGA toolbox is based on 9961 compounds in the 
training set, with a RMSE of 0.96. As described above, the uncertainty in 
the prediction of log(Kow) can be defined as the predictive distribution 
by the predictive mean log(Kow) (given by the VEGA toolbox) and 
standard error of predictions SE[log(Kow)], i.e. 

log(Kow)= log(Kow)+ tn− k− 1.SE[log(Kow)]

= log(Kow)+ εlog(Kow)

= log(Kow)+ 0.96.t9947

(15) 

Besides, the VEGA toolbox also provides an ‘applicability domain’ 
index (ADI) for each prediction. This score results from several criteria: 
(i) the presence of similar molecules with experimental data in the 
training set. The index takes into account the level of similarity of the 
first two most similar compounds found; (ii) the accuracy (average 
error) prediction of similar compounds; (iii) the concordance with 
similar molecules (average difference between target compound pre
diction and experimental values of similar compounds); (iv) the 
maximum error of prediction among similar compounds. All these 
criteria are integrated to provide a global ADI ranging from 0 to 1. 
Beyond the purely predictability of the regression model (represented by 
the random term εlog(Kow)), the inclusion in the applicability domain must 
also be taken up in the parameter uncertainty. An additional uncertainty 
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term is then incorporated as: 

log(Kow)= log(Kow) +
εlog(Kow)

ADI 

That means that if the targeted compound is integrally within the 
applicability domain (ADI = 1), no additional uncertainty is considered, 
while if it is at the borders or outside of the applicability domain 
(ADI<1), an additional uncertainty factor is applied. 

2.6. Global uncertainty analysis 

10,000 random parameter samples were generated by a Monte Carlo 
generator, using εlog(DFCM), εlog(KFCM,Food) and εlog(Kow) as random variables 
reflecting the uncertainty in QPPR predictions. The model then runs 
simulations with all the parameter samples that were previously 
generated and provides summary statistics for describing the uncer
tainty of the selected endpoint; i.e. the concentration in food of the 
chemical having migrated from FCM to food after a given contact time. 

3. Results and discussion 

3.1. Deterministic simulations 

The modelled concentrations of chemicals in food are plotted against 
the corresponding measured experimental data. Two alternative models 
were tested, based on the Piringer’s relationship (equation (5)) and the 
Huang’s relationship (equation (6)) respectively for the prediction of the 
diffusion coefficient; these models are combined to the Huang’s QPPR 
for the prediction of the partition coefficient (equation (8)). All the 
models are used with best estimate values of the parameters (i.e. with 
null values of the error variables εlog(DFCM), εlog(KFCM,Food) and εlog(Kow)). Re
sults are presented in Fig. 1 (where the unity-slope line through the 
origin shows the ideal unbiased model, and the dotted lines show the 
one-order of magnitude interval around the ideal model). 

A visual analysis of the results thus obtained showed a good match 
between predicted and experimental values, with a majority of predicted 
values not differing from experimental values by more than one order of 
magnitude. 

In this case, however, the analysis of the regression curves presented 
in Fig. 1 are not sufficient to assess the performance of the models. 
Firstly, from a regulatory perspective, one cannot consider as equivalent 
underestimation and overestimation of actual concentrations respec
tively; indeed, the model is expected to be globally conservative, i.e. it is 
expected to predict chemical concentrations in food at least equal to or 
higher than the actual experimental values. Secondly, in a regulatory 
approach, estimating the migration of chemicals from FCMs to food is 
only a first step, driving the amount and type of toxicological data 
needed for the safety assessment. In particular, EFSA recommends a 
tiered approach: in case of low migration of the substance into food 
(<0.05 mg kg− 1 food), only absence of genotoxicity has to be proven. 
For migration values between 0.05 and 5 mg kg− 1, in vivo subchronic 
toxicity data and data on accumulation in humans have to be provided in 
addition to the results of genotoxicity tests, while for high migration 
values (>5 mg kg− 1) a full toxicological data set (including information 
on absorption, distribution, metabolism and excretion (ADME), and data 
on reproductive toxicity, teratogenicity, chronic toxicity/carcinogenic
ity) is needed. In this context, the concentrations of chemicals in food 
must therefore be compared with a specified threshold (referred to an 
‘alarm’ or ‘trigger’ value). For these reasons, the performance of the two 
models tested was evaluated on the basis of contingency tables: a con
tingency table reports the number of occurrences in which real data and 
predicted values were both above the threshold (hits), the number in 
which they were both below (correct negatives), the number of alarms 
missed by the model (missed) and that of false alarms. For illustrating the 
construction of contingency tables, two examples of subdivision of the 
data into these four categories (corresponding to two different threshold 

values) are shown in Fig. 2. Several metrics can be used for evaluating 
the performance of the model (Bennett et al., 2013). The purpose of 
these metrics is to summarize the model results in terms of critical 
thresholds. Several metrics were calculated for the two models tested 
and for different threshold values (0.05, 0.1, 0.5 and 1 mg kg− 1 (the 
latter were selected as tests even if they have no direct link with the 
regulatory thresholds; 5 mg kg− 1 was not selected despite its regulatory 
relevance since too few experimental values exceed this value in our 
dataset). The purpose of each metric, as well as range and ideal value, 
are presented in Table 1. 

The Accuracy metric, which measures the fraction of correct pre
dictions, is close to the ideal unity value (>0.80) for the two models and 
all tested thresholds. This shows that at least 80% of predictions suc
cessfully detects hits and correct negatives. The Success index metric 
provides similar kind of information and similar results: it measures the 
ability to exceed or not exceed the threshold value, weighting equally 
hits and correct negatives. Calculated Success index metric showed that 
both models result in values close to the ideal unity value (with slightly 
better results for the Piringer’s model at low thresholds). The Bias score 
metric, which indicates the tendency of underestimation or over
estimation, is different for the Piringer’s and the Huang’s models 
respectively. It is below unity for the Piringer’s model (between 0.85 
and 0.9), indicating a slight tendency to underestimation. It is close to 
ideal unity value for the Huang’s model at low thresholds (0.99 and 
1.01 at 0.05 and 0.1 mg kg− 1 thresholds) and increases with the 
thresholds; at higher thresholds (0.5 and 1 mg kg− 1), the bias scores are 
1.16 and 1.32, indicating a tendency to overestimation (in agreement 
with what expected in a regulatory point of view). These tendencies are 
also confirmed by the Hit rate metric, which specifically measures the 

Fig. 1. Predicted vs Measured log10(Cfood) for two alternative models (where 
Cfood is the concentration of the chemical in food after a given contact time, 
expressed in mg.kg-1) (data from Begley et al., 2006). 
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ability to detect hits: the Piringer’s model is less performant at high 
thresholds (0.72 against 0.93 for the Huang’s model at 1 mg kg− 1), 
indicating less tendency to overestimation. The false alarm ratio mea
sures the risk of wrongly predicting an exceedance of the threshold 
value. It results close to the zero ideal value for both models at low 
thresholds; it is significantly higher at the 1 mg kg− 1 threshold, indi
cating a tendency to overestimation in such case. 

Globally, all these metrics give an overview of the performance of the 
models to be used in a regulatory context, i.e. for detecting alarms in the 
frame of a tiered approach for driving the amount and type of toxico
logical data needed. Calculated metrics values are generally close to the 
ideal values and then demonstrated the good performance of both 
models in this context. 

3.2. Probabilistic simulations 

Although the metrics presented above show a good overall perfor
mance of the models, the hit rates show that these models are not sys
tematically conservative, which is expected in a regulatory framework. 
One strategy to improve the conservatism of the prediction is to use an 
uncertainty analysis, as presented in 2.6. This approach was tested with 
the model combining the Huang’s QPPRs for the prediction of diffusion 
and partition coefficients (Equations (6) and (8)). Uncertain variables 
are then εlog(DFCM), εlog(KFCM,Food) and εlog(Kow). Results are presented in Fig. 3, 
with the 5th, 25th, 75th and 95th percentiles extracted from the 10,000 

simulations (see 2.6). They were compared to the ideal unbiased model 
(i.e. the unity-slope line through the origin). On average, the 90th 
confidence interval (difference between the 95th and 5th percentiles 
respectively) covers about 2.2 orders of magnitude, while the inter
quartile (difference between the 75th and 25th percentiles respectively) 
covers about 0.9 order of magnitude. From a regulatory point of view, 
what is expected is to overestimate concentrations of chemicals in food. 
It was observed that using the 75th percentile respects this conservatism 
rule in most cases since almost all points are close to or above the un
biased line. If the 75th percentile is used, the level of conservatism 
(difference between the predicted and the experimental concentration in 
food) is about 0.4 order of magnitude. Using the 75th percentile seems 
then a good strategy for guaranteeing conservatism without applying 
too important safety factors. 

4. Availability of the VERMEER FCM tool 

The models that are presented in the present paper are freely avail
able on http://www.life-vermeer.eu/download-software/, 
https://www.vegahub.eu/portfolio-item/vermeer-fcm/ and on http 
s://merlin-expo.eu/ with the associated user manual. 

5. Conclusions 

The aim of the present study was to evaluate the performance of 

Fig. 2. Subdivision of dataset in four categories (hits, correct negatives, misses, false alarms) according to Predicted vs Experimental results – Examples presented in the 
figure: (a) Huang’s models for diffusion coefficient and partition coefficient; Threshold = 0.1 mg kg− 1 (i.e. − 1 in log units) – (b) Huang’s models for diffusion 
coefficient and partition coefficient; Threshold = 1 mg kg− 1 (i.e. 0 in log units). 

Table 1 
Metrics for evaluating the performance of the two models for different thresholds.  

Criteria Formula Range Ideal 
value 

Notes Piringer’s relationship for 
diffusion coefficient - Huang’s 
QPPR for partition coefficient 

Huang’s relationship for 
diffusion coefficient - Huang’s 
QPPR for partition coefficient 

Selected threshold (in mg.kg− 1) Selected threshold (in mg. 
kg− 1) 

0.05 0.1 0.5 1 0.05 0.1 0.5 1 

Accuracy hits + correctnegatives
total 

(0;1) 1 Measures the fraction of 
correct predictions. 

0.90 0.87 0.87 0.82 0.87 0.84 0.88 0.80 

Success 
index 

(
hits

hits + misses
+

correctnegatives
correct negatives + false alarms

)

2 

(0;1) 1 Weights equally the 
ability of the model to 
detect correctly 
occurrences and no- 
occurrences of events 

0.93 0.88 0.87 0.81 0.75 0.76 0.87 0.82 

Bias score hits + falsealarms
hits + misses 

(0;∞) 1 Indicates whether the 
model has a tendency to 
underestimate (Bias<1) 
or overestimate 
(Bias>1). 

0.90 0.89 0.90 0.85 0.99 1.01 1.16 1.32 

Hit rate hits
hits + misses 

(0;1) 1 Sensitive to hits, but 
ignore false alarms. 

0.89 0.87 0.83 0.72 0.92 0.90 0.97 0.93 

False 
alarm 
ratio 

false alarms
hits + false alarms 

(0;1) 0 Sensitive to false alarms, 
but ignore misses 

0.008 0.03 0.08 0.16 0.08 0.11 0.17 0.29  
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operational models in the prediction of a chemical’s concentration in 
food in contact with plastic monolayer FCM. The tested migration 
models can be used for regulatory purposes and results described in the 
present paper can provide new insights on such regulatory applications. 
Uncertainty in QPPR used for describing the processes of both diffusion 
in FCM and partition at the FCM-Food interface was included in the 
analysis. A simple mechanistic model was combined with QPPRs for the 
prediction of diffusion coefficients and FCM-Food partition coefficients. 
Deterministic simulations showed that a good match between predicted 
and experimental values was obtained. The tested models can be used in 
particular as alarms for triggering or not toxicological investigations. 
Combining uncertainty in QPPR predictions, it was shown that the third 
quartile (75th percentile) derived from probabilistic calculations can be 
used as a conservative value in the prediction of chemical concentration 
in food, with reasonable safety factors. 
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