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Chapter I: Introduction 
 

Counterfeit medicines pose a major threat to public health worldwide [1;2]. Not only developing 

countries are subjected to the distribution of counterfeit medicines, industrialized countries such as 

European countries, the United States and Japan are exposed to pharmaceutical forgery as well [3]. 

These counterfeited medicines are mostly manufactured by uncontrolled or street laboratories 

without respecting Good Manufacturing Practises (GMP) [4]. They are not subjected to any form of 

quality control [5] and therefore their safety, efficacy and quality cannot be guaranteed [1]. The 

consequences of the use of counterfeit medicines may vary from therapeutic failure to the 

occurrence of serious adverse events and even death [6]. 

 

 

1. Definition 

 

1.1 Counterfeit medicines 

The World Health Organization (WHO) defines a counterfeit medicine as “one which is deliberately 

and fraudulently mislabelled with respect to identity and/or source. Counterfeiting can apply to both 

branded and generic products and counterfeit products may include products with the correct 

ingredients or with the wrong ingredients, without active ingredients, with insufficient active 

ingredients or with fake packaging” [1]. Since their source is unknown, contents of counterfeit 

medicines are highly unreliable. Indeed, counterfeit medicines can range from inactive and useless 

formulations to harmful and toxic products [2]. Health risks, caused by counterfeit medicines, might 

be due to the presence of incorrect active ingredients, the absence of active ingredients, an 

incorrect dosage, the presence of high concentrations of potential toxic secondary components and 

fake packaging or documentation [3]. A counterfeit drug not only copies the brand name, its 

appearance also resembles that of a genuine product [7;8] as shown in Fig. 1.1.  
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However, the definition by the WHO does not apply to the majority of illegal drugs encountered in 

the industrialized countries since most of them do not copy the brand name and packaging of 

genuine medicines [9]. Therefore the WHO proposed some modifications, resulting in the use of the 

term ‘Spurious/Falsely labelled/Falsified/Counterfeit’ (SFFC) medicines [10]. In addition, the 

provided definition has generated a lot of controversy since it combines the concept of 

counterfeiting (which has a specific meaning relating to intellectual property) with quality, safety 

and efficacy issues of medicines [11]. This is the reason why the European Commission, for instance, 

prefers to use the term ‘falsified medicines’ [12;13]. Despite different terminologies being used to 

designate ‘counterfeit medicines’ [11;14], the definition as provided by the WHO will the convention 

used in this dissertation.   

 

1.2 Imitations 

Imitations do not copy the brand name, nor the packaging but they do claim the presence of a 

certain active pharmaceutical ingredient (API). Just like counterfeit medicines, imitations can either 

be characterized by the presence of active ingredients other than the ones claimed on the 

packaging, the absence of active ingredients or incorrect dosages. Most of these imitations are 

manufactured in India and China since these countries do not recognise the European and American 

patent laws. As a consequence, these products are produced legally in these countries but imported 

illegally in Europe and the United States [7-9]. Fig. 1.2 depicts an example of an imitation product. 

Fig. 1.1 Picture of a genuine medicine (left) and a counterfeit (right). 
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1.3 Adulterations 

Adulterations are herbal products or dietary supplements which contain undeclared synthetic APIs. 

The presence of these undeclared substances may either be due to unintentional (e.g. cross 

contamination) or intentional adulteration; yet the majority of adulterations arise from intentional 

adulteration since APIs are often present at high levels or in combination with other synthetic active 

substances [15]. These synthetic APIs are added to herbal products and dietary supplements in order 

to increase their efficacy [16]. This kind of products represent a major hazard to public health. 

Consumers are unaware of the presence of these synthetic APIs due to fraudulent labelling with 

regard to the ingredients. This could lead to unexpected side effects or interactions with other 

medication a patient might be taking [7]. An example of an adulteration is shown in Fig. 1.3. 

 

 

 

 

 

 

 

 

 

Fig. 1.2 Example of an imitation product claiming the presence of sildenafil citrate. 
This sample was produced in India (mentioned on the other side of the package). 

Fig. 1.3 Example of an adulteration claiming to be herbal. 
Analysis has shown the presence of sildenafil citrate. 
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1.4 Analogues 

Analogues are compounds which are structurally similar to approved APIs but they are chemically 

modified by adding, deleting or changing one or more functional groups [17]. Analogues may 

possess the same pharmacological characteristics as the parent drug due to structural similarity, 

however, no safety and efficacy studies are performed for these compounds. As a consequence, the 

safety and pharmacological profiles are unknown and potential adverse events are highly 

unpredictable [17;18]. The production of drug analogues might be an interesting strategy for 

counterfeiters to circumvent patent laws and to complicate analytical detection in order to escape 

from prosecution [19]. Analogues are extensively used as adulterants in dietary and herbal 

supplements, but they were also detected in counterfeit medicines and imitations [18]. 

 

1.5 Substandard medicines 

Substandard medicines (or out-of-specification products) constitute a particular group of illegal 

medicines. They are defined by the WHO as: “a genuine medicine produced by manufacturers 

authorized by the national medical regulatory authority which does not meet the quality 

specifications set for them by national standards”. This means that this kind of medicines is 

produced in a legal way by the marketing authorisation (MA) holder but they should be destroyed 

due to failure of meeting the set quality requirements. However, these batches sometimes do 

become available on the market due to unscrupulous people getting hold of these rejected batches 

[7;20]. Another variant of substandard medicines is drug diversion, i.e. expired genuine medicines 

which are repacked and sold [10;20]. Moreover, in recent years, batches of genuine medicines were 

stolen and later found to be reintroduced in the legal supply chain [21]. 
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2. Counterfeiting of medicines 

 

2.1 Extent of the problem 

The counterfeiting of medicines is a global threat to public health [10]. However, assessing the true 

extent of pharmaceutical counterfeiting is particularly difficult due to its illicit and clandestine nature 

[3]. Moreover the size of the problem differs from region to region. The WHO estimates that about 

1% of the total medicines market of industrialized countries, such as European countries, the United 

States, Japan, etc., is covered by counterfeit medicines. In countries of the former Soviet Union 

about 20% of the medicines market would be covered by forged pharmaceuticals and approximately 

30% of the medicines sold in African countries and parts of Asia and Latin-America is suspected to be 

counterfeit [2]. These latter regions are more susceptible to pharmaceutical counterfeiting due to 

weak regulatory and legal surveillance, poor legitimate supply of medicines and unaffordable prices 

for the population [3].   

 

In spite of effective regulatory systems and market control, European countries are not exempt from 

pharmaceutical forgery either [1] since the quantity of counterfeit medicines seized in Europe has 

increased exponentially in recent years [22]. A total of 148 cases of counterfeit medicines was 

registered by EU customs in 2005; by 2013 this number increased up to 1175 cases, peaking in 2009 

with 3368 registered cases [22]. This increase is most likely due to the extension of the Internet and 

more thorough border controls by EU customs [23]. Especially in industrialized countries the 

extension of the Internet certainly contributes to the increasing threat posed by counterfeit 

medicines since research has shown that approximately 50% of all medicines, purchased online from 

websites which cover up their true identity, are forged [2;23;24].  

 



Chapter I.  Introduction 

10 
 

Since high amounts of counterfeit medicines enter the European market, there is a substantial risk 

that these forged pharmaceuticals infiltrate the legal medicine supply chain. Despite strict control, 

parallel trade remains a potential means for counterfeiters to invade the legal distribution of 

medicines. Due to price differences in the member states of the European Union and the free 

market system, wholesalers are allowed to sell medicines at a higher price in other member states. 

During this shifting process the original packaging and information leaflet are discarded and replaced 

in a legal way, offering counterfeiters the possibility to distribute their products via the official 

supply chain [5]. For instance, 11 cases of counterfeit medicines infiltrating the legal supply chain 

were reported in the United Kingdom since 2004 [25]. 

 

2.2 Production and trafficking of counterfeit medicines 

The production of counterfeit medicines has become a global and structured industry consisting of 

manufacturers, wholesalers, distributors and local sellers [10]. Counterfeit medicines are mostly 

manufactured in Central and Eastern countries with growing economies such as Russia, China and 

India [3]. Moreover, various manufacturing plants, producing counterfeit medicines, have been 

discovered in the Philippines as well [6]. Approximately 30% of counterfeit medicines seized in the 

EU arrive from the United Arab Emirates which serve as a transit zone for forged pharmaceuticals 

originating from African countries such as Nigeria, Angola and Kenya. In Europe, the United 

Kingdom, Switzerland and Belgium serve as important transit zones for counterfeit medicines which 

are shipped to the United States and Africa [3;10;26]. Unfortunately, disclosing the distribution of 

counterfeit medicines is very difficult due to the clandestine nature; information can only be 

obtained when counterfeits are discovered [10]. Fig. 1.4 gives an indication of the global trade in 

counterfeit medicines.  
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2.3 Targeted medicines 

Some types of medicines are counterfeited more often than others. Counterfeiters mainly target 

expensive and high-consumption medicines [14]. Furthermore, the types of medicines which are 

most commonly counterfeited differ from region to region [2].  

 

In industrialized countries the primary targets for counterfeiting are commonly referred to as ‘life 

style drugs’ and comprise Phosphodiesterase type 5 (PDE-5) Inhibitors for the treatment of erectile 

dysfunction, slimming products, anabolic hormones, products for the treatment of hair loss and 

even narcotics [7;10;24]. Among these frequently falsified therapeutics, PDE-5 Inhibitors are 

exceptionally interesting targets for counterfeiters, not only because of their high expense, but also 

due to the embarrassment associated with erectile dysfunction. As a consequence, PDE-5 Inhibitors 

are freely available for purchase on the Internet as both counterfeited medicines and illegal 

adulterants in herbal supplements [27]. Furthermore, due to the large scale of medicines 

counterfeiting, counterfeiters are also targeting other types of medicines such as expensive cancer 

treatments and antiviral pharmaceuticals [10]. 

 

In developing countries ‘life-saving’ medicines, such as antibiotics and medicines for the treatment 

of tuberculosis, malaria and HIV/aids, are mostly counterfeited [7;10]. This represents a major threat 

to public health; treating diseases associated with high untreated mortality rates, e.g. malaria, 

tuberculosis, aids, meningitis, etc., with counterfeit or substandard medicines increases morbidity 

and mortality substantially. In addition, the use of substandard/counterfeit antibiotics (which often 

contain sub-therapeutic dosages) increases the risk of developing microbial resistance, which could 

even undermine the efficacy of genuine medicines [6;7;20].  
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3. Main causes 

 

Several factors contribute to the problem of medicines’ counterfeiting. Since this problem is 

affecting countries worldwide a global harmonized legal framework is necessary which provides a 

universally accepted definition of counterfeit medicines and pharmaceutical crime. However, most 

member states of the WHO have their own understanding of a counterfeit medicine, making the 

required international cooperation, necessary to tackle this problem, impossible [1;14]. 

 

A second contributing factor, which mostly affects developing countries, is the lack of effective 

regulatory systems and market control [7]. The development, production, import and distribution of 

medicines should be rigorously controlled. Unfortunately, developing countries simply lack the 

means and capabilities to assess the quality, efficacy and safety of medicines, thereby paving the 

way for counterfeit medicines [1;20]. In addition, corruption is abundant in these areas which 

facilitates the spread of fake pharmaceuticals even more [10;20].  

In many countries, especially developing countries, the demand for medicines exceeds the supply. 

Unscrupulous people try to make a profit out of these situations by distributing counterfeit 

medicines [1;20]. In addition, genuine medicines are often expensive, which forces patients to seek 

for cheaper alternatives on the street [10;20]. 

 

It has been suggested that pharmaceutical counterfeiting is linked to international organized crime 

since trade in counterfeit drugs is more lucrative than trade in narcotics [7;10]. Huge profits are 

made since counterfeit medicines are sold at relatively high prices while production costs are kept to 

a minimum. Counterfeiters are also less likely to be caught, unlike drug traffickers, due to weak 

legislation and enforcement [10]. Moreover, penalties for pharmaceutical counterfeiting are less 

severe, making the counterfeiting of medicines financially rewarding and largely risk-free [7;10]. 
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As already mentioned, the extension of the Internet plays a causative role in the distribution of 

counterfeit medicines in industrialized countries such as European countries and the United States 

[23]. The vast majority of online medicine suppliers violate legal standards and safe pharmacy 

practices, thereby endangering patients’ safety. Very often no valid prescription is required and 

counterfeit and substandard medicines are being distributed. The probability of encountering these 

kinds of products on the Internet is very high since the Internet offers a platform for such kind of 

unregulated market without consumer protection [28]. 

Online buying of medicines is sometimes preferred since it is quicker, purchases can be made 

anonymously and  prices are often thought to be lower compared to official pharmacies. However, 

these illegal Internet based websites, which are often operated from China and Eastern Europe, 

serve as a means to gain access to industrialized countries in order to distribute counterfeit 

medicines in these wealthy regions [10].     

 

 

4. Tackling the problem 

 

Counterfeiting of medicines is a problem that already exists for many centuries. In the first century 

AD, Pedanius Dioscorides, a Greek physician, already warned about the dangers of adulterated 

medicines. Since then, this concern has not disappeared [29]. The issue of medicine counterfeiting 

was first stated in 1985 at the WHO Conference of Experts on Rational Drug Use in Nairobi [1]. 

Despite the global nature of the counterfeiting problem, which demands cooperation worldwide, 

many countries lack the resources and/or political commitment to address this problem thoroughly 

[30]. Nevertheless, several international initiatives, aiming to tackle the forgery of medicines, were 

launched.    
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In 2002, fourteen major pharmaceutical companies founded the Pharmaceutical Security Institute 

(PSI) in Washington, D.C. Today, 28 pharmaceutical companies from various nations joined the 

Institute which aims to collect data in order to identify the true extent of pharmaceutical 

counterfeiting and to provide assistance in the coordination of international investigations [31]. 

 

In 2006, the WHO started the International Medical Products Anti-Counterfeiting Taskforce 

(IMPACT). Its task is to build coordinated networks between countries with the aim of putting an end 

to the production, trading and selling of counterfeit medicines worldwide. All major anti-

counterfeiting participants joined this partnership, including pharmaceutical manufacturers, 

regulatory authorities, international and non-governmental organizations [32]. 

 

The European Alliance for Access to Safe Medicines (EAASM), founded in 2007, is a pan-European 

initiative committed to the patient’s safety by ensuring access to safe and legitimate medicines and 

promoting the elimination of counterfeit and substandard medicines [33]. 

 

In 2008, INTERPOL coordinated the first Pangea operation, which is an annual international initiative 

intending to cease the online sale of counterfeit pharmaceuticals and raise awareness of the dangers 

of buying medicines online. The first Pangea intervention (Pangea I) united 10 countries; 7 years 

later 115 countries engaged in the Pangea operation (Pangea VIII) [34]. Table 1.1 summarizes the 

results of all eight Pangea operations. 

 

On the 28th of October 2011, the Council of Europe casted its Medicrime convention. This 

convention is unique since it is the first binding international agreement on the criminalisation of 

production and distribution of counterfeit medicines and similar crimes which threat public health. It 

has three major aims: (1) impose penalties for offences described in the convention, (2) protection 

of victims and (3) promotion of national and international cooperation. Furthermore, this 
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convention is not limited to European countries only but can be signed and ratified by any state 

worldwide [35]. 

That same year, the European Commission issued its Falsified Medicines Directive which introduces 

more rigorous regulation in order to improve the protection of public health with new harmonised, 

pan-European measures. Its aim is to ensure that medicines are safe to use and that the medicines’ 

trade is strictly controlled [36].  

 

Table 1.1 Summary of the results of all Pangea operations (na: information not available). 

Operation Year 
Number of 

participating countries 

Number of seized 

counterfeit pills 

Estimated value 

(million USD) 

Pangea I 2008 10 na na 

Pangea II 2009 25 167.000 na 

Pangea III 2010 44              > 2 million 6.77 

Pangea IV 2011 81 2.4 million 6.3 

Pangea V 2012 100 3.75 million 10.5 

Pangea VI 2013 99 10.1 million 36 

Pangea VII 2014 113 9.6 million 32 

Pangea VIII 2015 115 20.7 million 81 

  

 

5. Counterfeiting case reports 

 

As already mentioned, the amount of counterfeit samples circulating in industrialized countries is 

rather small compared to other areas in the world [2]. Nevertheless, even in these countries high 

amounts of counterfeits are seized by customs and police services. In some cases, counterfeiters 

even managed to infiltrate the official supply chain [26]. Table 1.2 gives an overview of a number of 

cases involving counterfeit medicines in industrialized countries. 
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Table 1.2 Examples of cases involving counterfeit medicines [26] 

Country Year Description of the counterfeiting case 

Belgium 2000 
Confiscation of 57,600 packages of fake antia-malarials and 15,400 fake 

antibiotics by customs 

USA 2001 Counterfeit Serostim® (AIDS drug) found in two Californian pharmacies 

USA 2003 
Counterfeit Lipitor® (treatment of high cholesterol) found in 

pharmacies across the country 

Germany 2003 40,000 counterfeit Viagra® tablets seized at a harbour in Hamburg 

Netherlands 2005 
70 boxes of fake Lipitor® confiscated in Rotterdam (some boxes were 

already shipped to the UK) 

Japan 2006 
Uncovering of a major counterfeiting operation which had sold 

approximately 60,000 counterfeit tablets of Viagra® 

UK 2007 Discovery of 70 packages of counterfeit Lipitor® at wholesaler level 

Belgium 2008 
Seizure of 2.2 million counterfeit anti-malaria and pain killer pills at 

Brussels airport (biggest seizure of fake medicines in Europe to date) 

France 2008 
Discovery of 224,000 counterfeit Viagra® and Cialis® pills at Charles de 

Gaulle airport 

UK 2009 Russian criminal groups selling counterfeit Tamiflu® to British citizens 

Poland 2009 Over 1.3 million fake insulin needles confiscated 

Netherlands 2009 Seizure of 200,000 counterfeit insulin pens and needles 

Spain 2009 Over 160,000 counterfeit Viagra® tablets seized 

UK 2010 
Discovery of 70,000 counterfeit Viagra®, Cialis® and Levitra® pills by 

London police 

Czech Republic 2010 Customs officers seized 5,200 counterfeit pills of Viagra® and Cialis® 

Switzerland 2010 
Over 17,000 boxes of medicines for the treatment of schizophrenia and 

cardiovascular disease confiscated 

 

The case of counterfeit Lipitor® in the UK (2007) seems trivial; however, by the time of discovery by 

the Medical and Healthcare Products Regulatory Agency (MHRA) 2500 packages of forged Lipitor® 

had already infiltrated the official medicines supply chain. According to the MHRA criminals have 

altered their focus from selling small quantities of counterfeit drugs to individuals via the Internet to 

targeting pharmaceutical wholesalers who supply hospitals or charity organizations. By targeting 

these wholesalers, counterfeiters are able to infiltrate larger and more lucrative markets [26]. 

Australia and New Zealand face limited issues concerning counterfeit medicines due to their isolated 

island geography which entails high transportation costs. Moreover, the Australian and New Zealand 

markets are highly impenetrable for counterfeit drugs owing to well organised and strictly controlled 

import of goods [26]. 
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Chapter II: Aims and outline 
 

Despite all efforts to tackle the distribution of counterfeit medicines [1;2], high amounts keep 

entering the European market [3]. Moreover, the sale of counterfeit medicines is not only restricted 

to the Internet since there is a significant risk of these forged products to enter the legal medicine 

supply chain [2]. Therefore, the issue of medicine’s counterfeiting clearly enforces the need for 

analytical techniques which not only detect these spurious products but which also give an idea 

about potential risks for public health.  

 

For this purpose numerous analytical techniques are described in literature. These techniques may 

be divided in two main groups: chromatographic and spectroscopic techniques [4]. However, most 

of the literature dealing with the characterization of counterfeit medicines is based on the 

identification and quantification of the present APIs. Consequently, potential toxic secondary 

substances, such as impurities and residual solvents, which could represent a major hazard to public 

health are often not taken into account. As a result, a product can be considered relatively safe, for 

it might contain the right APIs in the correct dosage, while in actual fact high concentrations of 

potential toxic secondary substances could be present [5]. 

 

The work represented in this thesis attempts to respond to this issue. New analytical methods and 

approaches for the detection of counterfeit and illegal medicines were developed and evaluated. In 

order to focus on secondary substances, instead of APIs, these methods were developed in a way to 

obtain characteristic fingerprints for all samples. A fingerprint is a characteristic profile which 

visualizes the composition of a sample; it generates an overall view of a sample rather than focussing 

on specific and predefined characteristics. It can be obtained by usage of chromatographic and 

spectroscopic techniques. However, chromatographic fingerprints are the most interesting 

fingerprints. By spreading information about the composition of a sample over time, they provide 
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information about individual compounds. The fingerprint approach has already proven its usefulness 

in the field of Pharmacognosy for the identification and quality control of plants [4;6;7]. 

 

The fingerprint approach has proven interesting for the pharmaceutical field as well. In this research 

area fingerprints are used as impurity profiles in order to monitor the present impurities [8]. These 

profiles can be used for the characterization of API impurities [9] or the identification of the 

synthesis pathway used for manufacturing APIs [10]. Therefore, fingerprints could be useful for the 

analysis of counterfeit medicines and their discrimination from genuine medicines.   

 

In the first part of this dissertation, Part I, a general introduction is given in Chapter I concerning the 

issue of medicine’s counterfeiting. Furthermore, the basic theoretic principles of chemometrics are 

explained in Chapter III. 

 

The development and evaluation of new analytical methods was performed for the PDE-5 Inhibitors 

(Part II) and slimming products (Part III) since these classes of medicines belong to the most often 

counterfeited/adulterated medicines sold in Belgium. 

 

Part II of this thesis describes the extensive analysis of the PDE-5 Inhibitors (Viagra® and Cialis®), of 

which both the physical and chemical characteristics were tested for their discriminating abilities. 

For this purpose, fingerprints were acquired by usage of infrared (IR) spectroscopy and liquid 

chromatography and analysed by means of chemometrics. A major advantage of the fingerprint 

approach is that it allows for the discrimination of samples according to their characteristic 

fingerprint without the need of a priori knowledge of the identity nor quantity of the constituents. 

Chapter IV provides general information concerning PDE-5 Inhibitors and their counterfeiting.    



Chapter II.  Aims and outline 

25 
 

Chapter V reports on the use of physical profiling and IR spectroscopy which could be useful as 

simple techniques, allowing a first preliminary distinction between genuine and counterfeit 

medicines.  

In Chapter VI, the potential usefulness of IR spectroscopy was further exploited by using Attenuated 

Total Reflectance Fourier-Transform Infrared Spectroscopy (ATR-FTIR). The fingerprints, obtained by 

this technique, were not only used to discriminate between genuine and counterfeit medicines, but 

these fingerprints provide additional information about the samples compared to the IR 

spectroscopy technique applied in chapter V.  

In Chapter VII, impurity fingerprints obtained by High Pressure Liquid Chromatography (HPLC) 

coupled to either a photodiode array (PDA) detector or mass spectrometry (MS) were tested for 

their discriminating abilities between genuine, generic and counterfeit medicines. Furthermore, both 

groups of fingerprints were used to verify which detection technique is most suited to distinguish 

genuine from counterfeit medicines.  

In the last chapter of this part, Chapter VIII, a number of genuine and counterfeit samples were 

analysed for their content of volatile compounds by means of gas chromatography (GC) coupled to 

MS. Subsequently, these fingerprints were used to construct a classification model which could give 

an indication of the public health risks posed by these counterfeit samples.  

In overall, different types of analytical methods were developed, which could all have their merit in 

the fight against counterfeit PDE-5 Inhibitor medicines.            

 

Part III deals with the analysis of slimming products, most of which are of herbal origin. Chapter IX 

explains the use of Ultra high Pressure Liquid Chromatography (UPLC) for the acquisition of impurity 

fingerprints. For this purpose, both a PDA detector and MS were used. Based on the acquired 

fingerprints, an attempt was made to construct diagnostic models which could serve as a tool to 

characterize the analysed samples and to obtain information from unknown samples concerning the 

potential hazard they could represent to the consumer’s health. 
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Since a large fraction of the available slimming aids are herbal, the fingerprint approach was used to 

screen these samples for the presence of certain plants (Chapter X). Some of the plants with known 

slimming properties are either prohibited by law or subjected to additional restrictions. Therefore 

these plants should not be freely available in samples which are sold over-the-counter. This chapter 

demonstrates a second way in which fingerprints of slimming aids could be of use.    
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Chapter III: Principles of chemometrics 
 
During the last decades, natural and life sciences have experienced major technological advances 

resulting in highly sophisticated equipment able to generate tremendous amounts of data. For 

instance, in earlier days scientists measured the UV absorbance of a sample at a single wavelength. 

Today, it is possible to obtain a complete UV spectrum of a sample in a reasonable amount of time. 

As a consequence, scientists face the difficult challenge of interpreting these large amounts of data 

and extracting useful information from it [1]. For this purpose, chemometrics can be of value. 

The term ‘chemometrics’ was introduced for the first time in 1971. It designated the increasing use 

of mathematical and statistical principles in the field of analytical chemistry [2]. Indeed, 

chemometrics is a chemical discipline which makes use of formal logic, statistical and mathematical 

principles to [3]: 

 select optimal experimental procedures 

 analyse chemical data and thereby providing maximum relevant information 

 obtain knowledge about chemical systems 

Chemometrics can be used for both regression and classification purposes. However, in this thesis, it 

will only be used to solve classification problems. The various steps, typically followed during 

chemometric data analysis for classification purposes, are shown in Fig. 3.1 and will be explained 

more in detail in the following sections. 

 

 

 

 

 

 

 

 

Fig. 3.1 Typical workflow of chemometric data analysis. 
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1. Unsupervised versus supervised pattern recognition techniques 

 

The aim of chemometric techniques is to extract information from large amounts of data and to 

identify present data patterns. These techniques can be divided into two main groups: (1) 

unsupervised or exploratory pattern recognition techniques and (2) supervised pattern recognition 

techniques [3].  

 

Techniques aiming at assigning samples (or objects as they are called in chemometrics) to separate 

clusters which are not known beforehand are called unsupervised (pattern recognition) techniques. 

Hence, they only make use of information present in the data. If a technique classifies an object in 

one of a number of classes which are known a priori, then this technique belongs to the group of 

supervised (pattern recognition) techniques. As a consequence, besides information present in the 

data, additional information concerning the classification of samples is used [3;4]. Fig. 3.2 illustrates 

the difference between supervised and unsupervised techniques. 

 

 

 

 

 

 

 

 

 

 

Fig. 3.2 Illustration of the difference between an unsupervised (A) and a supervised technique (B). When 
applying an unsupervised technique, samples are sorted into different clusters since the classes to which 
samples potentially belong are not known a priori (A); when using a supervised technique, the sample classes 
are indeed known (B). In the latter case, a supervised technique will result in a classification rule which 
separates the respective classes. 
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2. Data pre-processing: Correlation Optimized Warping 

 

During the collection of chromatograms (or fingerprints) peaks can shift along the elution time axis. 

This can be due to various causes, such as column aging, instability of the instrument or variance in 

mobile phase composition [5]. Alignment of chromatograms is considered to be a critical step prior 

to the application of chemometric techniques [6]. For this purpose Correlation Optimized Warping 

(COW) was used. 

 

COW is a technique which performs a fragment-wise stretching and compressing of the time axis in 

order to align chromatographic profiles. It uses the correlation coefficient as a similarity measure of 

the involved fingerprints [7]. First a target profile (T) is selected based on which all the other profiles 

are aligned. The target profile is the one that is characterized by the highest mean correlation 

coefficient among all the fingerprints [6]. Both the target profile and the profiles to be aligned are 

divided into a number of sections N, each containing approximately the same number of sampling 

points. Each section, often referred to as i, is warped individually to a smaller or greater length by 

linear interpolation. Only a finite number of possible warping magnitudes can be explored for each 

section, ranging from the integer values of -t to t, including 0. t is referred to as the slack parameter 

and represents a specified number of data points by which the end nodes of the segments in a 

profile are allowed to move. This indicates that a section can be shortened by t points (-t), its length 

can stay unchanged (0) or the section can be extended by t points (+t) [8;9]. 

 

All sections are aligned individually, starting at the end node and working backwards to the first 

section of the profile. Finding the optimal overall alignment is achieved by usage of dynamic 

programming, which explores all possible warping magnitudes for each section. The quality of 

alignment is determined for each section separately by calculating the correlation coefficient 

between section i after alignment and the corresponding section of the target profile. During 
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dynamic programming all suboptimal combinations of warping are discarded, retaining only the 

optimal warping combination. This optimal warping combination is characterized by the largest 

value of the summed correlation coefficients [7-10]. The acquired output data matrix will next be 

used in the chemometric analysis. 

 

 

3. Exploratory techniques 

 

Explorative tools are often used to visualize existing differences in the acquired data and to identify 

potential clusters present in the data [11]. Information obtained from these techniques might be 

useful for the creation of classification models. These classification models can be generated, in a 

next phase, by making use of supervised (modelling) techniques. 

 

3.1 Principal Component Analysis 

Today’s analytical equipment is able to produce enormous amounts of data, for instance, by 

quantifying 100 compounds in complex samples. These data can be organized in a n × m table (or 

data matrix) in which n represents the number of investigated samples (which are called objects in 

the context of chemometrics) and m the measured variables (i.e. concentration of the 100 

quantified compounds). If only three compounds were quantified for each sample, visualization of 

the data would be very simple when using a three dimensional plot. However, if 100 compounds 

were quantified, visualization of the results would require 100 dimensions. In order to visualize 

these data, the number of dimensions (i.e. the variables) must be reduced to three or less. Principal 

Component Analysis (PCA) provides the means to achieve this goal [3]. 
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In the context of PCA, a variable is often referred to as a feature. PCA is a feature reduction 

technique, which means that it is able to reduce the number of variables without significant loss of 

information [3].  

 

Consider the following example: twenty tablets (ten genuine and ten counterfeit tablets) have been 

analysed using HPLC-UV aiming at quantifying three compounds. The results of this analysis can 

easily be visualized in a three dimensional plot (Fig. 3.3). 

 

 

 

 

 

 

 

 

 

 

 

PCA is a projection method that simplifies the interpretation of high dimensional data by projecting 

them into a low dimensional space (in this example the projection of three dimensional data into a 

two dimensional space), without significant loss of information contained in the data. This low 

dimensional space is defined by new orthogonal latent variables, commonly referred to as principal 

components (PCs). The result of PCA is a reduction in the number of features (variables) by 

calculating linear combinations (= principal components) of these original features. The first 

constructed principal component (PC1) represents the highest variance in the data. The second 

principal component (PC2) explains the highest residual variance around PC1. Hence PC2 is by 

definition orthogonal to PC1. The same principle is repeated for PC3 around the plane defined by 

Fig. 3.3 Three dimensional plot visualizing the results from the exemplary HPLC-UV analysis. 
The blue dots represent the genuine tablets, the red dots the counterfeit ones. 
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PC1 and PC2, etc. [3;12]. The concept of defining principal components is shown for PC1 and PC2 in 

Fig. 3.4. 

 

 

 

 

 

 

 

 

 

 

 

PCA results in two matrices: a loading matrix and a score matrix. The loadings are a measure for the 

weight of each original variable, meaning that variables with higher loadings contribute more to the 

construction of a given principal component or, in other words, the weight represents the 

importance of a variable in explaining the variation in the data [3;13]. 

PCA projects each object on the created principal components. These projections are referred to as 

scores. The scores of the objects on PC1 can be plotted against the scores on PC2, thereby providing 

information about the (dis)similarities among the objects [3;13]. Referring back to the example of 

the HPLC-UV analysis of genuine and counterfeit tablets, the resulting two dimensional score plot in 

the PC1-PC2 plane of the twenty objects is depicted in Fig. 3.5. 

 

 

 

 

 

 

 

Fig. 3.4 Three dimensional plot of Fig. 3.3 after defining PC1 and PC2. 
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As can be seen in Fig. 3.5, the reduction of the dimensions allows an easy visual interpretation of the 

data since two distinct groups of samples can be identified (genuine versus counterfeit tablets). 

 

This example can be generalized to higher dimension data sets. When analysing m variables for n 

objects, m principal components can be defined provided that m < n. However, the number of 

variables m is often larger than the number of objects n. In this case, n principal components can be 

defined. The first defined principal component accounts for the largest fraction of variance present 

in the data. When continuing to define more PCs, the amount of variance explained by each single 

PC will gradually decrease. However, in reality, a two or three dimensional score plot consisting of 

the first two or three defined PCs is often already highly informative [1;3]. Therefore, the evaluation 

of the acquired score plots will generally be limited to the first three PCs, although the higher 

dimensions should be checked in order to assure that no essential information is hidden. The 

concept of principal components plays an important role within chemometrics since some 

classification techniques, e.g. SIMCA (described further on in this chapter), are based on it [3]. 

 

Fig. 3.5 Resulting two dimensional score plot of the exemplary data set of twenty tablets in the PC1-PC2 
plane; result as expected based on Fig. 3.4 (A) and result as generated and represented by PCA (shift of 
axes) (B). 
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3.2 Hierarchical Clustering Analysis 

Hierarchical Clustering Analysis (HCA) is a widely used technique to explore data patterns [1;14]. It 

can best be described as a technique which identifies homogeneous subgroups in a way that objects 

belonging to the same subgroup/cluster are more similar to each other than to objects from other 

clusters. It is an iterative procedure that can be used in two ways. It either associates object by 

object until all objects have been processed (agglomerative method) or it starts with one large 

cluster, containing all objects, which is sequentially split until all objects are part of a separate 

cluster (divisive method). During this research project the agglomerative method was applied, 

starting with each object in a separate cluster and combining these clusters sequentially until all 

objects are part of one large cluster [4;15]. If the sample set consists of n samples than n-1 

agglomerative steps have to be performed [16]. 

 

When performing HCA, two important parameters have to be optimized: (1) the type of similarity 

measure between objects and/or groups and (2) the linkage technique [4]. During this research 

project the Euclidean distance was used as similarity measure. Five different linkage techniques 

were tested: (1) single linkage (linkage distance equals to shortest distance between 

clusters/objects), (2) complete linkage (linkage distance equals to ‘smallest’ furthest distance), (3) 

average (linkage distance equals to average of single linkage and complete linkage distances), (4) 

Ward’s algorithm (two clusters are merged for which the lowest increase in total within-group error 

sums of squares is observed) and (5) centroid (based on the distance of mass centres) [14;17;18]. 

The result of HCA is usually represented in a dendrogram (Fig. 3.6A) from which a specific number of 

clusters can be derived [4;18]. 

 

A similarity matrix, consisting of correlation coefficients between all possible pairs of samples, was 

calculated for each tested linkage technique and visualized in a colour plot (Fig. 3.6B). This colour 
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plot allows a better visual interpretation of the acquired clustering and serves as a confirmation 

whether or not a suitable clustering of samples is obtained. 

 

 

 

 

 

 

 

 

 

 

 

 

4. Selection of a training set and test set 

 

Before analysing the data by usage of supervised chemometric techniques, the data set has to be 

split into a training set and a test set in order to validate the predictive ability of the acquired 

prediction models. The training set is used to generate a classification model; the test set is selected 

to perform an external validation of the created classification models. It was chosen to assign 80% of 

the samples to the training set, the remaining 20% is allocated to the test set [11]. 

Two algorithms commonly used to assign samples (objects) to the training set and the test set were 

tested, i.e. the Duplex algorithm and the Kennard and Stone algorithm. In order to select the most 

appropriate algorithm, the representativeness of the generated training sets and test sets was 

evaluated. Firstly, it was ensured that the test set either contains a minimum of genuine samples or 

(in case no genuine samples are present in the sample set) that all classes, included in the respective 

model, are proportionally represented in the test set. Furthermore, samples from both the training 

Fig. 3.6 Example of a dendrogram representing the result of a Hierarchical Clustering Analysis (A) and the 
matching similarity matrix representing the correlation between all samples (B). 
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set and test set should be scattered uniformly over the explored data space. The latter condition can 

be explored using PCA. Two exemplary PCA score plots exploring the uniform scattering of the 

training set and test set are displayed in Fig. 3.7. 

 

 

 

 

 

 

 

 

 

 

 

4.1 Kennard and Stone 

The Kennard and Stone algorithm starts by selecting the sample (s1) which is situated closest to or 

farthest from the data mean and assigning it to the training set. Next, the sample (s2) situated 

furthest away from s1 is allocated to the training set. The 3rd sample, which is included in the 

training set, is the one most remote from both s1 and s2. This procedure is repeated until the 

required number of samples in the training set is acquired. The test set is composed of the 

remaining non-assigned samples [19]. 

The Kennard and Stone algorithm has the advantage of generating a training set which covers all 

possible sources of data variance [20]. 

 

Fig. 3.7 Example of two score plots obtained by PCA which was performed after the selection of a training set 
and test set. The left score plot (A) shows that the test set is uniformly scattered over the data space covered 
by the training set. Score plot (B) demonstrates a situation where no uniform scattering of the test set is 
obtained. For this example, the test set acquired in case of score plot (A) is the most representative one and 
should therefore be selected. Fulfilment of the first condition can be ensured by exploring the classes of the 
samples assigned to the test set. 
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4.2 Duplex 

When applying the Duplex algorithm, the two most distant samples (calculated based on the 

Euclidean distance) are assigned to the training set. Next, the second pair of most remote samples is 

selected and included in the test set. Afterwards, the sample, situated furthest from the pair of 

samples assigned to the training set, is selected and allocated to the training set. This procedure is 

repeated for the test set. After that, the process is repeated, continuously alternating between the 

training set and test set. This procedure is repeated until the desired number of samples in the test 

set is attained [20]. 

 

 

5. Cross validation 

 

Cross validation (CV) is very often used in chemometrics to optimize model’s complexity (see next 

paragraphs) and to obtain an estimate of the model’s performance by usage of an internal validation 

[3]. The internal validation gives an indication of the model’s capability to classify samples of the 

training set in a correct way. If necessary, an external validation can be applied afterwards as a 

means to assess the model’s ability to predict the unknown samples of the test set.  

CV is an iterative procedure consisting of three important steps. First, a certain fraction of objects is 

eliminated from the data set. Next, a classification model is constructed based on the remaining 

data. Then, the eliminated data are introduced again to classify these objects, using the constructed 

model, which results in an estimate of the error. Afterwards all the data are joined again, a new 

fraction of the data is removed and the procedure starts all over. This procedure is repeated until all 

objects have been left out once. CV can be used for both regression and classification purposes, 

however, in the context of this thesis, it is only used to solve classification problems. In case of 

classification problems, the resulting cross validation error is expressed as correct classification rate, 
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i.e. the number of correctly classified objects relative to the total number of objects [1;3]. The 

concept of cross validation is demonstrated in Fig. 3.8. 

 

 

 

 

 

 

 

 

Different types of cross validation can be used. When only one object is left out at a time, the cross 

validation procedure is referred to as leave-one-out cross validation. In this case, if the training set 

consists of n objects, then n iterations are carried out in order to achieve a complete cross validation 

procedure. It is also possible to eliminate a larger fraction of the data, e.g. 10%. In this case the cross 

validation procedure is called a ten-fold cross validation [1;3]. 

 

 

6. Supervised pattern recognition techniques 

 

Supervised pattern recognition techniques use the information from the training or learning objects 

(i.e. objects of which the classes are known) to define a classification rule which allows to assign new 

objects (with unknown class) to one of the investigated classes based on the variables of these new 

objects. In other words, the classes are known beforehand and a decision is made to which of these 

classes a new object has to be allocated [3]. 

 

 

Fig. 3.8 Concept of the cross validation procedure. 
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6.1 Partial Least Squares – Discriminant Analysis 

Partial Least Squares-Discriminant Analysis (PLS-DA) is a supervised technique aiming to differentiate 

between distinct groups of samples. The group membership of samples is indicated by a categorical 

dependent variable y. A PLS-DA model is acquired by defining the so-called PLS-factors, which are 

linear combinations of the original (manifest) variables. These PLS-factors are defined in such way to 

represent the maximum covariance between the explanatory variables and the response variable y. 

The number of PLS-factors, i.e. model complexity, is optimised using a validation procedure in order 

to gain the best performing PLS-DA model [15;21;22]. 

This technique not only enables the construction of a diagnostic model (i.e. PLS-DA), it also gives 

insight into the data structure (i.e. PLS) by exploring the space of the latent variables (PLS-factors). 

 

6.2 k-Nearest Neighbours 

k-Nearest Neighbours (kNN) is from a mathematical point of view a fairly simple technique to 

construct classification models. This method calculates the Euclidean distance between an unknown 

object and each of the objects of the training set. This indicates that if the training set includes n 

samples, then n distances are calculated. Subsequently, the k objects of the training set nearest to 

the unknown object are selected and a majority rule is applied; the object with unknown class is 

assigned to the class to which the majority of the k neighbouring training objects belong. The 

number of nearest neighbours (k) to be included in the construction of a classification model has to 

be determined by optimization [1;23]. A number of kNN models are built using different values for k. 

The best model is selected based on the cross validation error obtained using a cross validation 

procedure. Usually a small number of nearest neighbours is preferred [15]. Fig. 3.9 gives a schematic 

representation of the kNN methodology. 
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6.3 Soft Independent Modelling of Class Analogy 

Soft Independent Modelling of Class Analogy or SIMCA is a supervised classification technique that 

models each class of samples separately. Therefore, it is often referred to as a disjoint class 

modelling technique. This classification method focusses on similarity within a class, rather than on 

discrimination between classes. Each class is modelled separately by PCA, i.e. defining the number of 

principal components necessary to describe the data structure of the particular class [13;23]. 

 

The concept of SIMCA is shown in Fig. 3.10. This technique starts by evaluating the optimal number 

of principal components, required to describe each training class individually, using a cross validation 

procedure. In Fig. 3.10 two classes of objects are visualized using a three-dimensional plot; one class 

is described by two principal components, the other class by only one. 

 

 

 

 

 

 

Fig. 3.9 Representation of the kNN methodology (adapted from [23]). This figure shows an example of a 
3 nearest neighbour (3-NN) classification of a new object (grey circle). The blue and red circles are two 
classes of objects visualized in a three-dimensional space described by their variables. The number of 
nearest neighbours (3 in this example) has to be optimized. 
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Next, classification rules are constructed for which two critical values are taken into account. The 

first critical value is the Euclidean distance scrit towards the SIMCA model (often referred to as 

orthogonal distance) and defines a confidence limit around the objects. This confidence limit is often 

set at 95%. The second critical value is the Mahalanobis distance calculated in the space of the 

scores. It defines score limits along the principal components describing the objects of a particular 

class [23]:  

 

tmax = max(tblue) + 0.5st 

tmin = min(tblue) - 0.5st 

 

max(tblue) and min(tblue) are the highest and lowest scores of the training objects of the blue class on 

the considered principal component and st is the standard deviation of the scores along the 

particular principal component [23].  

 

These two critical values determine a restricted space around the samples of the training set. In 

other words, they are a measure for the boundaries of the model; the first criterion defines the open 

Fig. 3.10 Concept of SIMCA (adapted from [23]). The red circles are described by a 
single principal component; the blue circles are described by two PCs. 
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boundary around the principal components (open cylinder for the red class and two infinite planes 

for the blue class in Fig. 3.10), the second criterion closes the space around the objects (closure of 

the cylinder for the red class and formation of closed connections between the planes for the blue 

class) [13;23]. 

 

The position of a new object is calculated using the scores and loadings of the created PCA model. If 

an object is situated within the restricted space of a training class, defined by the orthogonal and 

Mahalanobis distances (i.e. objects with a Euclidean distance < scrit and scores tmin < t < tmax), then the 

object is assigned to that particular class. Once each class has been modelled individually, all models 

are assembled to constitute the predictive model which will be validated externally using the test set 

[13;23]. 

 

SIMCA is a soft classification method, meaning that a sample can be assigned to one or more existing 

classes or to any. In the latter case, the object is considered to be an outlier [13;23].  

 

6.4 Classification and Regression Trees 

Classification and Regression Trees (CART) is a supervised non-parametric technique, which can be 

used to solve both classification and regression problems. CART produces a classification tree (Fig. 

3.11), used to solve classification problems, if the dependent variable is categorical. When the 

dependent variable is continuous, it creates a regression tree which is useful to solve regression 

problems [24;25]. In this thesis only classification trees are used. 

A CART analysis consists of three steps. First, the maximal tree is constructed by usage of a binary 

split-procedure. Secondly, this maximal tree is pruned and finally the optimal tree is selected using a 

cross validation procedure [11]. An illustration of a classification tree is presented in Fig. 3.11. 
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6.4.1 Development of the maximal tree  

The first step of a CART analysis is the creation of the maximum tree, starting at the tree-root which 

contains all samples of the training set. This maximum tree is built using a binary split-procedure in 

which a mother group is split in two daughter groups. Every daughter group becomes a mother 

group in the next step of the splitting procedure. At each level, the split-procedure is based on one 

descriptor (xi) and its split value (ai) (Fig. 3.11). To select the most appropriate descriptor and split 

value, an algorithm is used which considers all descriptors and all possible split values. The 

descriptor and split value which result in the highest decrease in impurity between the mother 

group (tp) and daughter groups (tL and tR) are chosen. Decrease in impurity means that the samples 

in a daughter group become more homogeneous concerning their response variable values. This can 

be expressed mathematically as: 

 

Δi(xi,a i) = ip(tp) – [pLi(tL) + pRi(tR)]  

 

i represents the impurity, xi and ai the candidate descriptor and split value and pL and pR designate 

the fractions of the objects in the left and right daughter groups. 

 

Fig. 3.11 General structure of a classification tree obtained by CART (reproduced from [11]). 
xi is the selected descriptor and ai represents the selected split value. 
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In case of classification trees, the impurity can be defined by different split criteria: (1) Gini, (2) 

Twoing and (3) Deviance. The split criterion used during this research project is the Gini index which 

is defined as: 

 

                          k 

Δi = 1 - ∑(pj(t))² 
                        j=1 

 

j = 1, 2, 3, …, k is the number of classes of the categorical response variable, pj(t) is the probability of 

class j being correctly classified at node t. 

The splitting procedure is repeated until the maximal tree is created. The maximal tree is 

characterized by each end node (leaf) containing one object, or a predefined number of objects, or 

complete homogeneous groups [11;24;25]. 

 

6.4.2 Tree pruning 

The maximum tree, obtained in the first step, is overgrown and describes the training set closely. 

This results in an overfitted model and therefore the tree has to be pruned. By pruning, i.e. cutting 

terminal branches, a number of smaller and less complex trees is derived from the maximal tree. 

Different sub trees with the same complexity (i.e. the same total number of end nodes) are 

compared in order to find the optimal sub tree with the given complexity. For this comparison a 

cost-complexity measure Rα(T) is introduced which takes into account the tree accuracy and 

complexity. For each complexity level T of the sub trees Rα(T) is defined as: 

 

Rα(T) = R(T) + α|Ť|     

 

R(T) is the average within-node sum of squares, |Ť| represents the tree complexity and α is a 

complexity parameter which symbolizes a penalty for each additional terminal node. During the 

pruning procedure, the value of α is gradually increased from 0 to 1. For each value of α the tree, 
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minimizing Rα(T), is selected. For instance, if α equals zero then Rα(T) is minimized by the maximum 

tree. As a result, by gradually increasing α, a series of trees characterized by decreasing complexity is 

acquired [11;24;25]. 

 

6.4.3 Selection of the optimal tree 

In the previous step a series of trees with differing complexity is obtained. The final part of a CART 

analysis consists of selecting the optimal tree from the series of sub trees, acquired in the second 

step. The selection of the optimal tree is usually performed based on the evaluation of the predictive 

error of the models. For this purpose, cross validation is often used. During this research project a 

ten-fold cross validation procedure was used. 

The cross validation error is expressed as the overall misclassification rate for each of the individual 

sub trees. Usually, the simplest tree with a CV error within one standard error of the minimal CV 

error is considered to be the optimal model. That way, a less complex model than the one with the 

minimal misclassification rate can be selected without significant loss of predictive capability and 

accuracy [11;24;25]. 
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Chapter IV: General context of PDE-5 Inhibitors 
 

One of the most frequently counterfeited classes of medicines in the industrialized countries are the 

Phosphodiesterase type 5 Inhibitors (PDE-5 Inhibitors) [1]. It has been estimated that for every two 

legitimate prescriptions of a PDE-5 Inhibitor an additional counterfeited one is purchased [2]. Other 

sources suggest that about 2.5 million men in Europe are using falsified PDE-5 Inhibitors [3].   

 

 

1. Authorized PDE-5 Inhibitors 

 

The first PDE-5 Inhibitor for the oral treatment of erectile dysfunction is Viagra® which contains 

sildenafil citrate as API. This medicine was marketed by Pfizer (New York City, New York, USA) in 

1998. In 2003 Eli Lilly (Indianapolis, Indiana, USA) acquired a marketing authorisation for Cialis®, 

which contains tadalafil. The same year Bayer (Leverkusen, Germany) launched its own PDE-5 

Inhibitor, i.e. Levitra® containing vardenafil hydrochloride. Recently a fourth PDE-5 Inhibitor was 

marketed by Menarini (Florence, Italy). This medicine, by the name of Spedra®, holds avanafil as API 

[4]. The chemical structures of the four marketed PDE-5 Inhibitors are shown in Fig. 4.1. 
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Fig. 4.1 Chemical structures of all four marketed PDE-5 Inhibitors (obtained from [5]). 
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Since the patent of Viagra® has expired, a number of generic products from different pharmaceutical 

companies are available; for instance Apotex (Toronto, Ontario, Canada), Eurogenerics (Brussels, 

Belgium), Mylan (Canonsburg, Pennsylvania, USA), Sandoz (Basel, Switzerland), Teva (Petah Tikva, 

Israel), Mithra (Liège, Belgium) and Pfizer itself have all launched a competitive variety of Viagra® [6]. 

 

Both sildenafil and tadalafil are also used in the treatment of pulmonary hypertension. Furthermore, 

tadalafil proved its usefulness for treating benign prostatic hyperplasia [6].   

 

 

2. Pharmacological action of PDE-5 Inhibitors 

 

Penile erection is induced by sexual arousal and involves a relaxation of smooth muscle of the corpus 

cavernosum and its associated arterioles. Relaxation generates an increased blood flow into the 

trabecular spaces of the corpus cavernosum. An important mediator in the process of penile 

erection is nitric oxide (NO). Its release from nerve endings and vascular endothelial cells in the penis 

results from sexual stimulation. After its release, NO diffuses into vascular smooth muscle cells in the 

corpus cavernosum and activates guanylate cyclase which, in turn, increases the conversion of 

guanosine triphosphate (GTP) to cyclic guanosine monophosphate (cGMP). The latter triggers the 

activation of cGMP-dependent protein kinase G which results in the phosphorylation of several 

proteins. This process causes either a reduction in the sensitivity to calcium or a decrease in cell 

calcium, leading to a relaxation of smooth muscle of the corpus cavernosum and surrounding 

arterioles [7-9].  

 

The concentration of cGMP is determined by the rate of its synthesis (owing to guanylate cyclase) 

and of its hydrolytic breakdown to guanosine 5’-monophosphate (GMP) by cyclic nucleotide 

phosphodiesterase (PDE) enzymes [7;8]. The PDE enzymes take part in the regulation of cellular 
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functions which depend on cyclic nucleotides as second messengers. A total of 11 families of PDE 

enzymes have been identified which are characterized by differing tissue distribution. Several of 

these families specifically metabolize cGMP, including PDE-5. PDE-5 is predominantly present in 

cavernosal tissue and penile arteries. By inhibiting PDE-5 the signal of cGMP enhances, thereby 

promoting relaxation of smooth muscle in the corpus cavernosum and hence, penile erection. 

Sildenafil, tadalafil, vardenafil and avanafil are characterised by a relatively selective inhibitory 

activity towards PDE-5, thereby triggering penile erection [10]. These APIs are proven to be effective 

in increasing the frequency and maintaining an erection in the presence of sexual stimulation [7;8]. 

Fig. 4.2 Represents the physiological mechanism of penile erection and the pharmacological action 

of PDE-5 Inhibitors. 

 

 

 

 

 

 

 

 

 

 

Despite a relative selectivity towards PDE-5 sildenafil, tadalafil, vardenafil and avanafil may inhibit 

other PDE families as well depending on their local concentrations. These additional inhibitions 

explain some of their undesirable effects such as visual disturbances (inhibition of PDE-6 

predominantly present in the retina), inhibition of platelet aggregation and increased heart rate 

Fig. 4.2 Physiological mechanism of penile erection and pharmacological action of sildenafil (and other PDE-5 
Inhibitors) in promoting smooth muscle relaxation. 
Abbreviations: cGMP: cyclic guanosine monophosphate, GMP: guanosine monophosphate, GTP: guanosine 
triphosphate, NO: nitric oxide, NOS: nitric oxide synthase, PDE: phosphodiesterase (reproduced from [9]). 
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(inhibition of PDE-3 abundant in the myocardium, platelets and vascular smooth muscle) or 

dyspepsia (inhibition of oesophageal PDE-5) [10]. 

 

 

3. Detection techniques for counterfeit PDE-5 Inhibitors 

 

Several analytical techniques for the detection of counterfeit PDE-5 Inhibitors are described in 

literature. These techniques can be divided in two main groups: chromatographic and spectroscopic 

techniques [11]. Chromatographic techniques are used for separation, identification and 

quantification of active substances [12]. Commonly used chromatographic techniques are thin layer 

chromatography (TLC) [13-15], which is easy and cheap, and high pressure liquid chromatography 

(HPLC) coupled with UV detection or mass spectrometry, which is more expensive and sophisticated 

[12]. Owing to LC-MS a number of non-registered analogues of the PDE-5 Inhibitors have been 

detected and identified (often in combination with NMR) [12].  

 

However, spectroscopic techniques are often preferred over chromatographic techniques to detect 

counterfeit medicines since spectroscopy is fast, no or less sample preparation is needed and some 

spectroscopic techniques are non-destructive [11].   

 

 

4. Encountered analogues 

 

Besides the four approved PDE-5 Inhibitors, numerous analogues have been identified in (herbal) 

dietary supplements. Use of such products pose significant health risks since often no toxicological 

studies have been performed. Information concerning the safety of these compounds and potential 

adverse events is often acquired by extrapolating this information from the parent drug and relating 
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it to the PDE-5 inhibitory function [2]. However, their actual PDE-5 inhibitory potency might be very 

different compared to that of the parent drug [16]. In addition, the pharmacokinetic characteristics 

of these analogues may differ from the parent drug due to the chemical structure modifications. 

Consequently, the pharmacokinetics of these analogues are unknown and could result in differing 

absorption, distribution, metabolism and excretion. This might lead to unexpected side effects [2]. 

Tables 4.1 and 4.2 give an overview of several sildenafil and tadalafil analogues identified thus far in 

literature. 

 

Table 4.1 Overview of some notable unapproved analogues of sildenafil  

Analogue Chemical structure Type of sample Reference 

Homosildenafil N
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O
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O CH3
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CH3

CH3  

beverage [17] 
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herbal product [18] 
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herbal beverage [19] 
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dietary supplement [20] 
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dietary supplement [21] 
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Table 4.1 Overview of some notable unapproved analogues of sildenafil (continued) 

Analogue Chemical structure Type of sample Reference 

Nitroso-prodenafil 
N

N
H

S

O
O

O CH3
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CH3

CH3
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OS
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dietary supplement [22] 

Propoxyphenylsildenafil N

N

CH3

S

O
O

O

NH

N

O

N

N

CH3

CH3

CH3  

energy drink [23] 

 

Besides the analogues shown in Table 4.1, other analogues have been identified in literature as well. 

These latter analogues are mostly modifications from the ones represented in Table 4.1 [24-40]. 

 

A number of analogues of tadalafil have also been reported in literature [21;41-48]. Despite the 

short synthesis time for tadalafil and its analogues, the amount of described analogues is 

considerably lower compared to the sildenafil analogues. A possible explanation could be that the 

synthesis of tadalafil and its analogues requires the use of piperonal. Trade in piperonal is strictly 

controlled by drug enforcement agencies since this product is also used for manufacturing MDMA 

(XTC). As a consequence, the availability of piperonal might be limited. Replacing piperonal with 

another similar reagent is not possible as it is shown in patent literature that piperonal is essential 

for the pharmacological activity of tadalafil and possibly for its analogues [2].  
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Table 4.2 Overview of some notable unapproved analogues of tadalafil  

Analogue Chemical structure Type of sample Reference 

Aminotadalafil 

N
H

N

N
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O

O

NH2  

herbal product [41] 

N-butylnortadalafil 
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CH3 

dietary supplement [44] 

Homotadalafil 

N
H

N

N

O

O

O

O

CH3  

herbal product [47] 

 

Besides the mentioned analogues, other PDE-5 Inhibitors were encountered in dietary supplements, 

promoted for the enhancement of sexual function. The chemical structures of these do not resemble 

those of the registered PDE-5 Inhibitors. Examples are Xanthoanthrafil (Benzamidenafil) [49;50] and 

Thioquinapiperifil [51] (chemical structures shown in Fig. 4.3). 
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Fig. 4.3 Chemical structures of Xanthoanthrafil and Thioquinapiperifil  (obtained from [49-51]). 
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Chapter V: IR spectroscopy and physical profiling 
 

This chapter describes the exploration of two simple methods to make a first swift discrimination 

between genuine and counterfeit medicines. First, the concept of physical profiling was evaluated 

for its potential use in the detection of counterfeit medicines. Secondly, the discriminating abilities 

of IR fingerprints were investigated.  

 

 

1. Introduction 

 

The first method, explored in this chapter, was based on physical profiling. Drug profiling is defined 

as the acquisition of specified chemical and/or physical information of a drug sample and the use of 

this information in combating the distribution of counterfeit drugs [1;2]. Physical profiling focusses 

on the physical characteristics of tablets, i.e. post-tableting characteristics, and does not require any 

advanced equipment. Milliet et al. and Marquis et al. successfully applied physical profiling for the 

screening of MDMA tablets [2;3]. Anzanello et al. demonstrated that physical profiling could be an 

interesting approach to classify drugs as genuine or counterfeit, based on Viagra® and Cialis® data 

[4]. Since counterfeit medicines are manufactured without respecting GMP [5] one might suspect a 

lack of homogeneity of post-tableting characteristics, which might be useful for discriminating 

genuine from counterfeit medicines. These data were analysed using descriptive statistics and the 

multivariate technique CART. 

 

Besides physical profiling, IR spectroscopy was also tested for its discriminating abilities. This method 

has the advantage of being suitable for many dosage forms, analysis time is short and no or little 

sample preparation is necessary. Near Infrared (NIR) spectroscopy is increasingly becoming a 

valuable tool both in the pharmaceutical industry [6] and in the detection of counterfeit medicines 
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[7]. Vredenbergt et al. used NIR spectroscopy for the screening of authentic and illegal Viagra® 

tablets (1) to check the homogeneity of a batch, (2) to verify the presence of sildenafil citrate and (3) 

to discriminate genuine from counterfeit/imitation medicines [8]. Storme-Paris et al. investigated 

NIR spectroscopy for its capability to discriminate counterfeit pharmaceuticals [9]. Sabin et al. 

successfully applied NIR chemical imaging of tablets containing sildenafil citrate, aiming to 

discriminate genuine samples from counterfeit ones [10].  

 

Sacré et al. applied NIR spectroscopy on the core of tablets, aiming to discriminate between genuine 

and counterfeit medicines [11]. In this study NIR spectroscopy was also exploited, however, no 

sample preparation whatsoever was necessary since tablets were measured as a whole and even 

through the blister. The obtained IR spectra were used as fingerprints and analysed with 

chemometric techniques, i.e. PCA, PLS-DA and SIMCA, aiming at distinguishing between genuine and 

counterfeit medicines. 

 

These two techniques are easy in use and no sophisticated equipment is necessary. Therefore they 

might be helpful to custom services to distinguish genuine from counterfeit medicines on site as 

large quantities of counterfeit medicines enter Europe every day. 

 

 

2. Materials and methods 

 

2.1 Samples 

Two sample sets were tested: a Viagra® and a Cialis® sample set. This study focussed on counterfeit 

medicines, which carry the brand names Viagra® and Cialis®, and imitations of which tablets 

resemble the genuine Viagra®/Cialis® tablets. The most encountered illegal medicines in Belgium are 



Chapter V.  IR spectroscopy and physical profiling 

73 
 

imitations [11]. Imitation products do not resemble the authentic medicine since the package and 

brand name are not copied. However, they claim the presence of sildenafil citrate or tadalafil [8;11]. 

The Viagra® sample set contained 4 genuine (100 mg sildenafil citrate) and 23 counterfeit/imitation 

samples (claiming to contain 100 mg sildenafil citrate). The Cialis® sample set consisted of 5 genuine 

(20 mg tadalafil) and 19 counterfeit/imitation samples (claiming to contain 20 mg tadalafil).  

 

Genuine samples of Viagra® (Pfizer, New York City, New York, USA) and Cialis® (Eli Lilly, Indianapolis, 

Indiana, USA) were purchased in a local pharmacy. Counterfeit and imitation samples were donated 

by the Federal Agency for Medicines and Health Products (FAMHP) in Belgium. These counterfeit 

and imitation samples were seized by Belgian custom services and inspectors from the FAMHP. All 

samples were delivered in blisters and stored, protected from light, at ambient temperature. 

 

2.2 Physical profiling 

The post-tableting characteristics measured for each sample were: long length (mm), short length 

(mm), thickness (mm) and mass (mg). The three former characteristics were measured using a digital 

micrometer (Mitutoyo, Kawasaki, Japan); masses were weighed on an analytical balance (Sartorius 

AX224, Goettingen, Germany) [weighing range = 0.01 - 220 g].  

A maximum of ten tablets (if available) were measured for each sample, making a total of 234 

tablets (26 genuine and 208 counterfeit/imitation tablets) studied for the Viagra® sample set and 

216 tablets (27 genuine and 189 counterfeit/imitation tablets) for the Cialis® sample set. 

Besides these four post-tableting characteristics the tablets colour of counterfeit/imitation samples 

was evaluated by comparison with the colour of genuine Viagra® or Cialis® tablets. 
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2.3 IR spectroscopy 

Both NIR and mid-IR spectroscopy were applied during this study. 

 

2.3.1 NIR spectroscopy 

All NIR analyses were performed in reflectance mode using a Nicolet iS10 FT-IR spectrometer 

(Thermo Scientific, Madison, Wisconsin, USA) accommodated with a Smart NIR Integrating Sphere 

accessory (Thermo Scientific) and an InGaAs detector. This accessory has the advantage of increased 

sample throughput since samples can be placed directly on the sapphire window for analysis without 

the need of extensive sample preparation. Moreover, depending on the analytical set-up, the 

measurements can be performed non-destructively.  

 

Three tablets of each sample (if available) were removed from the blister and measured as a whole. 

These measurements were executed on the centre of the tablets. A Fourier transformation was 

performed on the obtained interferograms by usage of the OMNIC Software version 8.3 (Thermo 

Scientific) to acquire the NIR spectra. Each spectrum was recorded in the range of 7400 to 4000 cm-1 

at a spectral resolution of 4 cm-1 and consisted of 32 co-added scans. After each measurement, the 

sapphire window was cleaned using a soft tissue soaked with methanol and left to dry in ambient 

air. Every hour a background spectrum was measured against air using identical instrumental 

conditions as the samples. The FT-IR spectrometer was calibrated every week using a pre-

programmed calibration procedure available in the OMNIC Software. During the calibration the 

noise level, wavenumber accuracy, optical resolution, repeatability and detector linearity were 

tested.  

In a second phase the described NIR analysis was repeated on three tablets of each sample (if 

available) leaving the tablets in the blister. 
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2.3.2 Mid-IR spectroscopy 

The mid-IR analyses were performed in absorbance mode on the Nicolet iS10 FT-IR spectrometer 

(Thermo Scientific) equipped with a deuterated triglycine sulphate (DTGS) detector. For these 

analyses the Smart Omni Transmission accessory was used (Thermo Scientific).  

The coating was accurately scratched from three different tablets (if available) and blended 

individually with potassium bromide for IR spectroscopy (Uvasol®, Merck Millipore, Darmstadt, 

Germany) in a concentration of 0.5 w/w% using a pestle and mortar. This mixture was put under a 

pressure of 20 tons during 5 minutes, resulting in clear potassium bromide tablets which were 

analysed in the range of 4000 to 400 cm-1. A Fourier transformation was performed on the obtained 

interferograms. Each recorded mid-IR spectrum had a spectral resolution of 4 cm-1 and consisted of 

32 co-added scans. An hourly background spectrum was recorded using identical instrumental 

conditions as the samples. Data acquisition was performed with the use of the OMNIC Software 

version 8.3 (Thermo Scientific). 

 

2.4 Hypothesis testing 

Hypothesis testing was performed on the data obtained with physical profiling. Since the number of 

data is very small an F-test was performed to compare the two variances σ1
2 and σ2

2, estimated by 

s1
2 and s2

2, from the authentic samples and one counterfeit/imitation sample. Based on the obtained 

result (variances are equal or not) the appropriate test was selected to compare the mean of the 

genuine samples with the mean of the respective counterfeit/imitation sample. When the F-test 

revealed equal variances a t-test assuming equal variances was performed; if variances turned out to 

be unequal a Cochran test was conducted [12]. For all counterfeit/imitation samples, the mean of all 

four physical characteristics was compared with the respective means of the genuine samples. All 

statistical tests were performed in Microsoft Office Excel 2010.   
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2.5 Chemometrics 

All chemometric data treatments were performed using Matlab version 8.0.0 (The Mathworks, 

Natick, Massachusetts, USA). The algorithms of PCA and Kennard and Stone were part of the 

ChemoAC toolbox (Freeware, ChemoAC Consortium, Brussels, Belgium, version 4.0). The used CART 

algorithm was programmed according to the original CART algorithm proposed by Breiman et al. 

[13]. The toolboxes for SIMCA and PLS-DA were downloaded from the Matlab Central [14;15]. 

 

PCA, an unsupervised exploratory technique, was applied to test whether it can result in a clustering 

of samples which might distinguish between genuine samples and counterfeit/imitation samples. 

This technique was carried out on the acquired NIR- and mid-IR spectra. 

Afterwards, the two data sets (Viagra® and Cialis®) were split into a training set and a test set using 

the Kennard and Stone algorithm in order to validate the acquired prediction models. The first 

selected sample was the one situated closest to the data mean. 

Next, a number of modelling techniques were applied, i.e. CART, SIMCA and PLS-DA, to test whether 

appropriate classification models could be obtained to discriminate unknown samples. The genuine 

samples are defined as class 1; the counterfeit/imitation samples constitute class 2. 

 

 

 

 

 

 

 

 



Chapter V.  IR spectroscopy and physical profiling 

77 
 

3. Results and discussion 

 

3.1 Physical profiling 

3.1.1 Colour of tablets  

The tablets colour of the counterfeit and imitation samples was evaluated visually in comparison 

with the colour of genuine tablets, without the use of a colour chart. Fig. 5.1 shows the colour 

comparison for the Viagra® sample set; Table 5.1 indicates the number of samples for each colour. 

Fourteen distinct colours could be distinguished in our sample set. 

Fig. 5.1 demonstrates that the difference between genuine and counterfeit tablets can often be 

determined on a visual basis. Even though the difference in colour might be too small for some 

illegal tablets in order to be discriminated from the genuine (e.g. no. 7, 9, 10 and 11), the remaining 

numbers clearly show differences in colour compared to the genuine tablet (no. 6). This observation 

suggests that most counterfeit/imitation tablets can be distinguished visually from the genuine 

tablets.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.1 Different shades of tablet colour observed for the Viagra® sample set. The genuine sample is 
indicated by the green circle. 
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Table 5.1 Overview of the number of samples per colour 

for the Viagra® sample set 

Colour no. No. of samples 

1 1 

2 1 

3 1 

4 2 

5 1 

6 4 (only genuines) 

7 2 

8 1 

9 3 

10 3 

11 2 

12 2 

13 2 

14 2 

 

The colour comparison was also performed for the Cialis® sample set (Fig. 5.2 and Table 5.2). For this 

sample set 9 distinct colours could be differentiated. Unfortunately, the differences in colour are 

much more subtle for this sample set; no. 4, 5 and 6 are very similar to the genuine tablet (no. 3) 

which is why discrimination based on tablet colour is very difficult. However, the remaining samples 

clearly show differences in tablet shape. Therefore, the visual distinction of counterfeit Cialis® 

tablets shall be established based on differences in tablet shape, rather than tablet colour. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.2 Different shades of tablet colour observed for the Cialis® sample set. The 
genuine sample is indicated by the green circle. 
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Table 5.2 Overview of the number of samples per colour 

for the Cialis® sample set 

Colour no. No. of samples 

1 1 

2 3 

3 
10 (5 genuines and 5 

counterfeits/imitations) 

4 2 

5 1 

6 1 

7 1 

8 2 

9 3 

 

All tablets were assigned a number based on their tablet colour; 1 to 14 for the Viagra® sample set 

(no. 6 being genuine Viagra®) and 1 to 9 for the Cialis® sample set (no. 3 being genuine Cialis®). 

These numbers were added as a response variable in the CART analysis of the post-tableting 

characteristics (see next paragraphs). 

 

3.1.2 Descriptive statistics  

Tables 5.3 and 5.4 summarize the results of the physical profiling for both sample sets. Ten tablets (if 

available) of each sample were included in the physical profiling during which four post-tableting 

characteristics were measured: (1) mass (g), (2) long length (mm), (3) short length (mm) and (4) 

thickness (mm). The mean of each post-tableting characteristic was compared with the respective 

mean of the genuine samples for all counterfeit/imitation samples. 

 

3.1.2.1 Viagra® sample set     Despite what would be expected, the relative standard deviation 

(RSD) values are quite low for most counterfeit/imitation samples and close to those of the genuine 

samples, except some RSD values for the mass of counterfeit/imitation tablets (as can be seen in 

Table 5.3).  
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Table 5.3 Description of the post-tableting characteristics of the Viagra® sample set expressed as 

mean (and relative standard deviation) 

 
Units 

tested 

Mass  

G 

Long length 

mm 

Short length 

mm 

Thickness 

mm 

Genuine Viagra® 26 0.628 (1.43) 14.334 (0.32) 10.445 (0.39) 5.401 (1.16) 

Counterfeit/ 

Imitation 

7 0.600 (0.56) 14.470 (0.28) 10.528 (0.85) 5.608 (1.40) 

7 0.599 (1.50) 14.477 (0.56) 10.498 (0.26) 5.699 (0.53) 

4 0.745 (3.12) 14.961 (0.61) 10.826 (1.11) 5.775 (2.91) 

7 0.538 (1.53) 14.826 (0.25) 10.520 (0.79) 5.029 (1.59) 

10 0.525 (0.89) 14.754 (0.25) 10.555 (1.72) 5.272 (7.15) 

7 0.546 (0.97) 14.677 (0.30) 10.461 (1.06) 5.353 (1.59) 

10 0.540 (0.74) 14.840 (0.21) 10.522 (0.40) 5.374 (4.46) 

10 0.509 (0.92) 14.892 (0.08) 10.445 (0.41) 5.282 (3.51) 

10 0.612 (1.96) 14.626 (0.63) 10.605 (0.60) 5.596 (3.64) 

10 0.367 (0.86) 12.511 (0.53) 9.492 (0.31) 4.461 (6.95) 

10 0.606 (2.16) 14.406 (0.22) 10.556 (1.90) 5.489 (3.20) 

10 0.760 (1.19) 14.736 (2.03) 10.557 (0.26) 6.317 (1.92) 

10 0.511 (2.79) 14.684 (0.99) 10.592 (0.75) 5.094 (4.36) 

10 0.631 (1.40) 14.523 (0.90) 10.716 (0.65) 5.754 (3.73) 

10 0.524 (1.14) 14.633 (0.95) 10.534 (0.57) 5.215 (2.32) 

6 0.610 (1.50) 14.515 (0.21) 10.73 (2.67) 5.359 (3.26) 

10 0.654 (1.21) 14.732 (1.07) 10.660 (0.60) 5.796 (1.58) 

10 0.608 (1.22) 14.498 (1.06) 10.465 (0.19) 5.718 (0.97) 

10 0.620 (2.60) 14.442 (0.37) 10.459 (0.16) 5.611 (0.66) 

10 0.613 (2.65) 14.526 (0.20) 10.556 (0.11) 5.913 (2.23) 

10 0.622 (1.29) 14.673 (0.29) 10.682 (0.85) 5.447 (1.95) 

10 0.515 (1.66) 14.438 (0.29) 10.431 (0.85) 4.953 (0.97) 

10 0.652 (1.24) 14.441 (0.15) 10.488 (0.22) 6.123 (1.45) 

 

These low RSD values for the long length, short length and thickness suggest a relative good 

homogeneity for these three physical characteristics among the tablets tested for each sample. 

Comparison of the means by hypothesis testing demonstrates that a number of 

counterfeit/imitation samples differ significantly from the genuine samples as shown in Fig. 5.3. This 

figure clearly indicates that all counterfeit and imitation samples differ significantly for the long 

length of the tablets. A large majority of these samples (20 out of 23 samples) also show significantly 

differing masses. Therefore there’s a tendency to discrimination based on long length and mass. 
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3.1.2.2 Cialis® sample set     Table 5.4 shows that the RSD values are also low for most 

counterfeit/imitation tablets, except for the mass. In overall, the counterfeit and imitation products 

are characterised by relative homogenous post-tableting features.  

 

Table 5.4 Description of the post-tableting characteristics of the Cialis® sample set expressed as 

mean (and relative standard deviation) 

 
Units 

tested 

Mass 

G 

Long length 

mm 

Short length 

mm 

Thickness 

mm 

Genuine Cialis® 27 0.366 (1.11) 12.320 (0.43) 7.583 (0.67) 5.133 (2.50) 

Counterfeit/ 

Imitation 

10 0.365 (1.31) 12.475 (1.17) 7.681 (0.48) 4.654 (1.43) 

10 0.313 (3.08) 12.803 (0.19) 7.768 (0.20) 4.425 (2.22) 

10 0.317 (0.62) 12.771 (0.19) 7.162 (0.35) 4.732 (7.76) 

10 0.394 (1.63) 12.440 (0.32) 7.650 (0.27) 5.502 (1.56) 

10 0.214 (0.85) 8.254 (1.54) 8.213 (0.17) 3.958 (0.63) 

9 0.461 (2.47) 12.684 (0.74) 7.795 (0.66) 5.621 (2.05) 

10 0.425 (2.47) 13.386 (0.47) 8.112 (0.48) 4.917 (3.32) 

10 0.361 (2.49) 12.417 (0.11) 7.675 (0.16) 4.686 (1.69) 

10 0.459 (1.47) 12.550 (0.55) 7.709 (0.91) 5.437 (1.13) 

10 0.418 (2.88) 12.365 (0.34) 7.596 (0.93) 5.123 (5.80) 

10 0.409 (1.37) 12.325 (0.13) 7.618 (0.65) 5.114 (2.43) 

10 0.442 (1.57) 12.519 (0.17) 9.452 (0.11) 5.279 (0.91) 

 10 0.359 (1.16) 12.445 (0.32) 7.672 (0.20) 4.509 (0.83) 

 10 0.360 (1.92) 12.458 (0.19) 7.680 (0.11) 4.773 (1.24) 

 

Fig. 5.3 Visualisation of the ratio of counterfeit/imitation samples for the Viagra® 
sample set which differ significantly and non-significantly from the genuine samples for 
all four post-tableting characteristics. For each characteristic respective percentages 
are represented. 
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Table 5.4 Description of the post-tableting characteristics of the Cialis® sample set expressed as 

mean (and relative standard deviation) (continued) 

 
Units 

tested 
Mass (g) 

Long length 

(mm) 

Short length 

(mm) 

Thickness 

(mm) 

 

10 0.359 (3.09) 12.429 (0.21) 7.685 (0.38) 4.625 (1.99) 

10 0.296 (1.15) 12.607 (0.16) 7.735 (0.10) 3.912 (1.19) 

10 0.432 (5.33) 13.227 (0.57) 8.094 (1.04) 5.06 (2.03) 

10 0.361 (1.69) 12.379 (0.34) 7.646 (0.23) 4.754 (1.32) 

 

Hypothesis testing indicates that the majority of counterfeit/imitation tablets differ significantly 

from the genuine samples as can be seen in Fig. 5.4. Almost all counterfeit/imitation samples differ 

significantly for the long length (18 out of 19 samples). Also for the other three post-tableting 

characteristics a large majority of counterfeit/imitation samples show a significant difference with 

the genuine samples. Therefore, it is not very clear which characteristics are the most useful to 

discriminate genuine from counterfeit/imitation samples. A plausible explanation for this 

observation could be the differing tablet shapes which were observed earlier.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.4 Visualisation of the ratio of counterfeit/imitation samples for the Cialis® 
sample set which differ significantly and non-significantly from the genuine samples for 
all four post-tableting characteristics. For each characteristic respective percentages 
are represented. 
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3.1.3 CART  

Since most counterfeit/imitation samples show significant different post-tableting characteristics a 

CART analysis was performed in an attempt to distinguish genuine from counterfeit/imitation 

medicines and to identify which post-tableting characteristics contribute to this discrimination. All 

four physical characteristics and the tablets colour were included in this analysis. CART was 

performed comprising all individual measured tablets, which is a total of 243 tablets for the Viagra® 

sample set and 216 tablets for the Cialis® sample set. Prior to the CART analysis a test and training 

set were selected using the Kennard and Stone algorithm. 

 

3.1.3.1 Viagra® sample set     The acquired training set contains 187 objects of which 24 are 

genuine; the test set consists of 47 objects of which 2 are genuine.  

The graph representing the cross validation error in function of tree complexity shows that the tree 

with three end nodes should be selected as the optimal tree (Fig. 5.5). This tree has a cross 

validation error of 0.021. Study of the leaves reveals a good homogeneity. Only two training set 

samples are misclassified (Fig. 5.5); one genuine sample (class 1) is considered to be 

counterfeit/imitation (first end node) and one counterfeit (class 2) is classified as genuine (third end 

node). The external validation generated a correct classification rate of 95.74%, which indicates that 

2 out of 47 test set samples are classified incorrectly; one genuine sample is misclassified as 

counterfeit/imitation and one counterfeit is believed to be genuine. Since high correct classification 

rates are obtained for both cross and external validation, the acquired CART model can be 

considered as a good classification model. 
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Fig. 5.5 Classification tree obtained for the Viagra® data set using the Gini index as split criterion. Each split is 
described by the selected post-tableting characteristic and its split value. Each leaf is defined by the number of 
the class which is highest represented in the respective leaf. The classification results for the training set are 
indicated at each leaf. 

 

As can be seen on Fig. 5.5, CART discriminates between genuine and counterfeit/imitation tablets 

based on the long length and the mass of the tablets. Short length, thickness and tablet colour were 

also included but they clearly do not influence the distinction obtained with CART. This observation 

confirms the findings of the hypothesis testing which showed that all counterfeit/imitation samples 

differ significantly from the genuine samples for the long length; a majority of counterfeit/imitation 

samples differ significantly for the mass. 

 

3.1.3.2 Cialis® sample set     The resulting training set comprises 172 objects (23 genuine objects); 

the test set encloses 44 objects of which 4 are genuine.  

According to the graph representing the cross validation error in function of tree complexity, the 

tree containing 4 leaves is the only available possibility (Fig. 5.6). 
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This tree is characterised by a cross validation error of 0.017. Three out of four leaves show 

complete homogeneity. Only one training set sample is misclassified (Fig. 5.6), i.e. a genuine sample 

considered to be counterfeit. The external validation resulted in a correct classification rate of 

97.73% since just one sample is classified incorrectly; a genuine sample regarded as counterfeit.  

These results clearly show that a good classification model is obtained by CART. For both training 

and test set only one sample was misclassified; in both cases the misclassification concerned a 

genuine sample which is considered to be counterfeit.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As indicated on Fig. 5.6, CART clearly distinguishes genuine from counterfeit/imitation samples 

based on the long length and the mass. The other three variables have no influence on the obtained 

discrimination. Therefore the mass and long length might be considered key characteristics in the 

discrimination between genuine and counterfeit samples. 

Fig. 5.6 Classification tree obtained for the Cialis® data set using the Gini index as split criterion. Each split is 
described by the selected post-tableting characteristic and its split value. Each leaf is defined by the number of 
the class which is highest represented in the respective leaf. The classification results for the training set are 
indicated at each leaf. 
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3.2 IR spectroscopy 

IR spectroscopy was applied on three different tablets (if available) for both the Viagra® and Cialis® 

sample set. The obtained fingerprints were analysed using PCA, SIMCA and PLS-DA. Prior to the 

SIMCA and PLS-DA analysis a test and training set were selected using the Kennard and Stone 

algorithm (see Table 5.5). 

 

Table 5.5 Overview of the training and test set for both the Viagra® and Cialis® data set used in the 

data analysis of the IR data 

 Viagra® sample set Cialis® sample set 

Training set 
8 genuines 

56 counterfeits/imitations 

11 genuines 

45 counterfeits/imitations 

Test set 
3 genuines 

13 counterfeits/imitations 

3 genuines 

12 counterfeits/imitations 

Total no. of samples 80 71 

  

3.2.1 Tablets without blister  

Tablets were removed from the blister and measured as a whole. 

 

3.2.1.1 Viagra® sample set     After performing a PCA only two PCs were retained since 99.90% of 

the total variance is explained (PC1 = 99.79% and PC2 = 0.11%). The resulting score plot (figure not 

shown) shows no clustering whatsoever, indicating that PCA is not capable of distinguishing genuine 

samples from counterfeit/imitation ones.  

 

Therefore SIMCA was tested for its ability to make a discrimination. For the two classes separately 

the optimal number of PCs was selected using leave-one-out cross validation; four PCs were selected 

for class 1 (genuines) and five PCs were retained to model class 2 (counterfeits/imitations). As a 

result, a SIMCA model with a correct classification rate of cross validation of 100% is acquired. This 

result is confirmed by the test set which also generates a correct classification rate of 100%. This 
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clearly shows that SIMCA is capable of making a perfect discrimination between genuine and 

counterfeit/imitation medicines based on the NIR data. 

 

Next it was tested if PLS-DA, a common technique in chemometrics, is also able to establish the 

aimed discrimination. The number of PLS-factors to be included was optimized using leave-one-out 

cross validation. As a result, the best performing PLS-DA model is obtained by including 6 PLS-

factors. This model is characterised by a correct classification rate of cross validation of 100%, 

therefore assigning all training set samples to the correct class. The external validation also results in 

a correct classification rate of 100%. In overall, two models are obtained which are able to make a 

perfect discrimination. 

 

3.2.1.2 Cialis® sample set     The PCA performed on the fingerprints, obtained after NIR analysis of 

whole tablets, resulted in the retention of two PCs. These two PCs explain 99.92% of the total 

variance (PC1 = 99.73% and PC2 = 0.19%). The acquired score plot (figure not shown) shows no 

clustering. Consequently, a discrimination between genuine and counterfeit medicines cannot be 

made. 

 

The optimal SIMCA model was obtained by selecting five PCs to model class 1 (genuines) and six PCs 

for class 2 (counterfeits/imitations) using leave-one-out cross validation. This model results in a 

correct classification rate of cross validation of 100%, indicating that a perfect distinction between 

the two groups of samples is obtained. The test set confirmed this result since it also leads to a 

correct classification rate of 100%. 

 

PLS-DA was also applied to verify whether this technique can result in a good model. The optimal 

PLS-DA model is acquired by selecting 6 PLS-factors, using leave-one-out cross validation. Both cross 
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validation and external validation result in a correct classification rate of 100%, which designates a 

perfect discrimination between genuine and counterfeit/imitation samples. 

 

3.2.2 Coating  

A perfect discrimination between genuine and counterfeit/imitation medicines is obtained by 

measuring the NIR spectra of entire tablets and analysing the obtained fingerprints with SIMCA and 

PLS-DA. However, since the coating of both Viagra® and Cialis® contains titanium dioxide most of the 

IR radiation will be scattered when measuring the NIR spectra of genuine samples. Since it is not 

known whether the coating of the counterfeit/imitation samples contains titanium dioxide as well, it 

was tested if the obtained discrimination is due to differences in the composition of the coatings. 

Therefore the coatings were accurately scratched off three tablets and individually mixed with 

potassium bromide and pressed into a KBr tablet. 

 

3.2.2.1 Viagra® sample set     The PCA analysis of these obtained fingerprints results in the 

retention of 2 PCs which explain 99.53% of the total variance (PC1 = 99.03% and PC2 = 0.50%). On 

the resulting score plot (figure not shown) no discrimination between genuine and 

counterfeit/imitation samples could be made.  

 

The optimal SIMCA model was created using leave-one-out cross validation and consisted of five PCs 

to model class 1 and eight PCs to describe class 2. In this analytical set-up SIMCA generates a 100% 

correct classification rate of cross validation. The external validation also results in a correct 

classification rate of 100%. 

 

By selecting 10 PLS-factors the best performing PLS-DA model is obtained which results in a 100% 

correct classification rate for both cross validation and external validation. Therefore PLS-DA 

confirms the perfect discrimination obtained with SIMCA. 
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3.2.2.2 Cialis® sample set     PCA was applied and two PCs are selected since they explain 99.70% 

of the total variance (PC1 = 98.68% and PC2 = 1.02%). Unfortunately no distinction could be 

observed on the obtained score plot (figure not shown). 

 

Next, SIMCA was applied retaining six PCs for class 1 and seven PCs to define class 2. This results in a 

SIMCA model characterised by a correct classification rate of cross validation of 100%. When 

performing an external validation all test set samples turn out to be classified correctly as well. 

 

PLS-DA confirms these results since a model, consisting of 5 PLS-factors, generated a correct 

classification rate of both cross validation and external validation of 100%. 

 

3.2.3 Tablets in blister  

Since the coating alone without tablet core results in a perfect distinction between both groups of 

samples, it was tested whether this result could be replicated when measuring the tablets through 

an intact blister. This approach has the advantage of keeping the primary package (blister) intact. 

 

3.2.3.1 Viagra® sample set     Two PCs are retained after PCA, explaining 99.94% of the total 

variance (PC1 = 99.84% and PC2 = 0.10%). However the acquired score plot (figure not shown) does 

not result in a distinction between genuine and counterfeit/imitation samples. 

 

The optimal SIMCA model was constructed by including five PCs to describe class 1 and eight PCs to 

model class 2. The best performing PLS-DA model is obtained by using 6 PLS-factors. Both models 

result in a 100% correct discrimination, both for cross validation and external validation. 
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3.2.3.2 Cialis sample set     Despite PC1 (99.78%) and PC2 (0.4%) explaining 99.92% of the variance, 

no distinction between genuine and counterfeit/imitation samples could be observed on the score 

plot (figure not shown). 

 

The optimal SIMCA model was obtained by retaining five PCs for both classes. A 100% correct 

classification rate of cross validation is obtained. The external validation results in a correct 

classification rate of 100% as well. 

 

These results were replicated using PLS-DA retaining only three PLS-factors. 

 

 

4. Conclusion 

 

Counterfeit medicines constitute a large health threat, even in Europe, and detection of such 

pharmaceuticals is not always easy. Therefore easy to use techniques to perform an initial screening 

of these products could be very useful. This study focussed on five post-tableting characteristics (the 

tablet colour, long and short length, mass and thickness) and the use of IR spectroscopy to obtain a 

prime discrimination between genuine medicines and illegal (counterfeit and imitation) 

pharmaceuticals. 

 

Basic visual inspection of genuine and counterfeit/imitation samples of Viagra® and Cialis® showed 

that in most cases a difference in tablet colour (for the Viagra® samples) or a difference in tablet 

shape (for the Cialis® samples) could be observed. However, it should be noted that this mode of 

operating is subjective and counterfeit tablets with a colour, very similar to the genuine tablet, 

cannot be distinguished. To overcome these limitations, a more objective colour measurement could 

be performed by using a chromameter. This analytical technique is based on colorimetry and 
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subjects samples to radiation from the visible region of the electromagnetic spectrum and records 

the spectrum in reflectance mode. The acquired spectra from genuine and counterfeit samples can 

subsequently be compared in order to discriminate between both groups of samples [16].  

Next, the tablet colour and the four other physical characteristics were included in a CART analysis, 

which showed that for both the Viagra® and Cialis® data set genuine samples could be distinguished 

from counterfeit/imitation ones.  

The confusion matrices shown in Tables 5.6 and 5.7 summarize the classification results obtained by 

CART. It could be argued that the misclassification of genuine samples as counterfeit ones is 

undesirable. However, every seized suspected medicine is kept from the market until a thorough 

analysis of the sample identifies its true nature. A medicine, which after analysis turns out to be 

genuine, will be released again. Such an approach is, from a public health point of view, much safer. 

A genuine sample which is classified as counterfeit poses much less risks to public health than a 

counterfeit pharmaceutical which is misclassified as a genuine; therefore the latter is unacceptable. 

 

Table 5.6 Confusion matrix summarizing the classification results 

obtained by CART for the Viagra® data set. The matrix shows the 

number of (mis)classifications for the test set (and training set). 

 
Predicted class 

Genuine Counterfeit 

Actual class 
Genuine 1 (23) 1 (1) 

Counterfeit 1 (1) 44 (162) 

 
 

Table 5.7 Confusion matrix summarizing the classification results 

obtained by CART for the Cialis® data set. The matrix shows the 

number of (mis)classifications for the test set (and training set). 

 
Predicted class 

Genuine Counterfeit 

Actual class 
Genuine 3 (22) 1 (1) 

Counterfeit × 40 (149) 
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In addition to the obtained distinction, the CART analysis also revealed that the discrimination 

between genuine and counterfeit/imitation samples is entirely due to only two post-tableting 

characteristics, i.e. the mass and long length. Therefore these two physical characteristics can be 

considered key features in the discrimination between genuine and counterfeit/imitation medicines. 

The observed differences in physical profiles might probably be due to differences in tableting 

equipment. When manufacturing registered medicines pharmaceutical companies use custom made 

tablet punches which are often unique for the respective pharmaceutical. Due to differences in 

tablet punches counterfeiters are not able to replicate exactly all post-tableting characteristics. 

 

Another easy to use technique, i.e. IR spectroscopy, was also tested. Based on the NIR spectra 

measured on intact tablets, a perfect distinction between genuine and counterfeit/imitation samples 

was obtained by both PLS-DA and SIMCA. Next, it was shown that this discrimination is most likely 

due to differences in coating composition. 

However, a disadvantage of measuring sole tablets is the destruction of the primary package 

(blister). Since the obtained discrimination is probably due to differences in coating composition 

samples were analysed again, this time leaving the tablets in the blister. In this set-up a perfect 

discrimination between genuine and counterfeit medicines was obtained as well. 

 

This study showed that based on two post-tableting characteristics, i.e. long length and mass, a 

reliable initial differentiation can be made between genuine and counterfeit medicines. This initial 

differentiation can be ameliorated by including a simple and fast NIR analysis for which it is even not 

necessary to remove the tablets from the blister, keeping the blister intact for future analyses, legal 

proceedings and release in case of withheld genuine samples. It should, however, be mentioned that 

the tested sample set is rather small. Therefore, additional testing with larger sample sets needs to 

be performed in order to confirm and validate the acquired models.  
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These findings clearly demonstrate that the combination of these two simple techniques could be 

useful to perform a prime evaluation of suspected pharmaceuticals, which could have its part in the 

fight against counterfeit medicines. High amounts of counterfeit medicines enter the European 

market every day. Since these two user friendly techniques require no sophisticated equipment nor 

sample preparation, they could be helpful to custom services to distinguish genuine from counterfeit 

medicines on the spot. If necessary, this evaluation can be extended by a more thorough analysis 

using chromatographic techniques and mass spectrometry. 
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Chapter VI: ATR-FTIR spectroscopy  
 

In this chapter of the dissertation the potential utility of Attenuated Total Reflectance Fourier-

Transform IR spectroscopy in the detection of counterfeit medicines is explored.  

 

 

1. Introduction 

 

Spectroscopic techniques are characterized by certain advantages owing to which they have gained 

an important place in the array of analytical techniques available for the detection of counterfeit 

medicines. These techniques are fast, non-destructive (depending on the experimental set-up) and 

no or less sample preparation is needed [1].  

Near infrared (NIR) spectroscopy [2-9], Fourier-Transform infrared spectroscopy [7;10;11], Raman 

spectroscopy [6;8;12;13], nuclear magnetic resonance (NMR) [12;14-17] and X-ray diffraction [8;18] 

have already been applied successfully for the detection of counterfeit medicines. Furthermore 

Sacré et al. compared and combined Fourier-Transform infrared spectroscopy, Raman spectroscopy 

and Near infrared spectroscopy [19].  

 

The use of Attenuated Total Reflection Fourier-Transform Infrared (ATR-FTIR) spectroscopy to detect 

counterfeit medicines is a fairly new concept in literature. Ortiz et al. made use of ATR-FTIR to 

distinguish counterfeit samples from genuine Viagra® and Cialis® samples and to demonstrate the 

use of pharmaceutical powders from common origins in the production of counterfeit drugs from 

distinct seizures [20]. Champagne et al. used ATR-FTIR to screen raw materials, used in the 

formulation and production of dietary supplements, for adulteration [21]. Indeed, ATR-FTIR might be 

a useful technique for the screening of counterfeit samples since this technique requires only little 

sample preparation; samples are crushed and subsequently measured by pressing them directly on 
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the crystal surface without the need of preparing KBr pellets. Therefore, this method is less time 

consuming and easy in use.  

 

In this study, a total of 209 samples was analysed using ATR-FTIR spectroscopy. These spectra were 

used as fingerprints in the chemometric data analysis which includes PCA, kNN, CART and SIMCA. 

This data analysis aims to characterize counterfeit samples and to discriminate between genuine and 

counterfeit medicines. 

 

 

2. Materials and methods 

 

2.1 Samples 

The analysed sample set contained 13 genuine Viagra® samples (Pfizer, New York City, New York, 

USA), 33 generic products of Viagra®, i.e. Verventi (Pfizer), Sildenafil Apotex (Apotex, Toronto, 

Ontario, Canada), Sildenafil Mylan (Mylan, Canonsburg, Pennsylvania, USA), Sildenafil Sandoz 

(Sandoz, Basel, Switzerland), Sildenafil EG (Eurogenerics, Brussels, Belgium), Sildenafil Teva (Teva, 

Petah Tikva, Israel), 11 genuine Cialis® samples (Eli Lilly, Indianapolis, Indiana, USA), 68 counterfeit 

samples containing sildenafil, 21 counterfeit samples containing tadalafil, 18 counterfeit samples 

containing both sildenafil and tadalafil and 45 placebo samples. Placebo samples are products 

intended for the treatment of erectile dysfunction for which it has been shown by previous analyses 

that these particular samples do not contain sildenafil (citrate) or tadalafil (in-house identification 

method using LC-MS).  

 

All counterfeit and imitation samples were donated by the Federal Agency for Medicines and Health 

Products (FAMHP) in Belgium. Authentic Cialis® and Viagra® samples and generic products of the 
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latter were purchased in a local pharmacy. All samples were delivered in blisters and stored, 

protected from light, at ambient temperature. 

 

2.2 Attenuated Total Reflectance Fourier-Transform Infrared 

spectroscopy 

2.2.1 Principle of ATR-FTIR 

The principle of ATR-FTIR is based on the measurement of the changes occurring in an infrared beam 

which is totally internally reflected in an optically dense crystal (illustrated in Fig. 6.1). The sample to 

be analysed (i.e. a liquid or a powder) is placed upon this crystal which is characterized by a high 

refractive index. When radiation is dispersed from an optically denser medium (i.e. the crystal with 

refractive index n1) towards an optically rarer medium (i.e. the sample with refractive index n2), total 

internal reflection will occur at the interface between the crystal and the sample if the angle of 

incidence (θ) exceeds the critical angle (θc) [22;23]. This critical angle is defined as: 

 

θc = sin-1(n2/n1) 

 

The resulting internal reflectance creates an evanescent wave that extends beyond the surface of 

the crystal into the sample. Consequently, this evanescent wave will be attenuated in the regions of 

the IR spectrum where the sample absorbs energy [23]. The depth of penetration (dp) of the 

evanescent wave into the sample is defined as: 

 

dp =                λ                 3 
        2π(n1

2sin2θ – n2
2)1/2 

 

and depends on the refractive indices of the crystal (n1) and the sample (n2), the radiation 

wavelength (λ) and the angle of incidence (θ) [22]. 
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The resulting attenuated evanescent wave passes back to the IR beam in the crystal which is, 

subsequently, directed to the detector. After performing a fourier-transformation, the resulting 

infrared spectrum is acquired. 

 

Three conditions must be met in order to acquire high quality spectra. Firstly, the sample must be 

held in close contact with the dense crystal since the evanescent wave extends only approximately 

0.5 – 5 µm beyond the crystal into the sample. Therefore, many ATR accessories are provided with a 

pressure applicator. Secondly, the refractive index of the crystal must be larger than the refractive 

index of the sample. If this condition is not met, no internal reflectance will occur. However, it can 

be assumed that most solids and liquids have lower refractive indices. The third condition is that the 

crystal must be thoroughly cleaned after each measurement in order to prevent carry-over. The 

latter is important because ATR-FTIR is a surface phenomenon [22;23]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sample in contact 
with optically dense 
crystal 

To detector 

Infrared beam Optically dense crystal 

Fig. 6.1 Illustration of the principle of ATR-FTIR spectroscopy (reproduced from [23]). 
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2.2.2 Recording of ATR-FTIR spectra 

All spectra were recorded in absorption mode using a Nicolet iS10 FT-IR spectrometer (Thermo 

Scientific, Madison, Wisconsin, USA) accommodated with a Smart iTR accessory for ATR sampling 

and a deuterated triglycine sulfate (DTGS) detector. The Smart iTR accessory is equipped with a 

single bounce diamond crystal. A diamond crystal has the advantage of being inert and robust and 

therefore it is well suited for the analysis of hard and abrasive  samples. The Smart iTR accessory was 

calibrated weekly using a polystyrene film. 

 

As already mentioned, little sample preparation is necessary. Prior to spectrum recording, one tablet 

from each sample was crushed and homogenized using a pestle and mortar. Subsequently, a small 

amount of homogenized sample was pressed directly on the diamond crystal by usage of the Smart 

iTR’s high pressure clamp. Each spectrum was measured at a spectral resolution of 4 cm-1 and 

consisted of 16 co-added scans. Spectrum recording was performed in the range of 4000 to 400 cm-1 

with an estimated time for data collection of 23 seconds per spectrum. Spectral data were obtained 

using the OMNIC Software version 8.3 (Thermo Scientific). After each measurement, the crystal was 

cleaned using a soft tissue soaked with methanol and left to dry in ambient air. Before each sample a 

blank was measured to check the crystal for contamination and carry over using the absorbance 

limits for contamination defined by the European Directorate for the Quality of Medicines and 

HealthCare (EDQM) [24]. Every hour a background spectrum was measured against air using 

identical instrumental conditions as the samples. All spectra were saved in CSV format which is 

suitable for input in statistical software. 

Exemplary ATR-FTIR spectra obtained for both genuine and counterfeit samples are shown in Fig. 

6.2. 
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2.3 Chemometrics 

2.3.1 Data pre-processing 

As already mentioned before, ATR-FTIR spectra were measured in the range of 4000 to 400 cm-1.  

However, this study focused on the fingerprint region ranging from 1800 to 650 cm-1. In this spectral 

region primary differences in various compounds, such as the PDE-5 Inhibitors, are highlighted and 

characteristic groups show absorption. Fig. 6.3 shows the ATR-FTIR spectra of a sildenafil and 

tadalafil reference. The ATR-FTIR spectrum of sildenafil (Fig. 6.3A) shows a number of peaks which 

Fig. 6.2 Examples of ATR-FTIR spectra: (A) genuine Viagra
®
 sample, (B) counterfeit sample 

containing sildenafil, (C) genuine Cialis
®
 sample, (D) counterfeit sample containing tadalafil, (E) 

counterfeit sample containing both sildenafil and tadalafil, (F) placebo sample. 
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are characteristic for certain functional groups of this molecule (chemical structure shown in Fig. 

6.3A): the 1697 cm-1 (1) peak is the result of C=O stretching; the aromatic C=C bonds absorb at 1579 

cm-1 (2) and the 1278 cm-1 peak (3) can be attributed to the aromatic C-N stretching. The 1359 cm-1 

(4) band is correlated to an asymmetric stretching of the SO2 group; a symmetric stretching of the 

latter gives rise to the band at 1172 cm-1 (5). The ATR-FTIR spectrum of tadalafil (Fig. 6.3B) also 

shows a number of characteristic peaks: the C=O bond in the amide groups results in the 1675 cm-1 

band (1); the C-N stretch is responsible for the 1435 cm-1 band (2) and the 745 cm-1 band (3) is 

correlated to the presence of a benzene ring.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.3.2 Data analysis 

All chemometric data treatments were performed using Matlab version 8.0.0 (The Mathworks, 

Natick, Massachusetts, USA). The algorithms of PCA, k-NN and Duplex were part of the ChemoAC 

toolbox (Freeware, ChemoAC Consortium, Brussels, Belgium, version 4.0). The used CART algorithm 

Fig. 6.3 ATR-FTIR spectra of a sildenafil reference (A) and a tadalafil reference (B). 
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was programmed according to the original CART algorithm proposed by Breiman et al. [25]. The 

toolbox for SIMCA was downloaded from the Matlab Central [26]. 

 

PCA, which is an unsupervised technique, was used to verify whether it can generate a clustering of 

samples which might be useful for the creation of classification models. These classification models 

were generated in a later phase by making use of supervised (modelling) techniques, i.e. kNN, CART 

and SIMCA. Prior to data modelling, the data set was split into a training and test set using the 

Duplex algorithm. The training set is used to generate classification (diagnostic) models; the test set 

is selected to perform an external validation of the created classification models. The training set 

contains 167 samples. The test set comprises 42 samples. 

 

 

3. Results and discussion 

 

3.1 Discrimination based on active substances 

This study investigated whether ATR-FTIR in combination with chemometrics can distinguish 

between samples containing different active pharmaceutical ingredients (APIs). The obtained 

absorbance values in the spectra/fingerprints were used as explanatory variables in the 

unsupervised analysis. The class numbers, based on the presence of API, were included as response 

variables for the supervised techniques (see next section). 

 

3.1.1 Exploratory data analysis 

A simple PCA was performed, retaining only 2 PCs since 95.5% of the total variance was explained 

(PC1 = 91.9% and PC2 = 3.6%). The resulting score plot (Fig. 6.4) shows a faint clustering. Four groups 

of samples can be visually distinguished to a certain extent: (1) samples containing sildenafil of 
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which most samples are situated in the top right corner, (2) placebo samples in the lower part of the 

score plot, (3) samples containing tadalafil which are mostly concentrated between the two large 

groups of placebo samples and samples containing sildenafil and (4) samples containing both 

sildenafil and tadalafil which are mostly clustered on the left part of the score plot. Study of the 

loading plot (figure not shown) did not reveal any absorbance values which could account for this 

clustering, thereby showing that the entire fingerprints account for the obtained discrimination. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Despite the acquired clustering being fairly indistinct, there is a tendency of discrimination based on 

the present APIs. This tendency of distinction might serve as a foundation to create classification 

models. Therefore, it was tested whether classification models based on the present API could be 

built using supervised techniques. Four groups of samples can be distinguished according to the APIs  

(Table 6.1). A training set and test set were selected by usage of Duplex. 

 

 

 

 

Legend: 

* Sildenafil, * Tadalafil, * Sildenafil + Tadalafil, * Placebo 

Fig. 6.4 Score plot obtained with Principal Component Analysis. 
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Table 6.1 Overview of the classification of samples based on the API present 

Class 

number 
Type of samples 

Total no. of 

samples per class 

No. of samples 

in training set 

No. of samples 

in test set 

1 samples containing sildenafil 114 92 22 

2 samples containing tadalafil 32 26 6 

3 
samples containing both 

sildenafil & tadalafil 
18 16 2 

4 placebo 45 33 12 

Total no. of samples 209 167 42 

 

3.1.2 kNN 

kNN analysis revealed that the best model was obtained by including 7 nearest neighbours. This 

model is characterized by a correct classification rate of cross validation of 76.0%, which indicates 

that 40 samples of the training set are either misclassified or unclassified. A closer investigation of 

the mis/unclassified samples is given in Table 6.2. This table shows that most misclassifications in the 

training set occur in class 3 (counterfeit samples containing both sildenafil and tadalafil) and class 4 

(placebo samples). Eight samples belonging to class 3 are assigned to class 1. However, these 

misclassifications seem logic since most of these samples contain much higher doses of sildenafil 

compared to tadalafil (often 8 to 10 times more). The external validation of the obtained model 

generates similar results. Eight out of 42 test set samples are either misclassified or unclassified, 

resulting in a correct classification rate of external validation of 80.9%. An overview of the 

mis/unclassified samples of the test set is shown in Table 6.2.  
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Table 6.2 Overview of the unclassified and misclassified samples (with the class to 

which they were assigned) of each class for both training and test set by k-NN. 

 Misclassified Unclassified 

Training set   

Class 1 

1 sample (class 2) 

2 samples (class 3) 

4 samples (class 4) 

2 samples 

Class 2 

2 samples (class 1) 

2 samples (class 3) 

3 samples (class 4)   

/ 

Class 3 
8 samples (class 1) 

1 sample (class 2) 
2 samples 

Class 4 

8 samples (class 1) 

2 samples (class 2) 

2 samples (class 3) 

1 sample 

Test set   

Class 1 
1 sample (class 2) 

2 samples (class 4) 
1 sample 

Class 2 1 sample (class 4) 1 sample 

Class 4 2 samples (class 1) / 

 

3.1.3 CART 

The graph representing the cross validation error in function of tree complexity of the obtained trees 

shows that the tree with complexity 5 should be selected as the optimal tree (Fig. 6.5). This tree is 

featured by a cross validation error of 0.21. Inspection of the leaves reveals that only one out of five 

leaves shows complete homogeneity. A total of 19 training set samples are misclassified. As can be 

seen on Fig. 6.5, most misclassifications occur in class 3; seven of these samples are classified as 

class 1, four other samples are classified as class 2. As already mentioned in the section of the kNN 

model, most of these counterfeit samples contain much higher doses of sildenafil than tadalafil. 

Therefore, the former misclassifications can be explained. The eight remaining misclassifications are 

also visualized in Fig. 6.5. The external validation results in a correct classification rate of 83.3%, 

which indicates that 7 out of 42 test set samples are misclassified. Two samples of class 1 are 

misclassified (one sample as class 3, the other as class 4); three samples of class 2 are assigned to a 
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wrong class (two samples as class 1, the 3rd as class 4) and two samples belonging to class 4 are 

incorrectly classified (1 sample as class 1, the other as class 2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.1.4 SIMCA 

SIMCA is a technique which models every class separately by selecting the appropriate number of 

PCs necessary to describe each class. The amount of necessary PCs was determined using leave-one-

out cross validation. Twelve PCs were selected to model class 1 (samples containing sildenafil), 

thirteen PCs were kept to describe class 2 (samples containing tadalafil), ten PCs were retained for 

class 3 (samples containing both sildenafil and tadalafil) and for class 4 (placebo samples) sixteen PCs 

were selected. The obtained SIMCA model is characterized by a correct classification rate of cross 

validation of 94.0%, indicating that only 10 out of 167 training set samples are misclassified. From 

Fig. 6.5 Classification tree obtained using the Gini index as split criterion. Each split is described by the 
selected wavenumber and its split value for absorbance. Each leaf is defined by the number of the class which 
is highest represented in the respective leaf. Each graph represents the number of training set samples in 
each leaf in function of the classes they belong to. 
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both classes 1 and 2 only one sample is incorrectly classified as class 4; seven samples of class 3 are 

misclassified (five samples as class 1, two other samples as class 2 and 4) and class 4 contains one 

sample which is attributed to class 1. The external validation results in a correct classification rate of 

90.5% due to the misclassification of 4 samples; three samples of class 2 which are assigned to class 

1 and one sample of class 3 is misclassified as class 1. 

 

Since three good models are acquired, it was verified whether these models could be extended to 

not only distinguish between different active ingredients, as they did thus far, but also to 

discriminate between genuine and counterfeit samples. Therefore, a new classification system was 

set up according to Table 6.3 and a new training and test set were selected using Duplex. 

 

Table 6.3 Overview of the new classification system to extend the obtained models in order to 

discriminate between genuine and counterfeit samples and to distinguish between different APIs 

Class 

number 
Type of samples 

Total no. of 

samples per class 

No. of samples 

in training set 

No. of samples 

in test set 

1 Viagra® (genuine) 13 12 1 

2 Cialis® (genuine) 11 9 2 

3 generic products of Viagra® 33 31 2 

4 
counterfeit samples 

containing sildenafil 
68 49 19 

5 
counterfeit samples 

containing tadalafil 
21 17 4 

6 

counterfeit samples 

containing sildenafil & 

tadalafil 

18 16 2 

7 Placebo 45 33 12 

Total no. of samples 209 167 42 
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3.2 Discrimination between genuine and counterfeit medicines based on 

active substances 

3.2.1 kNN 

When extending the classification system, the best kNN model was obtained using only 3 nearest 

neighbours. This model generates a correct classification rate of cross validation of 57.5%, indicating 

that 71 samples of the training set are either misclassified or unclassified. A closer investigation of 

the model reveals that one Viagra® sample, one Cialis® sample and 8 generic products of Viagra® are 

either unclassified or misclassified as counterfeit. Furthermore, four genuine Viagra® samples were 

classified as generic product and 3 generics were classified as genuine Viagra®. In addition, a number 

of counterfeit samples are misclassified as genuine/generic; seven samples of class 4, three samples 

of class 6 and one sample of class 7 are assigned to class 3 (Viagra® generics) and one class 5 sample 

is misclassified as class 2 (genuine Cialis®). The remaining misclassifications occur within the 4 classes 

of counterfeit samples. These results clearly show that kNN is not suited for the aimed model 

expansion, despite a better result acquired for the external validation. 76.2% of the test set samples 

is classified correctly, although two important misclassifications occur: one Cialis® sample is 

classified as counterfeit (class 5) and one counterfeit with sildenafil (class 4) is considered a Viagra® 

generic (class 3).  

 

3.2.2 CART 

According to the graph representing the cross validation error in function of tree complexity, the 

tree containing 7 leaves, with a cross validation error of 0.38, is considered to be the optimal tree 

(Fig. 6.6). None of the leaves is characterised by complete homogeneity. Survey of the leaves reveals 

that 43 training set samples are misclassified. Unfortunately, a number of these misclassifications 

concern genuine/generic samples which are considered counterfeit and counterfeit samples which 

are misclassified as genuine or generic. One genuine Viagra® sample (class 1) and 12 generic 

products of Viagra® (class 3) are classified as counterfeit (class 4). From both classes 1 and 2 one 
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sample is attributed to class 6 (counterfeit samples containing sildenafil and tadalafil). One class 4 

and one class 7 sample are considered to be genuine samples from class 1 and one placebo sample 

(class 7) is assigned to class 2. The remaining misclassifications occur within the 4 classes of 

counterfeit samples. The external validation results in a correct classification rate of 78.6% which 

indicates that 9 test set samples are misclassified. One genuine Cialis® sample (class 2) is classified as 

a counterfeit from class 6; one placebo sample is considered to be a generic product of Viagra® (class 

3) and one class 4 counterfeit is assigned to class 1 (genuine Viagra®). The other misclassifications 

occur within the classes of counterfeit drugs.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.6 Classification tree obtained after extending the classification system using the Gini index as split 
criterion. Each split is described by the selected wavenumber and its split value for absorbance. Each leaf is 
defined by the number of the class which is highest represented in the respective leaf. Each graph represents the 
number of training set samples in each leaf in function of the classes they belong to. 
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3.2.3 SIMCA 

Each class of samples is described separately by selecting a suitable number of PCs using leave-one-

out cross validation. Seven PCs were retained to describe the genuine Viagra® class (class 1); five PCs 

were selected for class 2 (genuine Cialis®); to model class 3 (generic products of Viagra®) 13 PCs 

were kept; 11 PCs were selected for class 4; ten PCs were retained for class 5; to describe class 6 

nine PCs were used and 17 PCs were kept to model class 7. The obtained SIMCA model renders a 

correct classification rate of cross validation of 90.4% since only 16 out of 167 training set samples 

are misclassified. Both classes 1 and 2 are classified correctly. Five generic products (class 3) are 

classified as class 1. All remaining misclassifications occur solely within the 4 classes of counterfeit 

samples, signifying that no counterfeit samples are classified as genuine or generic. The external 

validation confirms these observations since the test set generates a correct classification rate of 

90.5%. None of the genuine/generic samples are misclassified. All 4 misclassifications concern 

counterfeit samples which were wrongly attributed to one of the 4 counterfeit classes. These results 

show that for both training and test set a 100% correct discrimination between genuine/generic and 

counterfeit samples is obtained. 

 

Since only SIMCA was able to differentiate genuine/generic samples from counterfeit ones, it was 

verified whether this model could be improved even further by separating the data set according to 

the present API. The large data set, used thus far, was divided in 2 smaller data sets: (1) Viagra® like 

data set and (2) Cialis® like data set. For both data sets a training and test set were selected using 

the Duplex algorithm. 
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3.3 Viagra® like samples 

Table 6.4 gives an overview of the classification of the Viagra® like data set, along with the number 

of samples in each class in the entire data set, the training set and the test set. 

 

Table 6.4 Overview of the classification of the Viagra® like data set 

Class 

number 
Type of samples 

Total no. of 

samples per class 

No. of samples 

in training set 

No. of samples 

in test set 

1 Viagra® (genuine) 13 12 1 

2 generic products of Viagra® 33 30 3 

3 
counterfeit samples 

containing sildenafil 
68 51 17 

4 

counterfeit samples 

containing sildenafil & 

tadalafil 

18 16 2 

5 placebo 45 32 13 

Total no. of samples 177 141 36 

 

Like the two previously created SIMCA models the number of PCs to describe each class was 

selected using leave-one-out cross validation. Classes 1, 2 and 3 were described by 11 PCs each; ten 

PCs were selected for class 4 and 12 PCs were retained to model class 5. The acquired SIMCA model 

results in a correct classification rate of cross validation of 92.2%. Eleven training set samples are 

misclassified. Class 1 (genuine Viagra®) is classified correctly; 5 generic products (class 2) are 

classified as class 1; two samples of class 3 are wrongly classified (one as class 4 and the other as 

class 5); two samples of class 4 are assigned to an incorrect class (one as class 3 and the 2nd as class 

5) and 2 placebo samples (class 5) are wrongly attributed to class 3. The external validation 

generates a correct classification rate of 94.4% since the test set only shows two misclassified 

samples: one class 3 sample which is grouped in class 4 and one sample of class 5 which is classified 

as belonging to class 3.  
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3.4 Cialis® like samples 

Table 6.5 gives an overview of the classification of the Cialis® like data set, along with the number of 

samples in each class in the entire data set, the training set and the test set. 

 

Table 6.5 Overview of the classification of the Cialis® like data set 

Class 

number 
Type of samples 

Total no. of 

samples per class 

No. of samples 

in training set 

No. of samples 

in test set 

1 Cialis® (genuine) 11 9 2 

2 
counterfeit samples 

containing tadalafil 
21 18 3 

3 

counterfeit samples 

containing sildenafil & 

tadalafil 

18 15 3 

4 placebo 45 34 11 

Total no. of samples 95 76 19 

 

For each class separately, the number of PCs was selected using leave-one-out cross validation. Five 

PCs were selected for class 1; twelve PCs were kept to model class 2; class 3 was described using six 

PCs and for class 4 eight PCs were retained. As a result, a SIMCA model with a correct classification 

rate of cross validation of 92.1% was acquired. This model is characterized by 6 misclassified 

samples, all belonging to class 3 and misclassified as class 4 samples. The external validation gives 

similar results with a correct classification rate of 84.2%. Three samples are misclassified: two 

samples of class 2 are misclassified as class 4 and one class 3 sample is attributed to class 4. The 

genuine Cialis® samples (class 1) are classified correctly.  
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4. Conclusion 

 

High amounts of counterfeit medicines enter the European market and detection of such 

pharmaceuticals at customs is not always simple due to misleading packaging. Therefore easy to use 

equipment and techniques to perform an initial screening of these samples are needed. For this 

purpose Attenuated Total Reflection Fourier-Transform infrared (ATR-FTIR) spectroscopy is an 

interesting technique since it is user-friendly and little sample preparation is needed.  

This study proposes the use of ATR-FTIR and chemometrics to discriminate and classify counterfeit 

medicines. ATR-FTIR could be an interesting method for customs to obtain a first evaluation of 

suspected samples.  

 

The exploratory analysis, using PCA, shows a tendency of discrimination based on the present APIs. 

This trend of discrimination was further explored in the supervised data analysis which resulted in 

three models differentiating between four groups of samples (Table 6.1). The results of the 

supervised analysis are summarized in Table 6.6. Not all models perform equally well; kNN performs 

the least, CART results in a better model compared to kNN but SIMCA surpasses both models and 

performs best.  

 

Table 6.6 Overview of the performance of the different models for the external test set expressed as 

correct classification rate 

Technique 
Discrimination on API 

(4 groups) 

Discrimination 

genuine/counterfeit and API 

(7 groups) 

Viagra® like 

samples 

Cialis® like 

samples 

k-NN 80.9% 76.2% / / 

CART 83.3% 78.6% / / 

SIMCA 90.5% 90.5% 94.4% 84.2% 

 
 
Overall, three suitable models are obtained when discriminating samples based on present APIs 

(four groups). Therefore it was verified whether these three models could not only distinguish 
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between different APIs but also discriminate genuine from counterfeit samples. This new 

classification system consists of seven classes and is presented in Table 6.3.  

 

In this case, despite the relative good external validation (Table 6.6), kNN is not able to discriminate 

between genuine and counterfeit samples and therefore this model is not useful.  

For CART, conclusions are more complicated. It could be argued that the misclassification of genuine 

samples as counterfeit ones is unacceptable. However, every seized suspected medicine is kept from 

the market until a thorough analysis of the sample identifies its true nature. A medicine, which after 

analysis turns out to be genuine, will be released again. Such an approach is, from a public health 

point of view, much safer. A number of genuine samples which are misclassified as counterfeit pose 

much less risks to public health than counterfeit samples which are misclassified as genuine; 

therefore the latter is absolutely unacceptable. Following this reasoning, the extended CART model 

is not at all bad despite the large number of generic samples which are classified as counterfeit. 

However, a number of counterfeit samples are classified as genuine or generic, making this tree less 

suited. 

SIMCA, on the other hand, generates a very suitable model which is characterized by a 100% correct 

discrimination between genuine and counterfeit drugs. No genuine samples (including the generic 

products of Viagra®) were classified as counterfeit and vice versa. Although five samples of the 

Viagra® generics are classified as genuine Viagra®, these misclassifications do not pose any problems 

since both genuine and generic medicines have to comply with the same quality standards. In 

addition, these five generics are also produced by Pfizer and their composition is very similar to that 

of genuine Viagra®.  

 

The separation of the data set in two smaller data sets (Viagra® and Cialis® like samples) also 

generates two very suitable SIMCA models. Both models acquired a 100% correct discrimination 

between genuine and counterfeit medicines. When comparing the correct classification rates of 
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external validation of the SIMCA models (Table 6.6) it is clear that the two models acquired after 

separation of the data set are not significantly better (or even worse in case of the Cialis® like data 

set) than the former model obtained with the large data set. Therefore, all samples can be included 

at once in the chemometric analysis using one large data set with an adjusted classification system. 

 

This study shows that chemometric analysis of ATR-FTIR fingerprints is a valuable tool to not only 

discriminate genuine from counterfeit samples but also to classify counterfeit medicines. 

Furthermore, this approach might be helpful to customs to obtain a first evaluation of suspected 

samples. Based on the obtained results it can be stated that SIMCA generates the best predictive 

models for both classification systems. CART and kNN are only useful for the discrimination based on 

the present APIs. However, it should be noticed that when working with other groups of counterfeit 

drugs, e.g. slimming products, perhaps other chemometric techniques might need to be applied. 

Therefore, each group of counterfeit medicines has to be regarded separately and the best methods 

have to be explored for each individual group. 
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Chapter VII: Complementarity of PDA and MS 
detection  
 

Photodiode array detection (PDA) and mass spectrometry (MS) are two widely used detection 

methods in the analysis of counterfeit medicines. This chapter explores the potential 

complementarity of both detection techniques and attempts to determine which detector, or 

perhaps the combination of both, is most suitable to analyse counterfeit drugs. 

 

 

1. Introduction 

 

The previous two chapters describe the use of IR spectroscopic techniques to detect and 

characterize counterfeit medicines. However, chromatographic techniques also have their place in 

the wide range of analytical techniques available for the analysis of counterfeit medicines since they 

have proven to be useful as well [1].  

Liquid chromatography coupled to UV detection (LC-UV) is a valuable tool in the detection and 

characterization of counterfeit medicines due to its low cost and ease of use. Its importance is 

demonstrated by the numerous methods developed for the separation and quantification of PDE-5 

Inhibitors and detection of their analogues (Chapter 4 Tables 4.1 and 4.2) [2-9]. In addition, LC-UV 

has widely been used in the detection and characterization of other counterfeited pharmaceuticals, 

such as anti-malaria medicines, antibiotics and sleeping aids [1].  

However, when screening counterfeit medicines, liquid chromatography equipped with mass 

spectrometry (LC-MS) is often preferred since it allows identification and structural elucidation. 

Owing to LC-MS, a number of non-registered analogues of the PDE-5 Inhibitors has been identified 

(Chapter 4 Tables 4.1 and 4.2) [1]. This technology has proven useful to detect the presence of PDE-5 
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Inhibitors and their analogues in counterfeited or adulterated products [5;8;10-16]. In addition, LC-

MS has also been used in a quantitative way by Lebel et al. [17].  

 

During this study a High Performance Liquid Chromatography – Photodiode array (HPLC-PDA) and a 

High Performance Liquid Chromatography – Mass Spectrometry (HPLC-MS) method were developed 

for the analysis of two sample sets. The first sample set consists of genuine Viagra® samples, generic 

products of Viagra®, counterfeit and imitation samples; the second sample set is composed of 

genuine and counterfeit Cialis® samples and imitations. The difference between these two methods 

and the UV/MS methods mentioned earlier is that these newly developed methods do not aim at 

identifying and quantifying APIs and/or their analogues but aim at obtaining fingerprints which 

contain as much information as possible from each sample. To do so, both the PDA and MS methods 

were developed in a way to detect the present impurities and secondary components. The 

fingerprint approach might be interesting for the analysis of counterfeit/imitation drugs since it 

enables the detection (and possibly identification) of present secondary components, instead of 

focussing on active ingredients.  

The consequence of using fingerprints is that high amounts of data are generated, which require 

chemometric data analysis (both explorative and supervised pattern recognition techniques). It will 

be tested whether a distinction can be obtained between genuine and counterfeit/imitation 

medicines (two-class classification for the Cialis® sample set). For the Viagra® sample set, the data 

analysis will continue one step further by attempting to discriminate between genuine, generic and 

counterfeit/imitation products (three-class classification). For this purpose the influence of potential 

present APIs will be eliminated, thereby ensuring that the aimed discrimination will solely be based 

on the detected secondary components and impurities.  

 

The discriminating abilities of the two detection methods were compared for two data sets, i.e. a 

Viagra® and a Cialis® sample set, and it was investigated which detection technique is most suited to 
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acquire the desired discrimination. First, the acquired PDA and MS fingerprints were analysed 

separately by means of explorative and supervised pattern recognition techniques, aiming at 

investigating which detection technique is most suited to solve the two-class (Cialis®) and three-class 

(Viagra®) classification problem. Next, the potential complementarity of PDA and MS detection was 

explored by comparing the discriminating abilities of the PDA and MS fingerprints. Furthermore, it 

was also tested if combining the fingerprints from both detection methods would result in an 

improvement of the acquired diagnostic models. This study will give an indication of which strategy 

is most suited to distinguish genuine from counterfeit medicines. 

      

 

2. Materials and methods 

 

2.1 Samples 

Two sample sets were analysed. The Viagra® sample set consisted of 13 genuine Viagra® samples 

(Pfizer, New York City, New York, USA), 33 generic products of Viagra®, i.e. Verventi (Pfizer), 

Sildenafil Apotex (Apotex, Toronto, Ontario, Canada), Sildenafil Mylan (Mylan, Canonsburg, 

Pennsylvania, USA), Sildenafil Sandoz (Sandoz, Basel, Switzerland), Sildenafil EG (Eurogenerics, 

Brussels, Belgium), Sildenafil Teva (Teva, Petah Tikva, Israel) and 97 counterfeit and imitation 

samples. All three dosages (25, 50 and 100 mg sildenafil) were included. Inspection of the batch 

numbers, for both genuines and generic products, revealed that all samples originate from a 

different production batch. Not all counterfeit and imitation samples mentioned a dosage on the 

package; however in case of mentioning, it was stated that the samples contain 100 mg sildenafil. 

The Cialis® sample set was composed of 11 genuine Cialis® samples (Eli Lilly, Indianapolis, Indiana, 

USA) and 43 counterfeit and imitation products. All three dosages were included (5, 10 and 20 mg). 

Also for the Cialis® sample set, all genuine samples have a different batch number. Only a small 
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fraction of the counterfeit and imitation samples mention a dosage on the package, i.e. 20 mg 

tadalafil. 

All genuine and generic samples were purchased in a local pharmacy; the counterfeit and imitation 

samples were donated by the Federal Agency for Medicines and Health Products (FAMHP) in 

Belgium. All samples were delivered in blisters or closed jars and stored, protected from light, at 

ambient temperature. 

 

2.2 Standards and reagents 

Ethanol and methanol (HPLC grade) were purchased from Biosolve (Valkenswaard, The 

Netherlands). Formic acid was purchased from VWR Prolabo (Fontenay-Sous-Bois, France). 

Ammonium formate was procured from Sigma-Aldrich (St. Louis, Missouri, USA). A sildenafil citrate 

reference standard was kindly donated by Pfizer (Pfizer, New York City, New York, USA); the tadalafil 

reference standard was procured from VWR Prolabo (Fontenay-Sous-Bois, France). The water, used 

during this study, was produced by a MilliQ-Gradient A10 system (Millipore, Billerica, Massachusetts, 

USA) and will be referred to as ‘water’ in the next paragraphs. 

An ammonium formate buffer (0.020 M) pH = 3 was prepared which served as aqueous phase during 

the HPLC-PDA analysis.  

A reference solution of sildenafil citrate and tadalafil (0.1 mg/mL) in ethanol/water (50/50 v/v%) was 

prepared and analysed under the same experimental conditions as the samples in order to 

determine their specific retention times. 

 

2.3 Sample preparation 

One tablet from each sample was crushed and homogenized using a pestle and mortar; capsules 

were opened and homogenized as well. Then, 30 mg of this powder mixture (Sartorius Analytic AC 

210S, Goettingen, Germany) [weighing range = 0.01 - 220 g] was brought to suspension in 10 mL of a 
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mixture of ethanol/water (50/50 v/v%) and sonicated (M8800, Branson, Danbury, Connecticut, USA) 

for 15 minutes. Subsequently, the samples were centrifuged (Heraeus Multifuge 3SR, Thermo 

Scientific, Waltham, Massachusetts, USA) at 2000 rpm during 10 minutes. Following preparation, 

samples were kept refrigerated at a temperature of 4°C. 

 

2.4 HPLC-PDA: equipment and chromatographic conditions 

The samples were analysed using a HPLC-system (Waters 2695 Separations Module, Milford, 

Massachusetts, USA) coupled to a PDA detector (Waters 2998 Photodiode Array Detector). The 

analysis was performed on an Alltima C18 column (250 mm × 3 mm; 5 µm particle size) (Grace, 

Columbia, Maryland, USA). The mobile phase consisted of a gradient with an ammonium formate 

buffer (0.020 M) pH = 3 and methanol. First, a ratio of 90% buffer and 10% methanol was held for 

two minutes. During the next five minutes the ratio changed to 50% buffer and 50% methanol. This 

ratio was kept for seven minutes. The next six minutes the gradient altered to 10% buffer and 90% 

methanol, which was held for five minutes. Finally, during the last five minutes, the gradient 

returned to its starting condition, making a total run of 30 minutes for each sample. This gradient 

was run at a flow rate of 0.5 mL/min. Five µL of each sample was injected at a temperature of 15°C 

while the column temperature was set at 30°C. PDA signals were measured in the range of 210 to 

400 nm. Data acquisition was achieved using the Empower software version 3 (Waters). 

 

2.5 HPLC-MS: equipment and chromatographic conditions 

All the samples were analysed a second time using a HPLC (Dionex Ultimate 3000 UHPLC+ focussed, 

Thermo Scientific, Waltham, Massachusetts, USA) equipped with a MS system (Bruker, Billerica, 

Massachusetts, USA). For these analyses the same Alltima C18 column (Grace) was used. Although 

the mobile phase gradient (used in the HPLC-PDA method) was transferred entirely, the aqueous 

and organic phases were slightly adapted. The aqueous phase consisted of water; the organic phase 
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of methanol. Formic acid was added to both phases in a concentration of 0.01% (v/v). The other 

HPLC parameters (injection and column temperatures, injection volume, flow rate and run time) 

remained the same.  

 

The mass spectrometer used for this analysis was an AmaZon Speed ETD iontrap (Bruker). Ionisation 

was obtained by electrospray which was operated in positive mode with a spray voltage of 4.5 kV 

and an end plate voltage of 500 V. The nebulizer was set to three bar. The desolvation gas 

temperature was heated to 300 °C and the flow rate was fixed at 12 L/min. Total ion chromatograms 

were collected by operating the mass spectrometer in full scan Auto MS2 mode in a mass range of 

50 to 1200 m/z. For the selection of MS/MS precursors the most intense ions were isolated above 

the absolute intensity of 2500 and 5% relative intensity threshold. The ion charge control was set to 

200.000 with a maximum accumulation time of 200 ms. Collision induced dissociation was 

performed with helium as collision gas. The fragmentation amplitude was set at 100% using 

SmartFrag™ Enhanced for amplitude ramping (75 - 150%) with a fragmentation time of 20 ms.  

 

When analysing the Viagra® sample set the target mass was set to 475 m/z, which is the mass of the 

sildenafil base. During the analysis of the Cialis® sample set the target mass was set to 389 m/z, 

which is the mass of tadalafil. After analysing all samples it was observed that the detection of 

impurities was not optimal due to the high quantities in which sildenafil or tadalafil were present 

and the fact that relative intensities are recorded. Signals due to impurities were hardly visible on 

the acquired fingerprints, which is a prerequisite when analysing fingerprints by chemometrics. 

Furthermore, it was also perceived that almost all impurities elute before sildenafil and tadalafil. As 

a consequence, the mass spectrometer was programmed to detect the first 17 minutes (for the 

Viagra® sample set) and 20 minutes (Cialis® sample set) only, despite that one run lasts 30 minutes. 

By this mode of operating, sildenafil and tadalafil (with retention times of 17.7 and 20 minutes, 
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respectively), were not detected; thereby eliminating their large peaks which resulted in higher 

relative intensities for the present impurities.  

Data acquisition was performed using the Compass DataAnalysis software (version 4.2) by Bruker 

Daltonik GmbH. 

 

2.6 Chemometrics 

The aim of both analytical methods was to obtain a series of fingerprints which contain as much 

information about the samples as possible. Therefore it was chosen to include the total ion 

chromatograms, obtained by operating the MS in full scan Auto MS2 mode. These full scan 

chromatograms were used as fingerprints (further denoted as MS1 and MS2 fingerprints). The MS1 

fingerprints are the BPI profiles (relative intensity in function of retention time). The MS2 

fingerprints are a visualization of the fragments of precursors detected in MS1.  

Based on a survey of the PDA fingerprints obtained for the Viagra® sample set and a review of the 

literature [8;9;18-28] it was decided to include three wavelengths in the chemometric analysis, i.e. 

254 nm, 270 nm and 290 nm, which is in accordance with the UV wavelengths recommended in the 

European Pharmacopoeia [29]. Although the European Pharmacopoeia recommends the use of 222 

and 285 nm when analysing tadalafil [30], it was decided to model fingerprints registered at 

wavelengths 254 and 270 nm based on a survey of the obtained fingerprints since at these 

wavelengths most secondary substances and impurities could be detected.  

 

2.6.1 Data pre-processing 

Despite precautions taken during the analysis of samples to reduce peak shifts as much as possible, 

e.g. analysing all samples in one uninterrupted series on the same column using the same batch of 

mobile phase, alignment of the acquired fingerprints was still necessary. Therefore, all fingerprints 

were aligned using the Correlation Optimized Warping (COW) technique, prior to data analysis, in 
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order to correct for potential peak shifts along the time axis. Both sets of fingerprints, i.e. the 

Viagra® and Cialis® fingerprint set, were aligned separately. 

 

2.6.2 Data analysis 

All data treatments were performed using Matlab version 8.0.0 (The Mathworks, Natick, 

Massachusetts, USA). The algorithms of PCA, kNN and Kennard and Stone were part of the ChemoAC 

toolbox (Freeware, ChemoAC Consortium, Brussels, Belgium, version 4.0). The toolboxes for SIMCA 

and PLS-DA were downloaded from the Matlab Central [31;32]. The COW algorithm was 

downloaded from http://www.models.kvl.dk/DTW_COW [33]. 

 

The aim of this study is to investigate the discriminating abilities of two detection methods and to 

test their potential complementarity. In view of this aim and the nature of the analysed samples, the 

desired discrimination is clear beforehand. As a consequence, the application of PCA aiming at 

studying data patterns which could lead to useful information concerning sample classification (as 

was done in the previous two chapters) may not be necessary. However, PCA was still applied to test 

whether the intended distinction between samples could be obtained in an unsupervised manner. 

The aim of the applied modelling techniques is to verify whether appropriate models could be 

obtained which also might serve to classify unknown samples. It was chosen to include PLS-DA, 

SIMCA and kNN since these techniques are widely used in the domain of counterfeit medicines. Prior 

to data modelling, both data sets (Viagra® and Cialis®) were split into a training set and test set using 

the Kennard and Stone algorithm with the first selected sample the one situated closest to the data 

mean. The training set is used to generate the classification models; the test set is employed to 

perform an external validation of the obtained prediction models.  

 

The Viagra® data set comprises three classes: the genuine samples are defined as class 1, the generic 

samples of Viagra® constitute class 2 and class 3 consists of all the counterfeit samples. Since generic 
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products of Cialis® are not yet available, the Cialis® sample set only contains two classes: class 1 

represents genuine samples and the counterfeit samples are defined as class 2. 

 

 

3. Results and discussion 

 

3.1 Viagra® sample set 

3.1.1 Data pre-processing 

Prior to the chemometric data analysis, all chromatograms were aligned using COW. This alignment 

procedure was performed separately for all three included wavelengths (i.e. 254, 270 and 290 nm) 

and both MS1 and MS2 profiles. The chromatograms recorded at the three UV wavelengths show a 

large sildenafil peak. This peak was used as a marker for the alignment. Both MS1 and MS2 profiles 

were aligned without a marker peak. As an example, Fig. 7.1 shows the marker peak of the 

chromatograms measured at 254 nm, before and after alignment. 

Fig. 7.1 Overlay of the largest peak measured at 254 nm, before (A) and after (B) alignment. 
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These aligned chromatograms were used as fingerprints. All PDA fingerprints were cut in order to 

limit the fingerprint to the elution time window between 2 and 28 minutes since other regions did 

not contain any useful information. In order to focus the data analysis on secondary substances and 

impurities, the large sildenafil peak was eliminated as well by removing the section between 20 and 

21.5 minutes. No cutting was performed on the MS1 and MS2 fingerprints since they were measured 

between 0 and 17 minutes only, thereby automatically eliminating the large sildenafil peak. Fig. 7.2 

shows a number of exemplary fingerprints.  

 

Prior to data analysis, all five types of fingerprints were normalized. In addition both MS1 and MS2 

fingerprints were log10-transformed. 

Throughout the data analysis, the measured UV intensities and relative intensities in the fingerprints 

were used as explanatory variables; the class numbers (Table 7.1) were incorporated as response 

variables.  

 

3.1.2 Selection of a training set and test set 

The selection of the training set and test set was performed by the Kennard and Stone algorithm on 

one large data set containing the data from all three wavelengths and both MS1 and MS2. That way 

Fig. 7.2 Exemplary fingerprints obtained by PDA measured at 254 nm (A) and MS1 (B) for a genuine, generic 
and counterfeit sample. For both types of fingerprints the large sildenafil peak was eliminated. The dotted line 
on the PDA fingerprints indicates the time window between 20 and 21.5 minutes which was eliminated from 
the fingerprints. 
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a number of samples was assigned to the test set. For each subsequent data analysis the test set was 

composed of these respective samples. More details about the used test and training set can be 

found in Table 7.1. 

 

Table 7.1 Overview of the sample classification and composition of the used training and test set 

Class 

number 
Type of samples 

Total no. of 

samples per class 

No. of samples 

in training set 

No. of samples 

in test set 

1 genuine Viagra® samples 13 10 3 

2 generic products of Viagra® 33 31 2 

3 counterfeit samples 97 73 24 

Total no. of samples 143 114 29 

 
 
3.1.3 PDA data 

3.1.3.1 Single wavelengths – Exploratory analysis     When performing a PCA for all three 

wavelengths separately, the 254 nm fingerprints generate the best result as can be seen on the 

corresponding score plots in Fig. 7.3. It was chosen to limit the number of PCs to two since 96.23% of 

the total variance is explained for the data obtained at 254 nm (PC1=93.22% and PC2=3.01%). For 

the fingerprints measured at 270 nm 97.17% of the total variance is explained by two PCs 

(PC1=96.51% and PC2=0.66%) and at 290 nm the percentage of explained variance totals 97.48% 

(PC1=96.86% and PC2=0.62%). 

The score plot resulting from the data measured at 254 nm (Fig. 7.3A) shows one large cluster on the 

left side of the score plot, mainly consisting of counterfeit samples. Unfortunately, a number of 

genuine samples are part of this cluster. On the right side, two smaller clusters can be observed; the 

lower one contains generic samples and a small number of genuines only. The upper cluster is 

composed of four counterfeit samples and one genuine. In overall, the discrimination obtained at 

254nm is not optimal since a number of genuine samples cannot be distinguished from the 

counterfeits. However, this discrimination is better compared to the results obtained at 270 and 290 

nm. At these wavelengths a small cluster with counterfeit samples is indistinguishable from the 

generic and genuine samples (Fig. 7.3B and C).   
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The fingerprints obtained using the three wavelength channels were also analysed separately using 

PLS-DA. The acquired score plots (Fig. 7.4) are very similar to those obtained by PCA. In this case, 254 

nm also results in the best, however suboptimal, discrimination; a number of genuine samples are 

clustered together with the counterfeit samples. The results acquired for 270 and 290 nm fail in 

supporting differentiation of genuine/generic samples from counterfeit ones since a number of the 

latter were clustered together with the genuines/generics (conform PCA). 

 

3.1.3.2 Single wavelengths – Modelling techniques     Three different modelling techniques, i.e. PLS-

DA, SIMCA and kNN, were applied to verify whether they can successfully discriminate between the 

different sample classes. It was also tested if these methods can predict the class membership of 

unknown samples, using an external validation of the model (i.e. prediction of the test set samples). 

Fig. 7.3 Score plots obtained by Principal Component Analysis for each included wavelength separately: (A) 
254 nm, (B) 270 nm and (C) 290 nm. 

Fig. 7.4 Score plots obtained by Partial Least Squares for each included wavelength separately: (A) 254 nm, (B) 
270 nm and (C) 290 nm. 
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Table 7.2 gives an overview of the results obtained by each of the modelling techniques for the three 

included wavelengths. The best model for the data measured at 254 nm is obtained by kNN when 

including three nearest neighbours (k = 3). This model shows a correct classification rate of cross-

validation of 97.37% which is due to the misclassification of only three samples; three genuines are 

classified as generics. Therefore this model shows a perfect discrimination between genuine/generic 

samples and counterfeit samples. The test set exhibits a correct classification rate of 96.55% since 

only one sample is classified incorrectly; one genuine sample is considered to be counterfeit. In 

overall, kNN produces a satisfactory diagnostic model.  

 

When exploring the results obtained for the 270 nm fingerprints, the best model is acquired by the 

SIMCA approach. Seven PCs were used to model both classes 1 (genuines) and 2 (generics), whereas 

twelve PCs were necessary to describe class 3 (counterfeits). This model results in a 97.37% correct 

classification rate of cross-validation due to three generic samples which are misclassified as 

counterfeit samples. The external validation shows a correct classification rate of 93.10%. Two out of 

29 test set samples are classified incorrectly. Unfortunately, this misclassification concerns two 

genuine samples which are assigned to the counterfeit group. 

 

The best diagnostic model constructed for the 290 nm data is offered by PLS-DA. The optimal PLS-DA 

model includes four PLS-factors. This model is characterised by a correct classification rate of 91.23% 

for cross-validation and 89.66% for external validation. A total of ten training set samples are 

misclassified, which are all ten genuines present in the training set: three are misclassified as 

generic, the remaining seven samples are considered to be counterfeit. This indicates that the model 

is not capable to classify genuine medicines. This is also demonstrated by the test set which is 

characterized by a correct classification rate of 89.66%. All three genuine samples are wrongly 

classified: one as generic, the two others as counterfeit. 
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Table 7.2 Overview of the results for all three wavelengths obtained by the three modelling 

techniques, expressed as percentages of correct classification 

 254 nm 270 nm 290 nm 

PLS-DA    

no. of PLS-factors 5 3 4 

cross validation 97.37% 91.23% 91.23% 

external validation 86.21% 89.66% 89.66% 

SIMCA    

no. of PCs 6 – 8 – 7 7 – 7 – 12 6 – 9 – 8 

cross validation 95.61% 97.37% 95.61% 

external validation 93.10% 93.10% 89.66% 

kNN    

no. of nearest neighbours 3 5 3 

cross validation 97.37% 97.37% 97.37% 

external validation 96.55% 89.66% 89.66% 

 

When exploring the best models obtained for each single wavelength, it is apparent that the best 

model is obtained using kNN for the 254 nm data. Only this model results in a perfect discrimination 

between genuines/generics and counterfeits for the training set. The kNN model recognizes three 

genuine medicines as generic pharmaceuticals but this observation does not pose any problems 

since both genuine and generic products have to comply with the same quality requirements. From 

the test set only one sample is misclassified: a genuine sample considered to be counterfeit. This 

misclassification is also acceptable since a genuine sample, which is suspected to be counterfeit, 

poses less risks to public health than a counterfeit sample, which is believed to be genuine.   

 

3.1.3.3 Combination of wavelengths – Exploratory analysis     All possible combinations of the three 

wavelengths were tested: (1) 254nm_270nm, (2) 254nm_290nm, (3) 270nm_290nm, and (4) 

254nm_270nm_290nm. 

The score plots obtained by PCA and PLS-DA for the 254nm_270nm and the 254nm_270nm_290nm 

data combination are shown in Fig. 7.5. The resulting score plots acquired for the two remaining 

wavelength combinations are very similar to those represented in Fig. 7.5 (figures not shown). In all 
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score plots a number of counterfeit samples are clustered together with the genuine/generic 

samples. Therefore no clear distinction could be made. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.1.3.4 Combination of wavelengths – Modelling techniques     Table 7.3 presents the correct 

classification rates obtained using all three modelling techniques for all tested PDA data 

combinations. Survey of the correct classification rates of both cross-validation and external 

validation reveals that the best model for the data combination of 254nm_270nm is obtained from 

SIMCA. This model is characterized by a correct classification rate of cross-validation of 98.25% 

which is due to the misclassification of two genuines as generic pharmaceuticals. The test set 

exhibits a correct classification rate of 93.10%. Two genuine samples are assigned to a wrong class: 

one as a generic, the other as counterfeit. 

 

Fig. 7.5 Exemplary score plots obtained by Principal Component Analysis for two fingerprints 
combinations: (A) 254nm_270nm and (C) 254nm_270nm_290nm. 
Exemplary score plots obtained by Partial Least Squares for: (B) 254nm_270nm and (D) 
254nm_270nm_290nm. 
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When exploring the models obtained for the 254nm_290nm fingerprint combination, SIMCA also 

provides the best model with a correct classification rate of 98.25% for the training set and 93.10% 

for the test set. Study of the occurring misclassifications shows that this SIMCA model not only 

results in the same type of misclassifications compared to the SIMCA model of 254nm_270nm, but 

also that these misclassifications concern exactly the same genuine samples as in the 254nm_270nm 

SIMCA model. 

 

From a chemometric point of view, the best model for the data combination 270nm_290nm is 

achieved by PLS-DA. This model has a correct classification rate of cross-validation of 91.23% (ten 

samples are misclassified). Unfortunately, these misclassifications concern all ten genuine samples 

present in the training set. Three genuine samples are considered to be generic; the remaining 

genuine samples are wrongly classified as counterfeit. The test set is characterized by a 89.66% 

correct classification rate due to the misclassification of all three genuine samples: one as generic, 

the other two as counterfeit. This shows that the model is not capable of modelling and predicting 

the genuine samples in a correct way and therefore it is not suitable.  

 

When combining all three wavelengths, SIMCA results in the best model with a 100% correct 

classification rate for the training set. The external validation presents a correct classification rate of 

93.10%. This percentage is due to the misclassification of two genuine samples; one is assigned to 

the generics class, the second is considered to be a counterfeit.  
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Table 7.3 Overview of the results for all combinations of PDA data obtained by the three modelling 

techniques, expressed as percentages of correct classification 

 254nm_270nm 254nm_290nm 270nm_290nm 254nm_270nm_290nm 

PLS-DA     

no. of PLS-factors 5 5 3 5 

cross validation 97.37% 97.37% 91.23% 97.37% 

external validation 89.66% 89.66% 89.66% 89.66% 

SIMCA     

no. of PCs 5 – 6 – 3 5 – 6 – 4 6 – 10 – 7 6 – 7 – 4 

cross validation 98.25% 98.25% 97.37% 100% 

external validation 93.10% 93.10% 89.66% 93.10% 

kNN     

no. of nearest 

neighbours 
3 3 5 3 

cross validation 97.37% 97.37% 97.37% 97.37% 

external validation 93.10% 93.10% 89.66% 93.10% 

 

Comparison of the above mentioned models demonstrates that the best model is obtained by 

SIMCA when combining all three wavelengths. This model shows a perfect discrimination between 

genuine, generic and counterfeit medicines for the training set. Prediction of the test set results in 

two misclassifications. A genuine sample which is considered to be generic does not pose any 

problems for public health, and a genuine medicine which is regarded as counterfeit threatens 

public health much less than a counterfeit considered to be genuine. However, it should be 

mentioned that the misclassifications of the SIMCA models, observed for the test set of the 

254nm_270nm, 254nm_290nm and 254nm_270nm_290nm data combinations, concern exactly the 

same genuine samples for all three combinations. The training sets of 254nm_270nm and 

254nm_290nm only show two genuine samples which are believed to be generics. Therefore, the 

SIMCA model obtained by 254nm_270nm_290nm differs only little from the SIMCA models acquired 

for the 254nm_270nm and 254nm_290nm fingerprint combinations. Consequently, the superiority 

of the 254nm_270nm_290nm data combination could be questioned. Furthermore, the 

computation time for this triplex fingerprint combination was considerably longer compared to the 

duo combinations and the single wavelength data. 
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Comparison of the models obtained for the single wavelength data sets and the mentioned 

combinations of wavelengths shows that, in overall, the best prediction model is obtained by kNN 

for the 254 nm fingerprints only since this model exhibits the highest correct classification rate for 

external validation. 

 

3.1.4 MS data 

The MS data were analysed twice; firstly the MS1 data were analysed separately, secondly the 

combination of MS1 and MS2 data (MS1_MS2) was tested. 

 

3.1.4.1 Exploratory analysis     PCA (score plots not shown) does not result in a good discrimination 

between genuine, generic and counterfeit samples. The resulting score plots of PLS-DA are shown in 

Fig. 7.6. It was chosen to limit the number of PLS-factors to two since a third PLS-factor did not 

provide any additional information. The score plot obtained for the MS1 data (Fig. 7.6A) does not 

show a clear distinction between the three groups of samples. However, a tendency of 

discrimination is present. The genuine samples are clustered in the lower left corner, the counterfeit 

samples are mostly clustered in the upper part of the plot and the generics are mainly grouped 

between the genuine and counterfeit samples. This tendency of distinction is also present on the 

plot acquired for the combination of MS1_MS2 fingerprints (Fig. 7.6B); only on this plot the trend 

seems to be more clear. 

 

 

 

 

 

 

 

 

Fig. 7.6 Score plots obtained by Partial Least Squares of both MS data sets: (A) MS1 and (B) 
MS1_MS2. 
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3.1.4.2 Modelling techniques     The results obtained for both data sets are summarized in Table 7.4. 

The best model for the MS1 data is obtained by PLS-DA. This model includes six PLS-factors and 

exhibits a correct classification rate of cross-validation of 95.61%. One genuine sample is considered 

to be generic. The four remaining misclassifications concern generic samples of which two are 

regarded as genuine and the other two as counterfeit. The test set presents a correct classification 

rate of 93.10% since only two misclassifications occur. Unfortunately, these misclassifications 

concern two counterfeit samples of which one is classified as genuine, the other as generic.  

 

When exploring the results obtained for the MS1_MS2 fingerprint combination, PLS-DA (including 

seven PLS-factors) clearly performs best since both cross-validation and external validation are 

featured by a correct classification rate of 100%. This indicates that a perfect discrimination between 

genuine, generic and counterfeit samples is acquired for both training and test set. 

 

For both MS1 and MS1_MS2, the models obtained with SIMCA are not satisfying. The external 

validation shows a correct classification rate of 82.76% for both data sets. Survey of the 

misclassifications reveals that for both data sets all three genuine samples and both generic samples 

are classified as counterfeit, indicating that this model is not capable of discriminating between 

genuine/generic and counterfeit medicines.  

Also the kNN approach does not provide reliable models. The test set presents a correct 

classification rate of 96.55% for both data sets since only one sample is misclassified. For the MS1 

data, this misclassification concerns a genuine sample attributed to the counterfeits class; for the 

MS1_MS2 data one counterfeit sample is considered to be genuine. However, these two models 

show a large number of misclassifications in the training set: 11 misclassified samples and one 

unclassified sample for the MS1 data; 11 misclassified and five unclassified samples for the 

MS1_MS2 data. Therefore these kNN models are considered to be less suitable.  
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Table 7.4 Overview of the results for the MS data obtained by the three modelling 

techniques, expressed as percentages of correct classification 

 MS1 MS1_MS2 

PLS-DA   

no. of PLS-factors 6 7 

cross validation 95.61% 100 

external validation 93.10% 100 

SIMCA   

no. of PCs 6 – 14 – 10 9 – 20 – 10 

cross validation 96.49% 90.35% 

external validation 82.76% 82.76% 

kNN   

no. of nearest neighbours 3 11 

cross validation 89.47% 85.96% 

external validation 96.55% 96.55% 

 

These results clearly show that the best model is obtained using PLS-DA for the MS1_MS2 data 

combination. 

 

3.1.5 PDA – MS data combination 

A survey of the loadings of all three wavelengths in the respective PLS-DA and SIMCA models was 

performed in order to determine which wavelength should be combined with the MS1 data in order 

to obtain the best model. This survey suggested the combination of MS1 data with the data 

measured at 254 nm (254nm_MS1). 

 

3.1.5.1 Exploratory analysis     The score plots obtained by PCA and PLS-DA for this combination of 

data are shown in Fig. 7.7 (A and B). Only two PCs (Fig. 7.7A) were retained, since they explain 

95.65% of the total variance (PC1=92.26% and PC2=3.39%). In case of the PLS-DA analysis (Fig. 7.7B), 

two PLS-factors were included. These two score plots are not only very similar to each other, they 

also show a great conformity with the PCA plot obtained for the fingerprints measured at 254 nm 

(Fig. 7.3A). Despite that the obtained clustering is not optimal, a relative good discrimination 
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between the classes of samples can be made. However, a number of genuine samples are exempted 

from this observation as they are clustered together with the counterfeit samples.  

 

 

 

 

 

 

 

 

 

 

 

3.1.5.2 Modelling techniques     The results obtained for this fingerprint combination are 

summarized in Table 7.5. kNN results in the best model for this data combination. It includes three 

nearest neighbours and shows a correct classification rate of cross-validation of 97.37%. Three 

genuine samples are classified incorrectly but these misclassifications do not pose any problems 

since they are all three considered to be generics. The test set generates a correct classification rate 

of 96.55%. Only one misclassification occurres: a genuine sample which is assigned to the counterfeit 

class. 

 

The PLS-DA model is also quite suitable. The training set features a correct classification rate of 

98.25% due to the misclassification of two genuine samples which are considered to be generic. Two 

out of 29 test set samples are misclassified as well, resulting in a 93.10% correct classification rate. 

One genuine and one counterfeit sample are regarded as generic. 

 

SIMCA, on the other hand, results in a less suited model. Six PCs were retained to model class 1, nine 

PCs were used to describe class 2 and ten PCs were kept for class 3. Despite a 100% correct 

Fig. 7.7 Score plots obtained by Principal Component Analysis (A) and Partial Least Squares (B) 
for the data combination 254nm_MS1. 
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classification rate of cross-validation, the test set is characterized by a correct classification rate of 

89.66%. All three genuine samples are misclassified: one as generic, the other two as counterfeit. 

This indicates that this model is not capable of predicting the authentic nature of genuine samples. 

 

Table 7.5 Overview of the results for the 254nm_MS1 data combination 

obtained by the three modelling techniques, expressed as percentages 

of correct classification 

 254nm_MS1 

PLS-DA  

no. of PLS-factors 8 

cross validation 98.25% 

external validation 93.10% 

SIMCA  

no. of PCs 6 – 6 

cross validation 100% 

external validation 89.66% 

kNN  

no. of nearest neighbours 3 

cross validation 97.37% 

external validation 96.55% 

 

3.1.6 Sensitivity and specificity 

An overview of the best performing methods is presented in Table 7.6. 

 

Table 7.6 General overview of the best performing models. Performance of the models is expressed 

as percentages of correct classification  

 254 nm 254nm_270nm_290nm MS1_MS2 254nm_MS1 

 kNN SIMCA PLS-DA kNN 

cross validation 97.37% 100% 100% 97.37% 

external validation 96.55% 93.10% 100% 96.55% 

 

Up till now, the performance of all models was expressed in terms of correct classification rates. It 

could, however, also be interesting to express the performance of these models in terms of 

sensitivity and specificity. Since the classification problem considered in this study is a three-class 

problem and sensitivity and specificity are statistical evaluation measurements of binary 
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classification models, the considered classification has to be slightly modified. This modification can 

easily be performed by combining classes one and two. Class one consists of genuine Viagra® 

samples, class two is composed of generic products of Viagra®. Since both groups of medicines are 

produced in a legal way and have to comply with the same quality requirements, their fusion into 

one class is justified.  

 

Sensitivity is a measure for the true positive rate; in this study a true positive is defined as a 

counterfeit which is considered to be counterfeit. Specificity expresses the true negative rate, which 

signifies the rate of legal medicines (genuine and generic) regarded as legal. The sensitivity and 

specificity values for each of the models in Table 7.6 are presented in Table 7.7. 

 

Table 7.7 Sensitivity and specificity of the best performing models 

Data set Model Validation Sensitivity Specificity 

254 nm kNN 
cross validation 100% 100% 

external validation 100% 80% 

254nm_270nm_290nm SIMCA 
cross validation 100% 100% 

external validation 100% 80% 

MS1_MS2 PLS-DA 
cross validation 100% 100% 

external validation 100% 100% 

254nm_MS1 kNN 
cross validation 100% 100% 

external validation 100% 80% 

 

For all models, a sensitivity and specificity of 100% is obtained for the training set despite that the 

correct classification rates of the kNN models obtained for the 254nm and 254nm_MS1 data do not 

equal 100% (Table 7.6).  This is due to misclassifications of genuine samples as generics. Since 

genuines and generics constitute the same class for the calculation of sensitivity and specificity, 

these misclassifications are not taken into account.  

Only the PLS-DA model obtained for the MS1_MS2 data combination exhibits a 100% correct 

classification rate for external validation (Table 7.6), which is mirrored in the perfect sensitivity and 

specificity for the test set of this model. The remaining models show a perfect sensitivity and a 
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specificity of 80% which is due to the misclassification of a genuine as a counterfeit. The external 

validation of the SIMCA model obtained for the 254nm_270nm_290nm data combination shows one 

additional misclassification, i.e. a genuine considered to be generic, which is not taken into account 

in the calculation of sensitivity and specificity. 

 

3.2 Cialis® sample set 

3.2.1 Data pre-processing 

Prior to the chemometric data analysis a warping procedure was conducted for the fingerprints 

recorded at both included wavelengths (i.e. 254 nm and 270 nm) and both MS1 and MS2 profiles 

separately. 

The profiles obtained for the two included UV wavelengths show a large tadalafil peak, which was 

used as a marker for the alignment. Since the HPLC-MS method was set to measure the first 20 

minutes only (instead of the full run of 30 minutes) the large tadalafil peak was removed. Therefore 

both MS1 and MS2 profiles were aligned without a marker. Fig. 7.8 shows the marker peak 

measured at 270 nm, before and after alignment. 

Fig. 7.8 Overlay of the largest peak measured at 270 nm, before (A) and after (B) alignment. 
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After alignment, all PDA fingerprints were represented by the informative region from 5 to 20 

minutes. Tadalafil, with a retention time of 21.5 minutes, was eliminated as well, thereby allowing 

the data analysis to focus on secondary substances and impurities. 

No restrictions on elution time range were considered for the MS1 and MS2 fingerprints since they 

were measured from 0 to 20 minutes only, thereby automatically cutting of the large tadalafil peak. 

A number of exemplary fingerprints are shown in Fig. 7.9. 

 

Prior to data analysis, all four types of fingerprints were normalized. In addition, both MS1 and MS2 

fingerprints were log10-transformed. 

 

3.2.2 Selection of a training set and a test set 

The training set and test set were selected using the Kennard and Stone algorithm. This selection 

was performed as described for the Viagra® data set (i.e. one large data set containing the data from 

both PDA wavelengths and MS1 and MS2). As a result, a test set was acquired which was used 

during each subsequent step in the data analysis. More detailed information about the training set 

and test set can be found in Table 7.8. 

 

 

Fig. 7.9 Exemplary fingerprints obtained by PDA measured at 254 nm (A) and MS1 (B) for a genuine and 
counterfeit sample. For both types of fingerprints the large tadalafil peak was eliminated. 
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Table 7.8 Overview of the sample classification and composition of the used test and training set. 

Class 

number 
Type of samples 

Total no. of 

samples per class 

No. of samples 

in training set 

No. of samples 

in test set 

1 genuine Cialis® samples 11 9 2 

2 counterfeit samples 43 34 9 

Total no. of samples 54 43 11 

 

The number of genuine samples in the test set is relatively low. However, this does not pose any 

problems for the data analysis since genuine samples are manufactured under strictly controlled 

circumstances and therefore their fingerprints are very similar. 

 

3.2.3 PDA data 

3.2.3.1 Single wavelengths – Exploratory analysis     PLS-DA was performed for the fingerprints 

measured at the two wavelengths (254 nm and 270 nm) separately. As can be seen on Fig. 7.10 both 

score plots are very similar. It was chosen to retain the 2nd and 3rd PLS-factor since these two PLS-

factors provide the best result. For both groups of fingerprints measured at 254 nm (Fig.7.10A) and 

270 nm (Fig. 7.10B) no optimal discrimination is observed. However, a clear tendency to 

differentiate between genuine and counterfeit samples is present. The aimed discrimination might 

be ameliorated when using modelling techniques. 

 

The fingerprints recorded at the two wavelengths were also analysed separately by PCA (figures not 

shown). Unfortunately, by using PCA no discrimination (or discrimination trend) is observed; both 

score plots show one large cluster composed of genuine and counterfeit samples. 
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3.2.3.2 Single wavelengths – Modelling techniques     Table 7.9 gives an overview of the models 

obtained for the fingerprints measured at the included wavelengths separately. PLS-DA results in a 

perfect model for fingerprints registered at both wavelengths for both training set and test set. 

 

Analysis of the results for the two other models obtained for the 270 nm data indicates that SIMCA 

is capable to recognize genuine and counterfeit medicines perfectly. For this model seven PCs were 

kept to model class 1 (genuines) and nine PCs for class 2 (counterfeits).  

 

Comparison of the performance of the SIMCA and kNN model obtained for the 254 nm data, leads to 

the conclusion that SIMCA offers a superior performance. This model is constructed using six PCs to 

describe both classes 1 and 2. A correct classification rate of cross-validation of 100% is obtained, 

which indicates that all training set samples are classified correctly. The external validation shows a 

correct classification rate of 90.91%, which is due to the misclassification of one sample. In this 

specific case, a genuine sample was considered to be counterfeit. It can be concluded that this 

model is a good one. As already mentioned previously, the existing misclassification is acceptable 

since a genuine sample, which is suspected to be counterfeit, will pose less risks to public health 

than a counterfeit sample, which is thought to be genuine.  

Fig. 7.10 Score plots obtained by Partial Least Squares – Discriminant Analysis for the fingerprints 
measured at the two included wavelengths separately: (A) 254 nm and (B) 270 nm. 
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For both groups of fingerprints, the kNN model results in lower correct classification rates. These 

models misclassify a number of counterfeit samples (i.e. three samples for the 254 nm data and two 

samples for the 270 nm data) as genuines, making this modelling technique less suited compared to 

PLS-DA and SIMCA. 

 

Table 7.9 Overview of the results for both wavelengths obtained by the three 

modelling techniques, expressed as percentages of correct classification 

 254 nm 270 nm 

PLS-DA   

no. of PLS-factors 4 8 

cross validation 100% 100% 

external validation 100% 100% 

SIMCA   

no. of PCs 6 – 6 7 – 9 

cross validation 100% 100% 

external validation 90.91% 100% 

kNN   

no. of nearest neighbours 3 3 

cross validation 95.35% 95.35% 

external validation 81.82% 90.91% 

 

3.2.3.3 Combination of wavelengths: 254nm_270nm  – Exploratory analysis     Both PLS-DA and PCA 

were performed on this data set (Fig. 7.11). Both score plots are very similar to each other and to 

the PLS-DA plots shown in Fig. 7.10. No clear discrimination between genuine and counterfeit 

medicines is present. Combining the fingerprints of both wavelengths clearly does not ameliorate 

the trend of distinction between genuine and counterfeit medicines observed in Fig. 7.10. 
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3.2.3.4 Combination of wavelengths: 254nm_270nm  – Modelling techniques     Both PLS-DA and 

SIMCA result in a perfect discrimination between genuine and counterfeit medicines (Table 7.10). 

The PLS-DA model was constructed using seven PLS-factors; SIMCA retained five PCs to model both 

classes 1 and 2.  

 

The obtained kNN model is characterized by a correct classification rate of cross-validation of 

95.35%. Two samples are misclassified: one genuine as counterfeit and one counterfeit as genuine. 

The test set shows a correct classification rate of 90.91% due to the misclassification of one sample: 

one counterfeit which is believed to be genuine. 

Taking all three models into account, it is clear that combining both wavelengths does not improve 

the classification and prediction of samples, compared to 270 nm individually.  

 

 

 

 

 

 

 

 

 

 

Fig. 7.11 Score plots obtained by Principal Component Analysis (A) and Partial Least Squares (B) 
for the data combination 254nm_270nm. 
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Table 7.10 Overview of the results for the 254nm_270nm data 

combination obtained by the three modelling techniques, expressed as 

percentages of correct classification 

 254nm_270nm 

PLS-DA  

no. of PLS-factors 7 

cross validation 100% 

external validation 100% 

SIMCA  

no. of PCs 5 – 5 

cross validation 100% 

external validation 100% 

kNN  

no. of nearest neighbours 3 

cross validation 95.35% 

external validation 90.91% 

 

3.2.4 MS data 

The MS data were analysed twice. First the MS1 data were analysed individually. Afterwards, the 

combination of MS1 and MS2 data (MS1_MS2) was tested. 

 

3.2.4.1 Exploratory analysis     Fig. 7.12 shows both PCA and PLS-DA score plots obtained for the 

MS1 data. PCA is not able to distinguish between both groups of samples as can be seen on Fig. 

7.12A. It was chosen to limit the number of PCs to two since 82.77% of the total variance is 

explained (PC1=78.25% and PC2=4.52%). Including the 3rd PC (PC3=2.80%) does not improve the 

obtained discrimination (figure not shown). PLS-DA, however, results in a good distinction between 

genuine and counterfeit samples as can be seen on the associated score plot (Fig. 7.12B). The 

number of PLS-factors was limited to two since 81.10% of the total variance is explained 

(PLS1=78.24% and PLS2=2.86%) and a 3rd PLS-factor did not provide any additional information. 
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Fig. 7.13 presents the PCA and PLS-DA score plots acquired for the MS1_MS2 fingerprint 

combination. As can be seen on Fig. 7.13A, PCA is still not able to guarantee a good visual 

discrimination. However, the obtained score plot is slightly better than the one obtained with the 

MS1 data alone. The two retained PCs explain 84.21% of the total variance (PC1=81.91% and 

PC2=2.30%). The obtained PLS-DA score plot (Fig. 7.13B) is very similar to the one obtained with the 

MS1 data alone; a good discrimination between genuine and counterfeit medicines can be made.  

 

 

 

 

 

 

 

 

 

 

 

3.2.4.2 Modelling techniques     For both MS1 and MS1_MS2 data a perfect distinction between 

genuine and counterfeit medicines can be made with PLS-DA and kNN as can be observed in Table 

7.11. Both cross- and external validation show a correct classification rate of 100%. Both PLS-DA 

Fig. 7.12 Score plots obtained by Principal Component Analysis (A) and Partial Least Squares – 
Discriminant Analysis (B) for the MS1 data. 

Fig. 7.13 Score plots obtained by Principal Component Analysis (A) and Partial Least Squares – 
Discriminant Analysis (B) for the MS1_MS2 data. 
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models were constructed using two PLS-factors; the kNN models were created by including three 

nearest neighbours. 

 

SIMCA, on the other hand, results in less suitable models for both data sets. Remarkably, the correct 

classification rate totals 95.35% for cross-validation and 81.82% for external validation for both data 

sets. Survey of the misclassifications reveals that the same types of misclassifications occur in both 

data sets: two genuines from the training set are considered to be counterfeit; both genuines in the 

test set are regarded as counterfeits as well. These misclassifications demonstrate that SIMCA is 

performing less for these data since this technique is not capable to predict the authentic nature of 

genuine medicines for both data sets. 

 

Table 7.11 Overview of the results for the MS data obtained by the three modelling 

techniques, expressed as percentages of correct classification 

 MS1 MS1_MS2 

PLS-DA   

no. of PLS-factors 2 2 

cross validation 100% 100% 

external validation 100% 100% 

SIMCA   

no. of PCs 5 – 6 8 – 8 

cross validation 95.35% 95.35% 

external validation 81.82% 81.82% 

kNN   

no. of nearest neighbours 3 3 

cross validation 100% 100% 

external validation 100% 100% 

 

3.2.5 PDA – MS data combination 

Both PDA and MS data alone provide perfect models already. However, kNN did not perform well for 

the PDA data; SIMCA did not result in a reliable model for the MS data. Therefore, it was verified 

whether these models could be improved by combining PDA and MS data.  
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A survey of the loadings of both wavelengths in the respective PLS-DA and SIMCA models was 

performed aiming to determine which wavelength should be combined with the MS1 data. This 

survey suggested to combine the data measured at 270 nm and the MS1 data (270nm_MS1). 

 

3.2.5.1 Exploratory analysis     Fig. 7.14 represents the score plots obtained by PCA and PLS-DA. PCA 

is not capable to distinguish between both groups of samples (Fig. 7.14A). The two retained PCs 

explain 92.24% of the total variance (PC1=87.84% and PC2=4.40%). The score plot obtained with 

PLS-DA is shown in Fig. 7.14B. Despite the cluster of genuine samples not being completely isolated 

from the counterfeits’ cluster and therefore no optimal discrimination can be observed, a tendency 

of distinction seems to be present. The 2nd and 3rd PLS-factor were retained since they provide the 

best result. The score plot obtained with PLS-DA is not capable to make a clear distinction between 

genuine and counterfeit medicines when combining both PDA and MS data; however, a good 

discrimination was obtained when using the MS data only. This could possibly be due to the 

frequency of measurement which is much higher for the PDA detector than the MS detector. As a 

consequence, the number of PDA data points in the 270nm_MS1 data set is much higher than the 

MS data points.   

 

 

 

 

 

 

 

 

 

 
Fig. 7.14 Score plots obtained by Principal Component Analysis (A) and Partial Least Squares – 
Discriminant Analysis (B) for the 270nm_MS1 data combination. 
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3.2.5.2 Modelling techniques     Similar to the PDA data alone, both PLS-DA and SIMCA provide 

models which make a perfect discrimination between genuine and counterfeit medicines for both 

training and test set (Table 7.12). 

 

kNN results in a correct classification rate of cross-validation of 95.35% due to the misclassification 

of two samples: one genuine as counterfeit and one counterfeit as genuine. The external validation 

results in a correct classification rate of 90.91% since one sample is classified incorrectly: one 

counterfeit sample is believed to be genuine. The performance of this model is comparable to the 

kNN models obtained with the 270 nm data and the 254nm_270nm combination. This suggests that 

MS data are not able to improve models obtained with PDA data. 

 

Table 7.12 Overview of the results for the 270nm_MS1 data 

combination obtained by the three modelling techniques, expressed as 

percentages of correct classification 

 270nm_MS1 

PLS-DA  

no. of PLS-factors 4 

cross validation 100% 

external validation 100% 

SIMCA  

no. of PCs 6 – 6 

cross validation 100% 

external validation 100% 

kNN  

no. of nearest neighbours 3 

cross validation 95.35% 

external validation 90.91% 
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4. Conclusion 

Public health is threatened worldwide by counterfeit medicines, even in Europe despite effective 

regulatory and legal control. Therefore, characterization of these products is a very important issue. 

During this study two sample sets, i.e. a Cialis® and a Viagra® sample set, were analysed using a PDA 

and MS detector. The aim was to obtain different types of fingerprints revealing the present 

impurities and other secondary components. Both MS1 and MS2 fingerprints were included in the 

chemometric data analysis. For the Viagra® data set, PDA fingerprints measured at three 

wavelengths were taken into account, i.e. 254 nm, 270 nm and 290 nm; for the Cialis® data set PDA 

profiles measured at 254 nm and 270 nm were collected and analysed. Chemometric analysis aimed 

to verify whether PDA and MS are two complementary techniques. As a result, this study tried to 

resolve the question which technique is most suited to distinguish genuine(/generic) medicines from 

counterfeit ones based on impurities and secondary components. 

 

4.1 Viagra® sample set 

Exploratory analysis of all single wavelength and combinations of PDA data revealed that neither 

PCA nor PLS-DA is capable to yield a satisfying discrimination between genuine, generic and 

counterfeit medicines. Surprisingly, PLS-DA is not capable to improve the acquired discrimination 

compared to PCA, despite its supervised nature. However, when exploring the MS fingerprints, the 

PCA score plot does not provide a useful clustering, whilst PLS-DA results in a clear tendency of 

discrimination. 

 

Subsequently, supervised techniques were applied to model the data. Overall, very adequate 

diagnostic models are obtained by means of three basic chemometric techniques. When comparing 

all models acquired for the PDA data, it can be concluded that the 254 nm fingerprint set provides 

the best result since the external validation generates the highest correct classification rate. When 

exploring the MS data, the best diagnostic model is obtained for the MS1_MS2 combination since it 
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is characterized by a perfect discrimination for both training set and test set. Based on a survey of 

the loadings, it was decided to combine the fingerprints measured at 254 nm and the MS1 data. For 

this data combination, the best diagnostic model is obtained by kNN; only one misclassification is of 

importance which is a genuine sample misclassified as a counterfeit. The acquired PLS-DA model also 

generates correct classification rates which are better than those obtained for the 254 nm and MS1 

fingerprints separately. The only misclassification of importance concerns a test set counterfeit 

which is considered to be a generic sample. For SIMCA conclusions are more complicated. The 

training set is characterized by a 100% correct classification rate but the test set performs less 

compared to 254 nm. This is due to only one additional genuine sample which is misclassified as a 

counterfeit. However, this SIMCA model is quite suitable since the misclassification of genuine 

samples poses less risks to public health than a counterfeit sample which is considered to be 

genuine. A counterfeit sample will be retained from the market until a thorough analysis identifies 

its true nature. If the respective sample turns out to be genuine after all, it will be released again.  

 

Based on the results obtained for this data set, it could be concluded that MS provides less suitable 

models (except for PLS-DA) since several genuines and generics are classified as counterfeits and 

vice versa. This is probably due to the high complexity of the data and the good overall results 

obtained with the PDA data. However, when selecting the appropriate chemometric techniques 

carefully, the preferred detection method can be used. For instance, when combining MS1 and MS2 

data a perfect discrimination can be obtained using PLS-DA; when applying kNN good classification 

models can be obtained by UV detection at 254 nm. Therefore, it is not clear which detection 

technique should be chosen. This might be an interesting observation for the characterization of 

counterfeit drugs in developing countries since more sophisticated equipment is often not available. 

Nevertheless, if no selection of chemometric tools can be performed in advance, the combination of 

PDA and MS data (254nm_MS1) is likely to generate better classification models than PDA or MS 

individually. In general, taking all three modelling techniques into account, this combination results 
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in less classification errors between the genuines/generics and counterfeits compared to the PDA 

and MS data separately. Most occurring misclassifications concern genuine samples which are 

considered to be generics, which does not pose any public health threats since both genuine and 

generic medicines have to comply with the same quality requirements. Therefore this combination 

of data is preferred. 

 

4.2 Cialis® sample set 

Exploratory analysis reveals that PLS-DA is more suitable compared to PCA since this score plot 

shows a good discrimination between genuine and counterfeit medicines when using the MS1_MS2 

data combination. However, PCA also shows a clear tendency of discrimination between both groups 

of samples for the mentioned data combination. Survey of the PDA data shows that PLS-DA 

performs best as well since PCA is not capable to achieve the desired discrimination for any of the 

included PDA data sets. A clear distinction cannot be observed for PLS-DA either, however it shows a 

clear tendency of discrimination between genuine and counterfeit medicines. When combining the 

PDA and MS data (270nm_MS1), conclusions are similar to those for the PDA data.  

 

Next, supervised techniques were applied to model the data. When exploring the results obtained 

for the two single wavelengths, it is clear that the fingerprints measured at 270 nm result in the best 

models. Both PLS-DA and SIMCA generate a perfect classification and prediction; kNN does not 

perform well. 

When combining the fingerprints measured at both wavelengths (254nm_270nm) similar 

conclusions can be drawn; both PLS-DA and SIMCA result in a perfect classification and prediction, 

kNN performs less since two counterfeit samples are believed to be genuine. Therefore, combining 

the 254 nm and 270 nm data does not offer any improvement compared to 270 nm alone. 

Conclusions are a little different for the MS1 and MS1_MS2 data. PLS-DA and kNN result in a perfect 

classification and prediction of genuine and counterfeit medicines for both data sets. SIMCA does 
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not perform well since this model is not capable to predict the genuine nature of samples. Based on 

these observations it can be concluded that the incorporation of the MS2 data does not improve the 

models obtained by MS1 alone. 

Since both the 270 nm data and MS1 data already result in very good models, there is not much 

space for improvement. However, this combination was still tested since for both data sets one 

technique does not perform well. A perfect classification and prediction are obtained using PLS-DA 

and SIMCA (similar to the PDA data). The combination of these fingerprints leads to a significant 

improvement of the obtained SIMCA model compared to MS1 alone. Unfortunately, the model 

obtained by kNN is less suitable due to incorrectly classified counterfeit samples. These results show 

that in this data combination, the obtained discrimination is mainly determined by the PDA data. 

 

Based on these results, it can be concluded that with both detection techniques separately a perfect 

distinction can be made between genuine and counterfeit medicines. This observation shows that, 

when using appropriate chemometric methods, both types of fingerprints are very suitable to 

distinguish genuine from counterfeit medicines. Therefore, it is not clear which detection method 

should be preferred. Since perfect discrimination models are already obtained, it does not seem 

necessary to combine both detection methods. However, the incorporated sample set is rather 

small, which could have led to the acquisition of perfect models. In addition, quality differences or 

differences in impurity profiles might be quite large, making it possible to distinguish between 

genuine and counterfeit medicines by usage of simple detection techniques such as PDA. 

Nevertheless, this conclusion has to be treated with the necessary caution since an enlargement of 

the sample set (and therefore the inclusion of more possible sources of variation in the samples) 

might enforce the need of more sophisticated detection methods such as MS. MS remains a very 

useful technique for the characterisation of counterfeit medicines since it allows the identification 

and structure elucidation of unknown substances. 
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Chapter VIII: GC-impurity fingerprinting of 
volatile compounds 
 

This chapter explores the potential use of GC-impurity fingerprinting of counterfeit medicines to 

distinguish them from authentic medicines. These fingerprints will visualize the presence of volatile 

compounds, such as residual solvents. As a consequence, they might be an interesting target to 

obtain an indication of potential health hazards posed by these kinds of products. 

 

 

1. Introduction 

 

It was already mentioned in chapter II that in most published studies the characterization of 

counterfeit medicines is based on the identification and quantification of the present APIs. As a 

consequence, potential toxic secondary components, such as impurities, residual solvents, etc., are 

often not taken into account. This could lead to the wrong conclusion that a counterfeit medicine 

might be relatively safe, for it might contain the right API in the correct dosage, while in actual fact 

high concentrations of potential toxic secondary components could be present [1]. Since 

counterfeiters probably use inferior primary substances and manufacture these medicines without 

respecting any quality norm, the analysis of these secondary components becomes more important. 

The evaluation of residual solvents is fundamental for quality control of genuine medicines, 

especially for medicines intended for chronic use. Consequently, residual solvents could be of great 

interest for the characterization of counterfeit medicines [2]. 

 

The International Conference on Harmonisation of Technical Requirements for Registration of 

Pharmaceuticals for Human Use (ICH) defines residual solvents as “organic volatile chemicals that 

are used or produced in the manufacture of drug substances or excipients, or in the preparation of 
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drug products” [3]. Many of these solvents are known to be harmful to humans or the environment 

[4]. Furthermore, these chemicals have no therapeutic benefit and they may facilitate 

decomposition of pharmaceuticals [5]. Since it is not possible to completely remove residual solvents 

from drug substances and excipients, it is important that these impurities are eliminated to the 

extent possible in order to meet quality norms. ICH issued guidelines which not only recommend the 

use of less toxic solvents; they also recommend acceptable amounts for residual solvents in order to 

ensure the patient’s safety [3]. These guidelines have been adopted by the European 

Pharmacopoeia, the United States Pharmacopoeia and the Japanese Pharmacopoeia [6]. ICH defines 

four classes of residual solvents, based on toxicological data, which are summarized in Table 8.1.  

 

Table 8.1 Overview of the classification of residual solvents by ICH [2;3] 

Class Description Examples of solvents 
Range of 

concentration limits 

I Solvents to be avoided 
benzene 

carbon tetrachloride 
2 – 8 ppm 

II Solvents to be limited 
methanol 

toluene 
50 – 5000 ppm 

III Solvents with low toxic potential 
ethanol 

acetic acid 
up to 5000 ppm 

IV 
Solvents for which no adequate 

toxicological data are available 

isopropyl ether 

trifluoroacetic acid 
/ 

 

Class I solvents are to be avoided because of their high toxicity or harmful environmental effect. 

1,1,1–trichloroethane is classified as class I solvent because of its environmental hazard; its 

concentration limit is set at 1500 ppm. Class II consists of solvents which should be limited due to 

low toxicity.  

 

The increasing interest in residual solvent assessment has led to the development of a large number 

of analytical techniques intended for the determination of these chemicals [4]. In general, most of 

these techniques are based on gas chromatography (GC) [2]. The European Pharmacopoeia 

mentions two gas chromatographic methods using static headspace injection and a flame ionisation 
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detector. A mass spectrometer or, if needed, an electron-capture detector for the determination of 

chlorinated residual solvents may also be used. These two methods allow: (1) the identification of 

class I, II and III solvents; (2) to carry out a limit test for class I and II solvents and (3) to quantify class 

II solvents, if the limits are higher than 1000 ppm, and class III solvents [7]. Besides these two 

techniques, several other GC methods are described in literature using different injection 

techniques, such as split/splitless injection, headspace and solid-phase micro-extraction [4;8-12]. 

Other techniques for residual solvent determination, used as alternatives to gas chromatography, 

are loss on drying, thermogravimetric analysis, differential scanning calorimetry, IR spectroscopy and 

NMR spectrometry. Many of these techniques have the disadvantage of being non-specific or they 

are characterized by high detection limits, making them often less suitable for residual solvents 

assessment [13]. 

 

Even though many different analytical methods are available, gas chromatography remains the most 

powerful technique for residual solvent analysis [13]. The combination of headspace injection with 

GC-MS has also the advantage of a limited sample preparation effort, allowing fast analysis. The 

section of Medicinal Products of the Scientific Institute of Public Health developed and validated its 

own GC technique for the identification and quantification of residual solvents [2]. This technique 

has the advantages of being fast and suitable for routine analysis of pharmaceuticals. However, 

despite GC being the most suited technique for residual solvent analysis, the use of GC impurity 

fingerprints is a fairly new concept in literature. Nevertheless, this approach might be interesting for 

the identification of potential toxic secondary components in counterfeit medicines. 

 

During this study, a number of fingerprints was acquired for a set of genuine and counterfeit Viagra® 

and Cialis® samples by usage of a headspace-GC-MS analysis and analysed by means of different 

chemometric techniques. The aim of this data analysis was to test whether these techniques allow 

for the distinction between genuine and counterfeit medicines, based on the obtained fingerprints. 
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Furthermore, it was tested if these methods can also discriminate between different counterfeit 

medicines based on the potential public health risk they pose.  

 

 

2. Materials and methods 

 

2.1 Samples 

All counterfeit samples were donated by the Federal Agency for Medicines and Health Products 

(FAMHP). Genuine samples of Viagra® were kindly provided by Pfizer (New York City, New York, 

USA). Eli Lilly (Indianapolis, Indiana, USA) kindly donated genuine samples of Cialis®. 

 

2.2 Chemicals and reagents 

2-Propanol, dichloromethane, acetone, ethanol absolute, acetonitril (all HPLC grade) and 

ethylacetate (pesti-S) were purchased from Biosolve (Valkenswaard, The Netherlands). Chloroform 

and ethylbenzene (both for gas chromatography) and benzene and tetrachloromethane (both for 

spectroscopy) were purchased from Merck (Darmstadt, Germany). Toluene (for analysis of pesticide 

residues) and cyclohexane (HiPerSolv CHROMANORM for HPLC) were purchased from VWR prolabo 

(Fontenay-Sous-Bois, France). These solvents were used as reference standards. Dimethyl sulfoxide 

(for analysis), which was used as solvent for the samples, was purchased from Merck. 

 

2.3 Sample preparation 

2.3.1 Preparation of standard solutions 

Two stock solutions in dimethyl sulfoxide were prepared; one stock solution containing 1000 ppm 

acetonitril, the second containing 1000 ppm cyclohexane. One mL from each solution was diluted to 

100.0 mL with dimethyl sulfoxide and used as internal standard. Cyclohexane was used for the 
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quantification of tetrachloromethane, benzene, toluene and ethylbenzene. Acetonitril served as 

internal standard for the remaining solvents. These internal standards were selected, based on an 

initial screening of counterfeit samples, since both solvents were not detected in the screened 

samples or only as traces [2]. 

 

2.3.2 Preparation of samples 

Tablets were broken in two before addition of 5 mL of dimethyl sulfoxide. Breakage of tablets was 

necessary because of the coating of some tablets, which might prevent the recovery of residual 

solvents. Capsules were opened before adding the solvent. 500 µl of the internal standard was 

added to these solutions [2]. 

 

2.4 Instrumental conditions 

The samples were injected on a GC-MS system using a G1888 headspace sampler (Agilent 

Technologies, Palo Alto, California, USA). The analyses were performed on an Agilent 6890N gas 

chromatograph coupled to an Agilent 5973N mass spectrometer. By application of Agilent MSD 

ChemStation data acquisition and data handling software full automation was achieved. 

The samples were incubated in a 10 mL headspace vial and shaken at 120°C for 15 minutes. Next,     

1 mL of the vapour phase was injected into the GC-MS system in a split injection mode (split ratio 

6.8:1). The temperatures of the headspace loop, the transfer line and the EPC volatiles interface 

were set at 135, 145 and 160°C, respectively. The solvents were separated on a Phenomenex 624 

capillary column (60 m x 0.32 mm; 1.8 µm film thickness) (Phenomenex, Torrance, California, USA). 

The oven temperature was programmed from 60°C, which was held for 5 minutes, to 270°C at 

25°C/min. 270°C was held for 10 minutes, making a total runtime of 23.4 minutes. The temperatures 

of the injection port, the ion source, the quadrupole and the interface were set at 160, 230, 150 and 

280°C, respectively. The mass spectrometer was set at full scan mode for the identification of the 

solvents present in the samples. For quantification and validation, the mass spectrometer was 
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operated in single ion monitoring mode (100 ms dwell times) [2]. The chromatograms, obtained in 

full scan mode, were subsequently used as fingerprints in the chemometric data analysis. For more 

information about the validation of this GC-technique, the reader is referred to reference [2]. 

 

2.5 Sample sets 

Two sample sets, one Viagra® and one Cialis® sample set, were analyzed using the described GC-

method and used for the chemometric data analysis. The Viagra® sample set contained 5 genuine 

Viagra® samples and 31 counterfeit samples. For the Cialis® sample set 5 genuine and 35 counterfeit 

samples were analyzed, making a total of 36 samples for the Viagra® sample set and 40 samples for 

the Cialis® sample set.  

 

2.6 Chemometrics 

All chemometric data treatments were performed using Matlab version 8.0.0 (The Mathworks, 

Natick, Massachusetts, USA). The algorithms of PCA, Kennard and Stone and Duplex were part of the 

ChemoAC toolbox (Freeware, ChemoAC Consortium, Brussels, Belgium, version 4.0). The used CART 

algorithm was programmed according to the original CART algorithm proposed by Breiman et al. The 

toolbox for SIMCA was downloaded from the Matlab Central [14]. 

 

PCA was applied to test whether it can discriminate between genuine and counterfeit medicines. At 

the same time, it was explored if the obtained clustering of the samples provides a foundation to 

create classification models using supervised techniques.  

Next, both data sets were split into a training set and test set and two modelling techniques were 

applied, i.e. CART and SIMCA, to test whether appropriate classification models could be obtained 

which also might serve to discriminate unknown samples. 
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3. Results and discussion 

 

All fingerprints were cut at the beginning (at 3.4 minutes) and at the end (at 13 minutes) since the 

fingerprints did not contain any useful information before 3.4 and after 13 minutes. After cutting, 

the fingerprints were normalized. The acquired intensities for the components present were used as 

explanatory variables. A number of exemplary fingerprints, obtained in full scan mode for genuine 

and counterfeit samples of both Viagra® and Cialis®, are shown in Fig. 8.1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8.1 Exemplary fingerprints obtained in full scan for genuine and counterfeit Viagra® and Cialis® samples. 
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3.1 Exploratory data analysis – PCA 

Exploratory data analysis of the Viagra® data set shows that PCA generates a good result. It was 

chosen to limit the number of PCs to two since 98.3% of the total variance is explained (PC1=97.7% 

and PC2=0.6%). The resulting score plot of PCA is shown in Fig. 8.2. A clear distinction can be 

observed between the genuine and counterfeit samples. Study of the loading plot (figure not shown) 

does not reveal any time points which could account for the observed discrimination, thereby 

showing that the entire fingerprints account for the discrimination. Despite a manifest separation 

between genuine and counterfeit, the counterfeit samples are clustered together. Therefore no 

pattern could be observed.  

 

 

 

 

 

 

 

 

 

 

 

PCA was also performed for the Cialis® data set. Similar to the Viagra® data set two PCs are retained, 

explaining 98.1% of the total variance (PC1=97.5% and PC2=0.6%). The resulting score plot (Fig. 8.3) 

shows that the genuine samples are isolated from the counterfeit ones, which indicates that PCA 

clearly distinguishes between genuine and counterfeit samples. In contrast to the Viagra® data set, 

PCA results in a slight clustering for the counterfeit samples. Unfortunately, this clustering does not 

provide any useful information for founding the creation of classification models. No time points are 

Fig. 8.2 Score plot obtained by Principal Component Analysis for the Viagra data set. 
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found to be of significance for the discrimination between genuine and counterfeit samples 

(matching loading plot not shown). Therefore, the entire fingerprints are taken into account for 

discrimination. 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.2 Selection of a training set and a test set 

Before any modelling technique can be applied, a test set and training set have to be selected. Two 

algorithms were tested: (1) Kennard and Stone and (2) Duplex. 20% of all data are assigned to the 

test set, resulting in a test set of 7 samples for the Viagra® data set and a test set containing 8 

samples for the Cialis® set.  

For the Viagra® data set, the most appropriate test set was acquired using the Kennard and Stone 

algorithm, with the first selected sample that one being situated closest to the data mean. For the 

Cialis® data set, the Duplex algorithm resulted in the best separation in test set and training set. 

 

3.3 Creation of classes 

Since PCA did not provide any useful clustering, the samples had to be assigned to classes in an 

arbitrary way. The creation of these arbitrary classes was based on the presence and content of 7 

residual solvents which were detected in the samples above the quantification limits (LOQ) of the 

Fig. 8.3 Score plot obtained by Principal Component Analysis for the Cialis® data set.  
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described GC-MS method. Table 8.2 gives an overview of the considered residual solvents along with 

their ICH class, limits of content established by ICH and estimated LOQ values.  

 

Table 8.2 Overview of the considered residual solvents, along with ICH class, limit of content and 

limit of quantification [3;6] 

Residual solvent ICH class Limit of content (ppm) LOQ (ppm) 

ethanol 3 5000 0.114 

2-propanol 3 5000 0.001 

acetone 3 5000 0.001 

ethyl acetate 3 5000 0.421 

dichloromethane 2 600 0.002 

chloroform 2 60 0.002 

carbon tetrachloride 1 4 0.001 

 

 

Tables 8.3 and 8.4 give an overview of the residual solvent content of the screened Viagra® and 

Cialis® samples. 

 

Table 8.3 Results for the screening of 31 counterfeit samples of Viagra [6] 

Sample no. 
ethanol 

(ppm) 

2-propanol 

(ppm) 

acetone 

(ppm) 

ethyl acetate 

(ppm) 

carbon 

tetrachloride 

(ppm) 

dichloromethane 

(ppm) 

1 188.5 2.0 3.4 1.8 - - 

2 - 414.1 18.9 - - 5.6 

3 - 17.5 3.3 - - - 

4 - 184.9 20.5 - - - 

5 - 926.5 16.3 - - 4.8 

6 - 2826.4 6.8 - - - 

7 - 166.0 19.8 - - 3.5 

8 - 16.5 84.8 - - - 

9 - 128.6 336.5 1.9 - - 

10 - 12.0 35.6 - - - 

11 - 17.9 55.0 - - - 

12 - - 16.1 - - 6.8 

13 6.7 221.8 20.7 - - 1.1 

14 - 563.8 22.3 - - 5.9 

15 - 5.2 2.0 - - - 

16 - 22.9 0.7 - - - 

17 - 1112.7 7.7 - - - 

18 858.6 4.8 7.4 10.6 - - 



Chapter VIII.  GC-impurity fingerprinting of volatile compounds 

179 
 

Table 8.3 Results for the screening of 31 counterfeit samples of Viagra [6] (continued) 

Sample no. 
ethanol 

(ppm) 

2-propanol 

(ppm) 

acetone 

(ppm) 

ethyl acetate 

(ppm) 

carbon 

tetrachloride 

(ppm) 

dichloromethane 

(ppm) 

19 25.5 116.5 63.8 - 7.8 - 

20 4.4 7.1 88.3 - - - 

21 - 5.1 61.7 - - - 

22 27.4 140.6 5.3 - 47.0 - 

23 - 2205.9 220.5 - - 23.9 

24 6.8 777.0 8.1 - - 1.6 

25 - 384.3 15.3 - - - 

26 - 91.1 10.3 - - - 

27 - 333.7 4.9 - - 3.3 

28 139.7 15.6 0.7 - - - 

29 - 23.2 217.0 - - - 

30 4.2 3.3 1.6 - - - 

31 805.6 4.1 3.9 4.8 - - 

 

 

Table 8.4 Results for the screening of 35 counterfeit samples of Cialis [6] 

Sample no. 
ethanol 

(ppm) 

2-propanol 

(ppm) 

acetone 

(ppm) 

ethyl acetate 

(ppm) 

carbon 

tetrachloride 

(ppm) 

dichloromethane 

(ppm) 

1 319.5 - - 4.4 - - 

2 295.5 17.5 - 2.3 - - 

3 - 48.4 2.3 - - - 

4 - 14.3 2.5 - - - 

5 - 0.2 - - - - 

6 - 433.8 30.4 - - - 

7 - 4.5 - - - - 

8 4.7 722.9 54.0 - - - 

9 - 4.4 - - - - 

10 - 68.5 3.5 - - - 

11 177.1 - - - - - 

12 3.7 1.1 - - - - 

13 - 34.0 - - - - 

14 - 30.4 0.8 - - - 

15 - 8.8 - - - - 

16 - 150.5 9.7 - - - 

17 - 2157.4 162.3 - - - 

18 4.3 2072.4 155.2 11.4 - - 

19 179.5 - - - - - 

20 - - - - - - 

21 - 200.7 13.0 - - - 

22 - 639.4 4.9 - - - 
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Table 8.4 Results for the screening of 35 counterfeit samples of Cialis [6] (continued) 

Sample no. 
ethanol 

(ppm) 

2-propanol 

(ppm) 

acetone 

(ppm) 

ethyl acetate 

(ppm) 

carbon 

tetrachloride 

(ppm) 

dichloromethane 

(ppm) 

23 - 357.1 49.5 - - - 

24 3.8 155.0 20.6 - - - 

25 3.2 2.2 - - - - 

26 - 97.0 7.3 - - - 

27 480.2 1.3 1.8 6.0 - - 

28 - 114.0 7.6 - - - 

29 327.4 2.1 - 3.6 26.6 - 

30 - 2.5 - - - - 

31 - 91.4 6.0 - - - 

32 - 1670.8 8.6 - - - 

33 - 1.7 - - - - 

34 - 2.7 - - - - 

35 403.2 86.5 5.8 - - 17.3 

 

 

Screening of genuine Viagra® samples with the described GC-MS method indicated the presence of 

toluene (ICH class II), ethyl acetate and 2-butanone (both ICH class III). The content of these solvents 

was smaller than the LOQ of the method and therefore well below the limits set by ICH. Genuine 

samples of Cialis® were also analysed. The method demonstrated the presence of only 

tetrahydrofuran (ICH class II). Similarly to the Viagra® genuines, the residual solvent content is below 

the LOQ and hence below the ICH limits [6].  

 

An arbitrary classification system is set up for both sample sets by assigning all samples containing 

only ICH class III solvents to one group. Samples containing class II solvents constitute a second 

group and samples containing class I solvents are assigned to a third group. Genuine samples 

constitute another separate group. Tables 8.3 and 8.4 show that the majority of the counterfeit 

samples in both sample sets contain class III solvents only. As both sample sets are quite small, the 

created groups have to contain more or less an equal amount of samples in order to obtain 

classification models with good predictive properties. Therefore the group of counterfeit samples, 

containing only ICH class III solvents, is split up in two. A residual solvent content of 100 ppm is 
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considered acceptable for qualitative products. Consequently, it was verified whether this limit could 

serve as a threshold to split this large group of samples. Indeed, survey of the screening results 

reveals that two more or less equivalent groups could be obtained by assigning samples containing 

class III solvents in a total amount lower than 100 ppm (regardless if the samples contained one or 

more class III solvents) to one group. The other samples, containing more than 100 ppm of class III 

solvents, are put in another group. Table 8.5 gives an overview of the resulting classification. 

 

Table 8.5 Overview of the obtained classification system and the number of samples of the Viagra 

and Cialis sample set belonging to each class 

Class no. Description 
No. of Viagra® 

samples 

No. of Cialis®  

samples 

1 genuine samples 5 5 

2 
counterfeit samples containing less  

than 100 ppm ICH Class III solvents 
8 17 

3 
counterfeit samples containing more than 

100 ppm ICH Class III solvents 
12 12 

4 
counterfeit samples containing ICH Class II 

solvents (content not taken into account) 
9 5 

5 
counterfeit samples containing ICH Class I 

solvents (content not taken into account) 
2 1 

Total no. of samples 36 40 

 

 

Throughout the supervised data analysis, the intensities detected for each residual solvent were 

used as explanatory variables; the class numbers, based on the presence (and concentration) of 

residual solvents, served as response variables. 
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3.4 CART 

3.4.1 Viagra® like samples  

The graph representing the cross validation error in function of tree complexity of the obtained trees 

shows that the tree with complexity 2 (i.e. the tree contains 2 leaves) should be selected as the 

optimal tree (Fig. 8.4). Study of the leaves reveals that all genuine samples are classified as 

counterfeit, making this tree an inappropriate model to describe the Viagra® data set.  

 

However, the cross validation graph also shows that a tree with complexity 5 (Fig. 8.4) could be built. 

This tree is characterized by a cross validation error of 0.45. In contrast to the two-leaf tree, the five-

leaf tree shows good homogeneous leaves (shown by the graphs in Fig. 8.4). Four out of five leaves 

show complete homogeneity, indicating that no sample is misclassified. However, the leaf 

representing the genuine samples does not show complete homogeneity, since a counterfeit sample 

is classified as genuine. When exploring the classification of the genuine samples, it is apparent that 

all genuine samples are classified correctly. Inspection of the counterfeit samples reveals that 25 out 

of 26 counterfeit samples are classified correctly. The misclassified counterfeit sample is a sample 

belonging to class 3, which is considered to be a genuine. This particular sample contains 2-propanol 

and acetone (both ICH class III solvents) in a total amount of 2833 ppm which is far below the 

international accepted limit of 5000 ppm.  

The external validation shows two misclassified samples, resulting in a correct classification rate of 

external validation of 71.4%. The genuine samples, which are part of the selected test set, are 

classified as genuine. Tree out of five counterfeit samples are also classified correctly; one class 3 

counterfeit is classified as belonging to class 2 and one sample of class 3 is assigned to class 4. The 

misclassification of the first sample might be explained by the relatively low content of residual 

solvents. This particular sample only contains ICH class III solvents in a total amount of 196 ppm, 

while the boundary between classes 2 and 3 is set at 100 ppm. The misclassification of the second 

sample as a class 4, instead of class 3, is more difficult to explain. 
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3.4.2 Cialis® like samples  

CART was also performed for the Cialis® data set. A tree with complexity 4 turns out to be the 

optimal tree (figure not shown). Survey of the leaves shows that three out of 32 training set samples 

are misclassified. However, two of these misclassified samples are class 4 samples (= samples 

containing ICH class II solvents) that are misclassified as genuine, which is unacceptable. The 

external validation confirmed the inapplicability of this model; 75% of the test set samples (6 out of 

8) are misclassified. Despite that all genuine samples are classified correctly, this model clearly 

shows low predictive properties. 

In total nine samples are misclassified. Remarkably, five of these belong to class 4 and one belongs 

to class 5, indicating that all class 4 and class 5 samples are misclassified (Table 8.5). This suggests 

that class 5 might be too small to be modelled correctly. An explanation for the inability to model 

8 

Fig. 8.4 Classification tree obtained for the Viagra® data set using the Gini index as split criterion. Each split is 
described by the selected time point and its split value for the intensity (MS). Each leaf is defined by the 
number of the class which is highest represented in the respective leaf. Each graph represents the number of 
training set samples in each leaf in function of the classes they belong to. 
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class 4 might be more complicated since both classes 1 (= genuines) and 4 are represented by the 

same amount of samples whilst class 1 is modelled properly. The manufacturing of genuine 

medicines occurs in strictly controlled circumstances and their quality is guaranteed. Therefore, 

these fingerprints are very similar to each other. Furthermore, they also differ vastly from the 

fingerprints of counterfeit samples, which could explain why class 1 can be well modelled despite 

being represented by a low number of samples. Counterfeit medicines, on the other hand, are 

produced in uncontrolled circumstances without any quality guarantee. Consequently, differences 

among the fingerprints of one and the same class might be larger, which might explain the difficulty 

to model this particular class. Therefore, the CART analysis was repeated without classes 4 and 5, 

taking only classes 1, 2 and 3 into account. A new test set was selected, using the Duplex algorithm.  

 

According to the graph representing the cross validation error in function of tree complexity (Fig. 

8.5) a tree with complexity 1 should be selected as optimal tree. Obviously, a tree containing only 

one leaf has very poor predictive properties. However, a tree with 4 leaves could also be built, which 

is characterised by a cross validation error of 0.48. (Fig. 8.5). This new tree shows relatively good 

homogeneous leaves (shown by the graphs in Fig. 8.5); two leaves are characterized by complete 

homogeneity which indicates that all samples in these leaves are classified correctly. The two 

remaining leaves each show one misclassified sample. These two misclassified samples belong to 

class 3; one is misclassified as genuine, the other as class 2. The first misclassified sample (as a 

genuine) only contains 2-propanol and acetone in a total amount of 464.2 ppm, which is far below 

the international accepted limit; the second misclassified sample (as class 2) contains a total amount 

of 121.6 ppm ICH class III solvents, which is close to the set boundary of 100 ppm between classes 2 

and 3. After applying the external validation, 2 out of 7 test set samples are misclassified, resulting in 

a correct classification rate of external validation of 71.4%. Two genuine samples are classified 

correctly. Two out of five counterfeit samples in the test set are misclassified. The first sample is a 

class 2 sample, misclassified as a class 3 sample. Since this particular sample contains 34 ppm of 2-
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propanol this misclassification is rather difficult to explain. The second sample (belonging to class 3) 

contains solvents from ICH class III in a total amount of 1679.4 ppm and therefore the 

misclassification as a class 2 sample is also difficult to explain. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.5 SIMCA 

3.5.1 Viagra® like samples  

SIMCA is a technique which selects a number of PCs to describe each class separately. The number 

of PCs for each class is selected using leave-one-out cross validation. Two PCs were retained to 

describe the genuine class; five PCs were selected for class 2; to model class 3 six PCs were kept; for 

class 4 seven PCs were selected and for class 5 only one PC was retained. The obtained SIMCA model 

is characterized by a correct classification rate of cross validation of 100%, which indicates that all 

samples of the training set are classified correctly; no sample is misclassified or unclassified. The 

 

Fig. 8.5 Classification tree obtained for the Cialis® data set using the Gini index as split criterion. Each split is 
described by the selected time point and its split value for the intensity (MS). Each leaf is defined by the 
number of the class which is highest represented in the respective leaf. Each graph represents the number of 
training set samples in each leaf in function of the classes they belong to. 
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external validation shows a correct classification rate of 85.7%, which is due to the misclassification 

of only one sample (out of 7) of the test set, i.e. a class 2 sample classified as class 3. This 

misclassification might be elucidated by its total content of ICH class III solvents of 73 ppm, which is 

quite close to the set boundary of 100 ppm between classes 2 and 3. Both the internal and external 

validation exhibit a 100% correct classification rate for the discrimination between genuine and 

counterfeit samples. 

 

3.5.2 Cialis® like samples  

Since SIMCA is a technique which models every class separately, it is required that every class is 

represented by a minimum number of samples. Furthermore, it is not possible to model classes 

represented by only one sample by usage of SIMCA. Therefore, this analysis is applied to the second 

Cialis® data set, taking only classes 1, 2 and 3 into account. The number of PCs is selected using 

leave-one-out cross validation, resulting in the retention of two PCs for class 1 (genuines), twelve 

PCs for class 2 and ten PCs for class 3. The internal cross validation generates a correct classification 

rate of 100%. This demonstrates that all samples of the training set are classified correctly. The 

external validation results in a correct classification rate of 85.7%. This is due to the misclassification 

of one (out of 7) test set samples; a class 3 sample which is classified as class 2. This particular 

sample is also misclassified in the CART tree. It contains 1679.4 ppm ICH class III solvents and 

therefore the misclassification cannot be explained. A 100% correct classification rate for the 

discrimination between genuine and counterfeit samples is obtained for both the internal and 

external validation. 
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4. Conclusion 

 

Two data sets, one Viagra® and one Cialis® set, were analysed using chemometric techniques. PCA, 

an exploratory technique, was applied in an attempt to reveal the data structure in both data sets. 

This exploratory analysis focused on differences between genuine and counterfeit samples and on 

differences among the counterfeits. For the Viagra® data set, a clear distinction between genuine 

and counterfeit samples is obtained by applying PCA. Unfortunately, no data patterns could be 

revealed since all counterfeit samples are clustered together in one large cluster. For the Cialis® data 

set, a clear differentiation between genuine and counterfeit samples is acquired as well. Moreover, 

PCA shows a slight clustering among the counterfeit samples, which unfortunately turns out to be of 

no use for the creation of predictive models. However, the exploratory analysis proves that there are 

differences in the fingerprints between genuine and counterfeit samples that could potentially be 

modelled. 

 

Since no patterns are found in both data sets, an arbitrary classification system is set up based on 

residual solvents content. This resulting classification system comprises five classes (Table 8.5). Once 

the classes are defined, a training set and test set were selected for both data sets using either the 

Kennard and Stone or the Duplex algorithm. Subsequently, two modelling techniques, i.e. CART and 

SIMCA, were applied and tested for their predictive properties for distinguishing between genuine 

and counterfeit samples and for the classification in the different defined classes.  

 

The CART model, obtained for the Viagra® data set, shows three misclassified samples in total. 

Unfortunately, one misclassification concerns a class 3 sample which is classified as a genuine. 

Therefore this model is not ideal to describe the Viagra® data set. 

The diagnostic model obtained by SIMCA is characterized by a 100% correct classification rate for 

cross validation, indicating that all training set samples are classified correctly. The external 
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validation of the obtained model shows a correct classification rate of 85.7%, due to the 

misclassification of one test set sample. Both the internal and external validation result in a 100% 

correct classification rate for the discrimination between genuine and counterfeit samples. This 

indicates that all genuine samples are classified correctly and no counterfeit sample is classified as 

being genuine. Consequently, it can be concluded that SIMCA is a suitable model to describe the 

Viagra® data set. When comparing this model with the CART model, it can be concluded that the 

acquired CART model is inferior to the SIMCA model and SIMCA also has better predictive properties 

compared to CART.  

 

For the Cialis® data set it was chosen to eliminate the samples of classes 4 and 5 since these classes 

are too small to be modelled correctly. A CART tree showed that all these samples are misclassified. 

This disability to model is probably due to the fact that these classes are not represented by an 

appropriate amount of samples.  

The CART model, obtained for the Cialis® data set, shows four misclassified samples in total. Similar 

to the Viagra® data set, one misclassification concerns a class 3 sample which is classified as a 

genuine. Therefore this model is not suited for the description of the Cialis® data set. 

The model obtained by SIMCA shows a 100% correct classification rate for cross validation, 

indicating that all training set samples are classified correctly. For the external validation a correct 

classification rate of 85.7% is obtained since one test set sample is misclassified. Both cross 

validation and external validation show a 100% correct classification rate for the discrimination 

between genuine and counterfeit samples, meaning that only the genuine samples were classified as 

genuine. This clearly shows that SIMCA is superior to CART. SIMCA also has better predictive 

properties compared to CART.  

 

This study investigated whether differences in GC-fingerprints could be useful to discriminate 

between genuine and counterfeit medicines and to distinguish between different types of 
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counterfeit medicines according to the risk they potentially pose to public health. Residual solvents 

are often present in genuine and counterfeit drugs and some of them might be harmful. Therefore, 

investigation of the residual solvent content of counterfeit medicines could provide a valuable 

approach to evaluate counterfeit pharmaceuticals for the risks they pose to public health and to 

attain a more complete risk evaluation. 

This study shows that chemometric analysis of GC impurity fingerprints and analysis of residual 

solvents can be used to discriminate between genuine and counterfeit medicines. Furthermore, this 

approach gives a prime notion of the health risks these products constitute. Based on the obtained 

results it can be stated that for both data sets PCA yields a good discrimination between genuine and 

counterfeit drugs and SIMCA generates the best predictive models. However, it should be noticed 

that the proposed methods are only valid for the PDE-5 Inhibitors. For other groups of counterfeit 

drugs, such as slimming products, other chemometric techniques might need to be applied. 

Therefore, each group of counterfeit medicines has to be regarded separately and the best methods 

have to be explored for each individual group. 
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Chapter IX: Clustering and modelling of  
slimming aids 
 

This chapter investigates the potential use of chromatographic and mass spectrometric fingerprints 

in the clustering and modelling of slimming aids, aiming at obtaining preliminary information of 

potential health hazards. 

 

 

1. Introduction 

 

Obesity is considered to be a chronic disease, associated with premature mortality, chronic 

morbidity, diabetes and cardiovascular complications such as hypertension, coronary heart disease 

and stroke. Its prevalence is rising both in industrialised and upcoming countries (e.g. Brazil and 

China) [1]. Due to the medical and social impact of obesity, along with difficulties in achieving long-

term improvements with diet and physical activity, the use of anti-obesity drugs is often considered 

necessary [2;3]. Unfortunately, anti-obesity therapy has been characterized by several cases of 

market withdrawal of drugs approved for weight-loss due to serious adverse events [4]. Sibutramine 

is an example of such a withdrawn anti-obesity compound. It is a norepinephrine and serotonin 

reuptake inhibitor which induces weight-loss by generating a feeling of satiety, resulting in a 

reduction of appetite [5]. Frequently observed side effects are constipation, headache, insomnia, dry 

mouth, nausea, dizziness, tachycardia and elevated blood pressure [5;6]. The Sibutramine 

Cardiovascular Outcomes study (SCOUT) attempted to analyse the long-term risk/benefit ratio of 

sibutramine in patients with pre-existing cardiovascular risk. This study revealed that long-term 

sibutramine treatment increases the risk of nonfatal myocardial infarction and stroke in the 

concerned subpopulation of patients [7]. Since the benefits of sibutramine do not exceed the 

cardiovascular risks both the European Medicines Agency (EMA) and the US Food and Drug 
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Administration (FDA) have withdrawn the drug from the market [8;9]. Another well-known anti-

obesity agent is rimonabant, which was withdrawn from the European market due to elevated risk 

of psychiatric adverse events such as depression [10]. Rimonabant was never approved by the US 

FDA owing to serious concerns of safety [4]. Other drugs intended for weight-loss are reviewed by 

Ioannides et. al [4]. At the moment, only orlistat (a gastrointestinal lipase inhibitor) remains available 

for the treatment of obesity, both available over-the-counter or on prescription depending on the 

dosage [4]. 

 

Since pharmacotherapeutic treatment of obesity is rather limited and many concerns are raised 

about its safety, an increasing number of patients attempts to lose weight by using herbal medicines 

and dietary supplements [11]. It is often assumed that these kind of products are harmless and safe 

to use [11;12]; consequently their consumption is growing worldwide [13;14]. Unfortunately, these 

‘harmless’ anti-obesity alternatives are often found to be adulterated with illicit and synthetic 

pharmaceuticals [12;15;16]. Such synthetic compounds are often added in order to increase the 

efficacy [17;18]. The most reported adulterants are part of several pharmacological categories: (1) 

anorexics (e.g. sibutramine, orlistat, rimonabant, amfepramone) which reduce appetite, (2) 

anxiolytics (mostly benzodiazepines) which minimize the side effects of the anorexics, (3) 

antidepressants (e.g. fluoxetine), (4) stimulants (e.g. ephedrine, amphetamine, caffeine), (5) 

laxatives (e.g. phenolphthalein) and (6) diuretics (e.g. furosemide, hydrochlorothiazide) [12;16;17]. 

However, these substances are often not mentioned on the packaging or information leaflet, 

thereby misleading consumers and putting them at risk for adverse events [18]. Moreover, weight-

loss products might also be adulterated with drug analogues instead of the original anti-obesity 

compounds. Analogues are the result of a modification of the chemical structure of the original 

substances. They are assumed to have pharmacological properties comparable to the parent drug; 

however no safety and efficacy studies have been performed, which might result in unpredictable 
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pharmacological effects and adverse events [19]. Several analogues of sibutramine have already 

been detected in non-prescription products marketed for weight-loss, as summarized in Table 9.1. 

 

Table 9.1 Overview of detected sibutramine and its analogues 

Analogue Chemical structure [20] Detection method Ref. 

Sibutramine HCl  

(parent drug) 

Cl
N

CH3 CH3
CH3

CH3

ClH

 

LC-DAD 

GC-MS 

LC-DAD-MS 

[13;21] 

N-desmethylsibutramine 

Cl
NH

CH3
CH3

CH3

 

LC-DAD 

LC-DAD-MS 

1-D and 2-D NMR 

[19;21;22] 

N-didesmethylsibutramine 

Cl
NH2

CH3

CH3

 

LC-DAD-MS [21]  

Homosibutramine 

Cl
N

CH3
CH3

CH3

CH3

 

LC-MS [23]  

Chlorosibutramine 

Cl
N

CH3 CH3
CH3

CH3Cl

 

LC-MS [14]  

Benzylsibutramine 

Cl
N

CH3 CH3

 

LC-MS [18]  

 

N-desmethyl- and N-didesmethylsibutramine are two active metabolites of sibutramine; therefore it 

could be expected that these two analogues are detected as illegal adulterants [15;24]. 

 

Due to the increasing consumption of non-prescription slimming aids, monitoring of the quality and 

composition is an important issue. Several analytical techniques to analyse these kind of products 

have already been developed and published in literature [2;3;11;16;17;25-32]. During this study a 
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UPLC-PDA and a UPLC-MS method were developed for the analysis of non-prescription slimming 

aids, aiming at acquiring fingerprints rather than detecting potential adulterants. The acquired 

fingerprints were used as input data for chemometrical data analysis. First, unsupervised analysis 

was applied aiming at detecting data patterns if present. These data patterns can result in a 

clustering of samples due to the presence of common peaks/substances which could give an 

indication of (1) the potential public health threat posed by these compounds or perhaps (2) a 

potential common source. Secondly, by using a number of supervised techniques, it was tested if the 

clustering, obtained in the first phase of the data analysis, could be used as a formal classification 

system to classify known samples and predict unknown ones. Ideally, this classification gives 

immediate information of how hazardous a sample could be to public health. The use of such 

models could be an interesting strategy to quickly predict the potential threat to patients’ health 

posed by unknown samples. Furthermore, by using chemometrics, diagnostic models can be 

constructed which could enable an automated and high-throughput interpretation of complex data. 

 

 

2. Materials and methods 

 

2.1 Samples 

A sample set was analysed consisting of 92 samples; 69 samples contained capsules in a blister or in 

a jar, 11 samples consisted of a number of individually packed bags, another 11 samples were 

composed of soft capsules packed in a jar and the last sample contained tablets in a blister.  

All samples were donated by the Federal Agency for Medicines and Health Products (FAMHP) and 

the Federal Agency for the Safety of the Food Chain (FASFC) in Belgium. After receipt, samples were 

stored, protected from light, at ambient temperature. 
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The majority of the samples was suspected to originate from Asian countries since information on 

the packaging was provided in an Asian language; some of these samples provided information in 

poor English as well. However, for a number of samples the claim of slimming aid could not be 

verified from the information provided on the packaging due to ‘Asian’ or Russian lettering only. 

Nevertheless, their indication as a slimming aid was clear owing to the pictures on the package. 

Visual inspection of the capsules/tablets revealed that 56 samples have herbal origin, the remaining 

36 samples are synthetic. 

 

2.2 Reference standards and reagents 

Methanol (both HPLC and UPLC-MS grade) and ULC/MS grade water were purchased from Biosolve 

(Valkenswaard, The Netherlands). Ammonium acetate and acetic acid were acquired from Merck 

KGaA (Darmstadt, Germany). Ammonium formate was procured from Sigma-Aldrich (St. Louis, 

Missouri, USA). Formic acid was purchased from VWR Prolabo (Fontenay-Sous-Bois, France). Purified 

water, obtained from a MilliQ-Gradient A10 system (Millipore, Billerica, Massachusetts, USA), was 

used for buffer and sample preparation.  

An ammonium acetate buffer (0.020 M) pH 5 was prepared in MilliQ-Gradient water, which served 

as aqueous phase during the UPLC-PDA analysis. An ammonium formate buffer (0.010 M) pH 5 was 

prepared in ULC/MS grade water, which was used as aqueous phase in the UPLC-MS analysis. Prior 

to analysis, both buffers were filtered through a nylon membrane of 0.45 µm (Fisher Scientific, 

Hampton, New Hampshire, USA). 

Reference standards of caffeine and metformin were purchased from Fagron (Waregem, Belgium). 

Phenolphthalein and ephedrine HCl were procured from Sigma-Aldrich. Modafinil, rimonabant, 

sibutramine and its analogues, homosibutramine, N-desmethylsibutramine, N-

didesmethylsibutramine, chlorosibutramine and benzylsibutramine were purchased from TLC 

PharmaChem (Vaughan, Ontario, Canada). 
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2.3 Sample preparation 

2.3.1 Preparation of reference standards 

For all reference standards a separate reference solution with a concentration of 1.0 mg/mL was 

prepared by dissolving 10 mg of each reference standard (Sartorius Analytic AC 210S, Goettingen, 

Germany) [weighing range = 0.01 - 220 g] in 10 mL of methanol. Next, these solutions were vortexed 

and filtered (PTFE 0.45 µm). 

A mixture of these reference standards was prepared as well. From each reference solution a 

quantity of 0.5 mL was mixed with 1.5 mL methanol (concentration of all reference standards = 

0.067 mg/mL).  

After preparation, all reference solutions were stored at a temperature of -20°C. These reference 

solutions were injected, using the described chromatographic conditions, in order to verify whether 

all reference standards could be detected. 

 

2.3.2 Spiking of a blank herbal matrix 

A herbal sample, previously analysed in our lab and found negative for any synthetic active 

ingredients, was used as a herbal matrix in order to determine the limits of detection for all 

reference standards. 150 mg of blank herbal sample was dissolved in 50 mL methanol (HPLC 

grade)/water (MilliQ gradient) (50/50 v/v%). This suspension was sonicated for 15 minutes, followed 

by a centrifugation step of 10 minutes at a speed of 2000 rpm (rotations per minute). One mL of this 

solution was spiked with one mL of the described reference solutions with a concentration of 1.0 

mg/mL (final concentration of reference standards = 0.5 mg/mL) and subsequently analysed using 

the described UPLC-PDA and UPLC-ToF-MS method. 

 

2.3.3 Preparation of samples 

Depending on the sample three units were used for sample preparation, i.e. three tablets were 

crushed and homogenized using a pestle and mortar or three capsules or bags were opened and 
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homogenized. In case of soft capsules, one capsule was crushed and the gel-like content was 

weighed. Thirty mg of each mixture (Sartorius Analytic AC 210S, Goettingen, Germany) [weighing 

range = 0.01 - 220 g] was dissolved in 10 mL methanol (HPLC grade)/water (MilliQ gradient) (50/50 

v/v%). After a sonication step of 15 minutes, all samples were centrifuged during 10 minutes at 2000 

rpm and analysed using the UPLC-PDA method. Prior to UPLC-MS analysis, all samples were diluted 

tenfold using a mixture of methanol/water (50/50 v/v%) (both UPLC/MS grade). 

 

2.4 UPLC – PDA: equipment and chromatographic conditions 

A UPLC-PDA method was developed in order to obtain characteristic fingerprints for all samples. For 

this purpose an AcquityTM Ultra Performance LC system equipped with an AcquityTM Ultra 

Performance LC PDA detector (Waters, Milford, Massachusetts, USA) was used. The analysis was 

performed on a VisionHT C18-P column (100 mm × 2.0 mm; 1.5 µm particle size) (Grace, Columbia, 

Maryland, USA). The mobile phase was composed of methanol (HPLC grade) and an ammonium 

acetate buffer (0.020 M) pH = 5 (prepared in MilliQ-Gradient water) which were run in a gradient 

(Table 9.2).  

 

Table 9.2 Mobile phase gradient used in the UPLC-PDA method 

Time (minutes) % buffer % methanol 

0 98 2 

2.5 98 2 

3.5 65 35 

6 65 35 

7 50 50 

8 50 50 

9 35 65 

11 35 65 

12 0 100 

13 0 100 

15 98 2 

 

This gradient was run at a flow rate of 0.4 mL/min. Ten µL of each sample was injected at a 

temperature of 10°C; the column temperature was fixed at 50°C. PDA detection was performed in 
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the range of 210 to 400 nm. Data acquisition was achieved using the Empower software version 3 

(Waters). 

 

2.5 UPLC – ToF – MS: equipment and chromatographic conditions 

All samples were analysed a second time using a UPLC (AcquityTM Ultra Performance LC system, 

Waters) coupled to a high resolution MS system (Waters, Milford, Massachusetts, USA). For these 

analyses the same VisionHT C18-P column (Grace) was used. The mobile phase was modified; the 

ammonium acetate buffer was changed to an ammonium formate buffer (0.010 M) pH 5 (prepared 

in ULC/MS grade water). The mobile phase gradient was transferred from the UPLC-PDA method, 

however the ratio of 0% buffer and 100% methanol (ULC/MS grade) was kept constant for two 

minutes (instead of one), making a total run time of 16 minutes per sample. The remaining 

chromatographic parameters (injection volume, flow rate, injection and column temperature) were 

kept the same. 

The mass spectrometer used in this study was a Synapt-G2S ToF (Waters). Ionisation was obtained 

by electrospray which was operated in positive mode. The nebulizer was set to 6.5 bar and the 

voltage of the capillary and the cone to 3.0 kV and 30 V, respectively. The desolvation gas 

temperature was heated to 550°C and the flow rate was fixed at 13 L/min. The mass spectrometer 

was operated in high resolution full scan mode from 50 to 1000 Da. Mass accuracy was maintained 

during acquisition using an external reference (Lock-SprayTM) consisting of a 1 ng/µL solution of 

leucine-enkephalin at a flow rate of 10 µL/min. The instrument was tuned to provide a resolution of 

30.000 FWHM. Data acquisition, instrument control and data analysis were performed using the 

MassLynx software (version 4.1, Waters). Additional data treatment was performed by usage of the 

Markerlynx software (Waters). This software allowed to export the absolute intensity for each 

present m/z value. Only intensities with a signal-to-noise ratio of six and higher were exported. 
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2.6 Chemometrics 

All chemometric data treatments were performed using Matlab version 8.0.0 (The Mathworks, 

Natick, Massachusetts, USA). The COW algorithm was obtained from http://www.models.kvl.dk 

/DTW_COW [33].  The algorithms for Duplex and Hierarchical Clustering Analysis were part of the 

ChemoAC toolbox (Freeware, ChemoAC Consortium, Brussels, Belgium, version 4.0). The toolbox for 

PLS-DA was downloaded from the Matlab Central [34]. The CART algorithm was programmed 

according to the original CART algorithm proposed by Breiman et al. [35]. 

 

First, Hierarchical Clustering Analysis (HCA) was applied to verify whether an interesting clustering 

could be obtained based on the acquired fingerprints. Next, it was investigated if the obtained 

clustering could be used as a formal classification system for the supervised part of the data analysis. 

 

 

3. Results and discussion 

 

3.1 Reference standards 

During the development of the UPLC-PDA and UPLC-MS method, the reference solutions were 

injected in order to determine the retention times of the respective reference standards. The blank 

herbal solutions spiked with reference standards were injected to establish the respective limits of 

detection (LOD). Table 9.3 gives an overview of the included reference standards together with their 

retention times, limits of detection and monoisotopic masses. 

 

This table shows that all reference standards could be detected with a reasonable LOD.  
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Table 9.3 Overview of the included reference standards together with their retention time, limit of 

detection and monoisotopic mass 

Reference standard 
Retention 

time (minutes) 

Limit of detection 

UPLC-PDA 

(ppm) 

Limit of 

detection LC-MS 

(ppb) 

Monoisotopic 

mass (Da)  

Metformin 1.60 150 488 129.1014 

Ephedrine HCl 4.04 4000 411 165.1154 

Caffeine 4.41 25 23 194.0804 

Modafinil 5.26 50 2.103 273.0823 

Phenolphthalein 5.90 150 25 318.0892 

N-didesmethylsibutramine 9.54 400 72.103 251.1441 

N-desmethylsibutramine 9.87 400 469 265.1597 

Sibutramine 10.42 350 114 279.1754 

Benzylsibutramine 10.55 350 34 313.1597 

Homosibutramine 10.64 400 57 293.1910 

Rimonabant 11.03 300 74 462.0781 

Chlorosibutramine 11.96 400 29 313.1364 

 

3.2 Data pre-processing 

Three data sets were tested in the chemometric data analysis: (1) PDA chromatograms, (2) total ion 

MS chromatograms obtained by operating the MS in full scan mode (= TIC chromatograms) and (3) 

MS profiles representing the present m/z values along with their matching absolute intensity 

(instead of the intensity at each retention time point as is the case in the second data set). 

As already mentioned, UV detection was performed in the range of 210 nm to 400 nm. Screening of 

the obtained chromatograms revealed that the most informative profiles were recorded at a 

wavelength of 230 nm since this wavelength not only shows the highest quantity of peaks, the 

recorded signals also show higher intensities.  

 

Prior to data analysis, all PDA and TIC chromatograms were aligned using COW. These aligned 

profiles were used as fingerprints in the chemometric data analysis. After alignment, all PDA 

fingerprints were cut in order to limit the elution time window from 1 minute to 13 minutes since 

the first and last two recorded minutes did not contain any useful information. The TIC fingerprints 
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were represented by the informative region from 0.3 to 12.6 minutes. A number of exemplary PDA 

and TIC fingerprints from samples, suspected to have herbal origin, are shown in Fig. 9.1. 

 

 

 

 

 

 

 

 

 

The acquired MS profiles were limited to all m/z values and matching intensities present in the 

elution time window between 0.3 and 12.6 minutes. These profiles were also used as fingerprint 

input for the data analysis. 

Next, all three groups of fingerprints were normalized. Throughout the data analysis, the measured 

UV intensities and absolute intensities for both peaks and present m/z values were used as 

explanatory variables. 

 

3.3 Hierarchical Clustering Analysis 

When testing all five linkage techniques for the PDA fingerprints, it was apparent that the best 

clustering is obtained by usage of Ward’s algorithm. The result of this clustering is shown in Fig. 9.2. 

 

 

 

 

 

Fig. 9.1 Exemplary PDA-fingerprints measured at 230 nm (upper three) and TIC fingerprints (lower three). 
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Six clusters can be distinguished together with two outliers. The matching colour map, representing 

the correlation between all samples, is shown in Fig. 9.3. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9.2 Dendrogram representing the hierarchical clustering obtained for the PDA fingerprints when using the 
Euclidean distance as similarity measure and Ward’ algorithm as linkage method. 

Fig. 9.3 Colour map representing the similarity matrix. 



Chapter IX.                                                                                      Clustering and modelling of slimming aids 

207 
 

The colour plot shows that the surfaces of three clusters, i.e. clusters two, three and six, are 

principally red due to high similarity within each of the three clusters. Survey of clusters one and 

four also reveals high within-similarity with the exception of a few samples (yellow and green 

squares). Cluster five is principally characterized by low similarity between the included samples. 

Overall, the colour plot shows that the clustering obtained by HCA is a suitable one.   

 

Next, the HCA clusters were explored by inspecting the PDA fingerprints included in each cluster 

aiming at detecting common peaks since these peaks could account for the obtained clustering. This 

shows that in cluster two (25 samples) all fingerprints have a peak in common with a retention time 

of ± 10.4 minutes which turned out to be sibutramine (detection by retention time and UV 

spectrum). Three of these samples show a second common peak which proved to be 

phenolphthalein. This good clustering is mirrored in the colour plot since all samples in this cluster 

show high correlation. 

In cluster three (14 samples) twelve samples have two peaks in common with retention times of ± 

5.8 and 10.4 minutes which were identified as phenolphthalein and sibutramine. One of the two 

exceptions in this cluster is a sample which only contains phenolphthalein; the other sample 

contains phenolphthalein and N-didesmethylsibutramine instead of sibutramine. These two 

particular samples can also be distinguished on the colour map since they are showing lower 

correlations.  

Cluster six contains six samples of which four samples demonstrate a common peak, characterized 

by a retention time of ± 4.5 minutes which proved to be caffeine. In the two remaining samples no 

synthetic compounds were detected. The presence of caffeine in four samples could partially explain 

the high similarity observed on the colour plot. Moreover, all samples in this cluster are herbal. A 

closer investigation of the samples reveals that two samples are from the same manufacturer; they 

carry the same name and have the same blue package on which very alike butterflies are imprinted. 

A third sample (received without secondary packaging) consists of capsules filled with powder that 
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has the same colour and grain size as the two latter samples. The inclusion of the other three 

samples is more difficult to explain. 

Cluster four (eight samples) comprises samples which show a common sibutramine peak. One of 

these eight samples also exhibits a phenolphthalein peak, which possibly explains why this particular 

sample shows a lower correlation on the colour plot. Within this cluster seven samples are herbal 

while the samples in cluster two are mainly synthetic. This could explain why the samples of cluster 

four are clustered separately.  

Examination of cluster one (27 samples) reveals that 21 samples either test negative for synthetic 

active ingredients or a very small sibutramine peak is present. However, three samples contain 

phenolphthalein, two samples are characterized by the presence of caffeine and one sample 

contains both caffeine and phenolphthalein.    

The fifth cluster demonstrates low similarity on the colour plot. Interpretation of this cluster (ten 

samples) reveals no common peak. Three samples show the presence of sibutramine, one sample 

contains phenolphthalein, two samples are characterized by the presence of both sibutramine and 

phenolphthalein, two other samples contain caffeine in addition to sibutramine and 

phenolphthalein, one sample tests negative for synthetic active substances and the remaining 

sample shows a small peak which turned out to be amfepramone (identified using an HPLC-MS and 

GC-MS method used in-house to analyse counterfeit medicines). All samples have a herbal origin and 

it seems that HCA considers these samples ‘unclassifiable’.    

Between classes one and two, HCA shows two outliers which apparently could not be included in 

any of the six created clusters. They show high similarity among each other and extremely low 

similarity with the remainder of the sample set. Survey of these two samples and their fingerprints 

showed that both samples have a synthetic origin and their fingerprints are characterized by the 

presence of a large and peculiar shaped peak (peak was very broad and asymmetric). Analysis by 

HPLC-MS and GC-MS (in-house method) revealed the presence of amfepramone. Consequently, the 

colour plot confirms the result of HCA to consider these two samples as outliers. As already 
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mentioned, cluster five contains a sample with amfepramone as well. The reason why this particular 

sample is not considered an outlier together with the other two samples might be explained by the 

fact that this sample contains amfepramone in a very low amount and has a herbal origin, in 

contrast to the other two samples which are synthetic.   

Overall, HCA results in a good clustering which could serve as a foundation for supervised data 

modelling. 

 

HCA was also applied on the two remaining data sets, i.e. TIC fingerprints and MS fingerprints. 

Unfortunately, no clear clustering was obtained. 

 

3.4 Modelling techniques 

The clustering obtained by HCA for the PDA fingerprints was fine-tuned in order to create a 

classification system suitable for the construction of diagnostic models. Prior to supervised data 

analysis, a training set and test set were selected using the Duplex algorithm. The used classification 

system together with the number of samples per class for the total data set, training set and test set 

are presented in Table 9.4. Throughout the data analysis, the measured UV intensities and absolute 

intensities for both peaks (TIC fingerprints) and m/z values (MS fingerprints) were used as 

explanatory variables; the class numbers (Table 9.4) were incorporated as response variables. 

 

As already mentioned, in cluster three of the performed HCA a sample is present which contains 

phenolphthalein and N-didesmethylsibutramine. This particular sample was nonetheless assigned to 

class three, since retention times of sibutramine and N-didesmethylsibutramine differ less than one 

minute. Furthermore, screening of the MS fingerprints showed that this particular sample also 

contains sibutramine (which could not be detected in the PDA and TIC fingerprints). 
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Table 9.4 Overview of the used classification system together with the number of samples in each 

class for the total data set, training set and test set 

Class Samples containing 
No. of samples 

in data set 

No. of samples 

in training set 

No. of samples 

in test set 

1 sibutramine 45 39 6 

2 phenolphthalein 6 4 2 

3 sibutramine and phenolphthalein 23 15 8 

4 amfepramone 3 2 1 

5 caffeine and placebo samples  15 12 3 

Total no. of samples 92 72 20 

 

3.4.1 PLS-DA 

3.4.1.1 PDA fingerprints.     Prior to the creation of a diagnostic model, PLS-DA was used to explore 

the data by creating a PLS score plot. Unfortunately, this score plot (figure not shown) did not 

provide any useful information since all samples are clustered together. 

 

When constructing the diagnostic model, the best model was obtained when including 15 PLS-

factors. A correct classification rate of cross validation of 95.83% is acquired due to the 

misclassification of three training set samples; two samples belonging to class 2 are considered to be 

placebo’s (class 5) and one class 3 sample is assigned to class 1. The test set generates a correct 

classification rate of 85%. One sample from both classes 1 and 2 is misclassified as placebo, which 

seems rather logic since both the sibutramine peak (class 1 sample) and phenolphthalein peak (class 

2 sample) are very small. A third misclassification concerns a class 3 sample which is assigned to class 

2. A possible explanation for this particular misclassification could be that the peak of 

phenolphthalein is approximately sevenfold larger than the sibutramine peak. In overall, a good 

classification model is obtained. 
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3.4.1.2 TIC fingerprints.     Exploration of the data using a PLS score plot (figure not shown) did not 

provide any useful information since all samples are clustered together.   

 

For constructing the classification model, the best model was acquired by including 10 PLS-factors. 

This model is characterized by a 98.61% correct classification rate for cross validation. Only one 

sample is misclassified, i.e. a sample belonging to class 3 that is assigned to class 1. This 

misclassification seems rather logic because the sibutramine peak is about five times higher 

compared to the phenolphthalein peak. The external validation results in a correct classification rate 

of 80%. Four samples of the test set are classified incorrectly. Class 1 shows one sample misclassified 

as a placebo, which could be due to the small amount in which sibutramine is present. Both samples 

of class 2 are attributed to a wrong class, one sample to class 3 and the other to class 5, indicating 

that PLS-DA is not able to predict class 2 correctly based on the TIC fingerprints. However, both 

misclassifications could be explained. The first misclassified sample (as class 3) contains an unknown 

compound with a retention time of 10.5 minutes which is very close to the elution time of 

sibutramine, the latter sample (considered to be a placebo) shows a weak signal for 

phenolphthalein. Class 3 contains one wrongly classified sample, which is assigned to the first class. 

In this particular sample the sibutramine peak is approximately ten times higher than the 

phenolphthalein peak. 
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Legend: 

* Class 1, * Class 2, * Class 3, * Class 4, * Class 5 

3.4.1.3 MS fingerprints.     In contrast to the previous tested fingerprints, a good clustering was 

obtained when visualizing the data using a PLS score plot as can be seen on Fig. 9.4. All samples of 

class 1 are mainly situated at the left side of the score plot, all placebo samples (class 5) at the right 

side. The three samples containing amfepramone (class 4) can also be easily distinguished. The 

distinction between classes 1, 2 and 3 might be more subtle. However, this might be due to the 

active substances which the samples from class 3 have in common with the samples from both 

classes 1 and 2 (i.e. sibutramine and phenolphthalein). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Construction of a diagnostic model was performed and resulted in the inclusion of 5 PLS-factors. This 

model generates a correct classification rate of cross validation of 98.61%. Only one sample is 

attributed to an incorrect class, i.e. a sample belonging to class 4 which is considered to be a class 2 

sample. Unfortunately, despite the good classification of the training set, this model is not capable 

to predict the test set samples in a reliable way as can be deduced from the low correct classification 

rate of external validation (= 55%). Nine out of 20 test set samples are classified incorrectly, as 

summarized in Table 9.5.   

 

Fig. 9.4 Score plot obtained by Partial Least Squares for the MS fingerprints. 
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Table 9.5 Overview of the incorrectly predicted test set 

samples by PLS-DA for the MS fingerprints 

Sample no. Actual class Predicted class 

1 1 5 

2 2 1 

3 2 3 

4 3 1 

5 3 1 

6 4 1 

7 5 1 

8 5 1 

9 5 1 

 

From Table 9.5 can be concluded that this model is not capable to predict classes 2, 4 and 5 since all 

samples belonging to these respective classes are wrongly classified. The first misclassification (a 

class 1 sample assigned to class 5) seems rather logic since the present sibutramine peak is very 

small. Also the fourth misclassification (a class 3 sample misclassified as class 1) can be elucidated 

since for this particular sample the sibutramine peak is much larger compared to the 

phenolphthalein peak. However, for the fifth misclassification (same misclassification as the fourth) 

this explanation does not apply since the phenolphthalein peak is approximately 7 times higher than 

that of sibutramine in this sample. 

 

3.4.2 CART 

3.4.2.1 PDA fingerprints.     The graph representing the cross validation error in function of tree 

complexity indicated that a tree containing 5 end leaves should be selected as optimal tree (Fig. 9.5). 

This tree is featured by a cross validation error of 0.18. Four out of five leaves reveal complete 

homogeneity. This tree only shows two misclassified training set samples, as can be seen on Fig. 9.5. 

Remarkably, both misclassified samples are the two samples belonging to class 4 which are believed 

to be class 2. Perhaps it is not surprising that these misclassifications occur; the retention times of 

phenolphthalein and amfepramone differ less than one minute and, additionally, two samples might  

be insufficient to model a class properly. 

8 
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The external validation generates a correct classification rate of 75% since five samples are classified 

incorrectly. One sample from class 1 is predicted to be a placebo (class 5); one class 2 sample is 

wrongly classified as class 3; two samples (one from class 3 and one from class 5) are assigned to 

class 1 and the class 4 sample is attributed to class 2 (just as the two training set samples). This latter 

misclassification is due to the inability of the CART model to model class 4. The first misclassification, 

i.e. a class 1 sample misclassified as class 5, can be elucidated by the very weak signal (small peak) of 

sibutramine. The sample from class 3, which is assigned to class 1, shows a sibutramine peak that is 

much larger than the phenolphthalein peak. Therefore, this misclassification seems rather logic. The 

remaining two misclassifications are difficult to explain. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9.5 Classification tree obtained for the PDA fingerprints using the Gini index as split criterion. Each split is 
described by the selected time point and its split value for the UV intensity. Each leaf is defined by the number 
of the class which is highest represented in the respective leaf. For each leaf the number of training set samples 
is mentioned together with the respective class in case of misclassification. 
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3.4.2.2 TIC fingerprints.     According to the graph representing the cross validation error in 

function of tree complexity (Fig. 9.6) the tree with complexity 4 should be selected as optimal tree. 

Exploration of this tree (figure not shown) showed that class 4 could not be modelled. However, a 

tree with 5 end nodes could also be selected. This tree is indeed capable to model class 4, as can be 

seen on Fig. 9.6. This tree results in a cross validation error of 0.18. Only three training set samples 

are misclassified (depicted on Fig. 9.6). One sample from class 3 is assigned to class 1, which could be 

due to the signal of sibutramine being much stronger than that of phenolphthalein. One placebo 

sample (class 5) is attributed to class 2. The third misclassification concerns a class 1 sample which is 

considered to be a placebo. This particular sample shows a small sibutramine peak. 

Six out of 20 test set samples are classified incorrectly, thereby generating a 70% correct 

classification rate. One sample from classes 1, 2 and 4 are considered to be class 5 samples. 

Furthermore, two samples from class 3 are misclassified: one as class 1 and the other as class 2; the 

first sample shows a small phenolphthalein peak compared to sibutramine while for the latter the 

opposite occurs. The sixth misclassification is a placebo sample (class 5) which is attributed to class 

4. Remarkably, despite this model being able to describe class 4, the test set sample belonging to 

this class is predicted incorrectly. This might be explained by the small dosage of amfepramone 

(identified using an in-house method) present in this particular sample. The two remaining samples 

which are misclassified as class 5 exhibit a small sibutramine and phenolphthalein peak, which could 

be the cause of their incorrect classification. In overall, CART provides a suitable model for this 

fingerprint set, however it seems to perform better for the PDA fingerprints. 
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3.4.2.3 MS fingerprints.     When performing a CART analysis on the MS fingerprints the graph 

representing the cross validation error in function of tree complexity indicates that the tree with 4 

end nodes should be selected (Fig. 9.7). This tree is characterized by a cross validation error of 0.16. 

Two out of four leaves show complete homogeneity. The two samples from class 4 are both 

misclassified as class 5, which indicates that this tree is not capable to model class 4. The remaining 

three misclassifications are all class 5 samples (placebo) which are assigned to class 1. On both PDA 

and TIC fingerprints no sibutramine peak is visible. However, when exploring the data of the MS 

fingerprints (which consist of absolute intensity in function of the present m/z values) of these three 

samples, it is observed that sibutramine (with a m/z value of 280.1833) is present with an intensity 

probably below the limit of detection of PDA and TIC. Therefore, these samples should not be 

considered as misclassified. 

Fig. 9.6 Classification tree obtained for the TIC fingerprints using the Gini index as split criterion. Each split is 
described by the selected time point and its split value for the absolute intensity. Each leaf is defined by the 
number of the class which is highest represented in the respective leaf. For each leaf the number of training set 
samples is mentioned together with the respective class in case of misclassification. 
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For the external validation a correct classification rate of 65% is obtained due to the misclassification 

of seven samples. From class 1 two samples are wrongly classified: one as class 3 and the second as 

class 5. The latter misclassification can be due to the low intensity of sibutramine, the former is more 

difficult to explain. Both samples of class 2 are assigned to class 3, despite a good modelling of class 

2. Based on these MS data, it can be concluded that in one of these two samples sibutramine is 

present in an amount too low to be detected in the PDA and TIC fingerprints. Therefore, this ‘error’ 

should not be considered as a misclassification. No valuable explanation could be found for the 

misclassification of the second sample. Class 3 also contains two samples which are attributed to a 

wrong class: one to class 1 and the second to class 2. The former sample shows a tenfold higher 

intensity for sibutramine compared to phenolphthalein; the second sample is characterized by a 

threefold higher intensity for phenolphthalein compared to sibutramine. This makes both 

misclassifications well explicable. The last misclassification is that of the class 4 sample (classified as 

class 5) which is due to the inability of CART to model class 4. 

 

The graph representing the cross validation error in function of tree complexity also indicates that 

trees with 5 and 6 terminal nodes can be selected. Exploration of these trees (figures not shown) 

showed that the number of misclassifications in the training set decreases (even to zero 

misclassifications in case of the 6 leaf tree), however the correct classification rate for external 

validation remains the same. Furthermore, the three ‘placebo’ samples from the training set which 

are ‘misclassified’ in the tree containing 4 leaves are classified in a separate leaf, which is technically 

not correct since the MS data clearly show the presence of sibutramine. 
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4. Conclusion 

 

Herbal medicines and dietary supplements intended as slimming aid are increasingly gaining 

popularity worldwide. During this study a UPLC-PDA and UPLC-ToF-MS method were developed to 

analyse a number of synthetic and herbal samples which claim slimming properties. These methods 

were developed in a way to acquire fingerprints which contain as much information as possible 

about each sample. Three types of fingerprints were tested: (1) PDA fingerprints (UV intensity in 

function of retention time), (2) TIC fingerprints (absolute intensity in function of retention time) and 

(3) MS fingerprints (absolute intensity in function of present m/z values). HCA was used in order to 

explore potential clustering of samples which could serve as a foundation to create a classification 

Fig. 9.7 Classification tree obtained for the MS fingerprints using the Gini index as split criterion. Each split is 
described by the selected m/z value and its split value for the absolute intensity. Each leaf is defined by the 
number of the class which is highest represented in the respective leaf. For each leaf the number of training set 
samples is mentioned together with the respective class in case of misclassification. 
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system to be used during the supervised data analysis. Two supervised techniques were tested, i.e. 

PLS-DA and CART. 

HCA was capable to generate an interesting clustering based on the PDA fingerprints. Six clusters 

and two outliers could be distinguished using the Euclidean distance and Ward’s algorithm as linking 

technique. Interpretation of the acquired results showed that the obtained clustering is principally 

defined by chemical active substances detected in the samples, i.e. sibutramine, phenolphthalein 

and amfepramone. Based on these results a classification system consisting of five classes was set up 

(Table 9.4). HCA was also performed for the TIC and MS fingerprints but no suitable clustering was 

obtained. 

The results of the supervised analysis are summarized in Table 9.6. 

 

Table 9.6 Overview of the results of the supervised data analysis for all three tested types of 

fingerprints 

  PDA fingerprints TIC fingerprints MS fingerprints 

PLS-DA     

 Cross validation 95.83% 98.61% 98.61% 

 External validation 85% 80% 55% 

CART     

 Cross validation 97.22% 95.83% 93.06% 

 External validation 75% 70% 65% 

  

As can be seen in Table 9.6, the magnitudes of correct classification rates are more or less the same, 

with the exception of the PLS-DA model acquired for the MS fingerprints which results in a low 

correct classification rate for the external validation. This observation demonstrates that the 

acquired model is a good descriptive one but it is not capable to predict unknown samples due to 

overfitting. This might be explained by the complexity of the data, which might enforce the need of 

more complex chemometric tools such as support vector machines.  

When comparing both models acquired for the PDA and TIC fingerprints, it can be concluded that 

both data sets are able to generate good diagnostic models. Therefore, no conclusion can be made 

about which type of data (and analytical method) is to be preferred based on these results. 
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However, when exploring the results obtained for the MS fingerprints it is clear that mass 

spectrometry is preferred over PDA. When using MS as detection technique two types of data sets 

could be acquired using a single analytical run for each sample. Besides the classical 

chromatographic fingerprints (= TIC fingerprints) additional data were obtained (= MS fingerprints). 

These latter allow to screen for specific compounds based on their m/z values and matching 

intensities. The advantage of these data is shown in CART. A number of samples were considered to 

be a placebo since the PDA and TIC fingerprints did not show a signal for sibutramine. However, 

when using the Markerlynx software, and consequently the MS fingerprints, to screen for 

sibutramine (m/z = 280.1833) these samples do turn out to contain sibutramine. Therefore, these 

data are able to generate more accurate models, making the MS fingerprints superior compared to 

the PDA and TIC fingerprints. 

It could be argued that in these particular samples, in which sibutramine is only detected in the MS 

profiles and not in the PDA and TIC fingerprints, sibutramine is present in a very low amount and 

perhaps no clinically significant effect could be expected. However, sibutramine is withdrawn from 

the market due to safety concerns, making the presence of sibutramine in slimming aids a criminal 

offense. No matter the dosage of sibutramine, consumers are misled; potential adverse events 

(especially for patients who are cardiovascular stressed) and interactions with other medicines and 

dietary supplements cannot be excluded. 

This study shows that reliable chemometric models can be obtained, based on PDA, TIC and MS 

fingerprints of weight loss preparations, which give an indication of the presence of prohibited 

synthetic active substances in products which claim to be harmless and natural. In this context, the 

use of MS fingerprints proved to be superior. As a consequence, these models give a prime notion of 

potential public health threat posed by these kind of products. Furthermore, these diagnostic 

models could be pre-programmed, thereby enabling interpretation of complex data, without the 

need of thorough analytical expertise, and automation of data interpretation. 
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However, an additional remark has to be taken into consideration. The models in this study are 

limited to the presence of sibutramine, phenolphthalein and amfepramone since only these 

synthetic active substances were present in the available samples. Since only one sample containing 

N-didesmethylsibutramine was present in this sample set, the created diagnostic models would not 

be influenced by this synthetic compound; a class consisting of one sample cannot be modelled. 

Future research could focus on additional chemicals such as rimonabant, phentermine, fenfluramine 

and amphetamines (all withdrawn from the market or banned), thereby potentially leading to an 

extension of the available models. This could open perspectives for future research. 
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Chapter X: Chromatographic fingerprinting as a 
means to identify plants 
 

This chapter explores the potential use of fingerprints to screen herbal slimming aids for the 

presence of toxic or regulated plants since classical identification using microscopy is often not 

possible.   

 

 

1. Introduction 

 

The prevalence of obesity is rising both in industrialized and upcoming countries [1]. During the last 

decades, an increasing number of patients in Western areas seek herbal alternatives to aid weight 

loss [2;3]. Several key factors contributing to the increased popularity of herbal slimming aids and 

herbal supplements in general can be recognized: (1) general belief that natural products are 

harmless and free from side effects, (2) assumed effectiveness of these kind of products in the 

treatment (and prevention) of illnesses, (3) lack of therapeutic effect with conventional medicines, 

(4) undesirable adverse events of conventional medicines, (5) lack of empathy from conventional 

health care providers and (6) increasing degree of self-medication [2;4]. However, along with the 

rising popularity, concerns about the safety and efficacy are growing as well [3]. Many herbal 

products are marketed via dubious websites [5]. The key issue in this particular context is the 

widespread lack of quality control which could result in patients experiencing adverse events [2].  

As a matter of fact, herbal preparations are endowed with a much less stringent regulation 

compared to conventional drugs. They are generally sold as dietary supplements for which no pre- 

or post-marketing supervision is carried out. Consequently, information concerning clinical use, 

safety and efficacy is mostly based on traditional experience [6-8]. The European Parliament tried to 

overcome this void in the regulation by issuing a directive which states that every supplement needs 
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a market authorization by a European national authority and its safety and efficacy need to be 

demonstrated [2;4]. In Belgium, a Royal Decree concerning the use of herbs was issued in 1997 (and 

amended in 2012) which includes the description of three lists: list one contains all toxic herbs of 

which usage in herbal supplements is prohibited, list two comprises all edible mushrooms and list 

three describes all plants which are allowed to be used in herbal supplements but for which 

additional regulation applies [9]. Furthermore, the European Pharmacopoeia published monographs 

on the quality control of several plants [10]. 

 

The conviction of natural products being harmless has already been severely questioned by 

literature; several cases of serious adverse events due to herbal preparations have been described 

[2;4;6;11-13]. A fundamental characteristic of herbal preparations, playing a key role in safety issues, 

is the fact that quality and chemical composition of raw plant material is largely influenced by 

several elements such as geographical area and conditions of cultivation, genotype of the plant, time 

and method of harvesting, method of (pre)processing, storage and transportation [4;13]. Other 

potential health hazards are due to the presence of banned pesticides, intrinsic toxicity of herbs and 

lack of standardization which could result in an incorrect dosage [14;15]. An unfortunate case of 

toxicity due to a herbal slimming regimen has occurred in a clinic in Brussels (Belgium) specialised in 

weight loss treatments. At least 100 young women presented themselves with rapidly progressive 

renal interstitial fibrosis after having followed treatment at the respective clinic. Investigation of the 

used slimming regimen showed that the herb Stephania tetrandra was accidentally substituted by 

Aristolochia fangchi which contains carcinogenic aristolochic acids. [16;17]. This clearly shows the 

need for quality control of herbal products. The European Pharmacopoeia, for instance, published a 

specific method to screen herbal preparations for the presence of aristolochic acids [18].   

 

This chapter attempts to explore the potential use of chromatographic fingerprinting to identify 

plants present in herbal slimming aids. Many of these herbal products intended for weight loss are 
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sold via Internet [19]. Screening of these kind of products for the presence of toxic or regulated 

plants represents a difficult challenge; identification using classical microscopy and macroscopy is 

not feasible since present plants are frequently pre-processed by powdering and mixing with other 

powders from herbal or synthetic origin. Moreover, they are subsequently compressed to tablets or 

crammed into capsules. Chromatographic fingerprinting of plants could provide a means to 

overcome this difficulty. To achieve this goal, a HPLC-PDA method was developed, using a full 

factorial experimental design, for the screening of two plants: one frequently used for slimming 

purposes, i.e. Ilex paraguariensis, and Aristolochia fangchi. The latter is not used as a slimming aid 

per se, but it could be encountered in slimming preparations as shown in the described case report 

of the Belgian slimming clinic and described in the next paragraphs. After developing the HPLC-PDA 

method, this method was transferred to HPLC-MS in order to verify whether specific mass spectra 

can be defined for both plants, which could aid in detecting the presence of these plants in complex 

herbal matrices. 

  

It was chosen to include Ilex paraguariensis in the screening method since this herb is frequently 

used as a slimming aid but is assigned to list three of the respective Belgian Royal Decree [9]. 

Allocation to list three indicates that the respective plant is bound to additional regulation, i.e. use of 

the respective plant in herbal supplements has to be notified to the competent authority and in case 

of I. paraguariensis only the leaves are allowed to be used in supplements [9].  

I. paraguariensis is a tree native to South America and belongs to the family of the Aquifoliaceae 

[20;21]. The plant is most commonly known as yerba mate or mate and is very frequently consumed 

in Brazil, Argentina, Paraguay and Uruguay as mate tea, i.e. an infusion of the dried leaves of the 

tree drunk both hot or cold [20-23]. Many health benefits have been attributed to this tree. It is 

reported in literature that it has hypocholesterolemic, hepatoprotective, diuretic and anti-oxidant 

properties. Furthermore, it acts as a central nervous stimulant, it protects DNA against oxidation and 

it has been reported to have beneficial effects on the cardiovascular system and in the management 
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of obesity [20;22;24-26]. Despite its many valuable health effects, epidemiological studies have 

linked the consumption of mate tea to an increased risk of oral, oropharyngeal, esophageal, 

laryngeal and bladder cancer [20;23;26;27]. However, the carcinogenic properties of mate might be 

due to the hot temperature by which the tea is often drunk. This thermal injury might damage the 

mucosa, thereby accelerating metabolic reactions with carcinogenic substances found in, for 

instance, alcohol and tobacco [21;23;26;28]. Unfortunately, there are no extensive population-based 

case-control studies or prospective cohort studies which confirm or refute mate consumption as a 

risk factor for cancer [27;28]. 

 

The second plant included in this study is Aristolochia fangchi. The reason why was already 

mentioned briefly; in Chinese Traditional Medicine the name “fang ji” is applied to both Stephania 

tetrandra, which is a herb with diuretic properties used for slimming purposes, and Aristolochia 

fangchi. Confusion between these two herbs is plausible due to the same common name which 

could result in accidental substitution of S. tetrandra by A. fangchi [3;11;29;30]. The respective 

Belgian legislation has assigned all Aristolochia species to list one, which indicates that use of these 

plants in herbal supplements is prohibited [9]. Aristolochia species have traditionally been used in 

obstetrics, as diuretics and as antibacterial, antiviral and anti-inflammatory agents [3;11]. However, 

the use of these plants can be detrimental as shown by the case report of the Belgian slimming clinic 

due to the presence of aristolochic acids which are known to be nephrotoxic and carcinogenic 

[16;17;31;32]. These compounds have shown to cause rapidly progressive renal interstitial fibrosis in 

a syndrome originally referred to as ‘Chinese herb nephropathy’. Afterwards, the name of this 

syndrome was changed to aristolochic acid nephropathy [3;11;30]. Treatment of this syndrome is 

limited to glucocorticoids which have been shown to delay the progress of kidney injury. However, 

most patients proceed to end stage renal disease which necessitates renal replacement therapy, i.e. 

dialysis or kidney transplantation [3]. In addition to kidney injury, urothelial malignancies have also 

been reported after exposure to aristolochic acids [3;30].   
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2. Materials and methods 

 

2.1 Samples 

Five herbal slimming aids, donated by the Federal Agency for the Safety of the Food Chain (FASFC), 

were included in the study. Samples were delivered in their original packaging and stored, protected 

from light, at ambient temperature. One sample consisted of a plastic bottle (400 mL) with a liquid 

extract of allegedly eight plants, a second sample was delivered in a plastic bottle containing tablets 

and the three remaining samples contained capsules. Two samples claim the presence of I. 

paraguariensis (information on the package provided in English). The composition of the three 

remaining samples was unknown since information was provided in an Asian language only.  

 

2.2 Reference standards and reagents 

Reference standards of I. paraguariensis (leaves) and A. fangchi (root) were purchased from the 

American Herbal Pharmacopoeia (Scotts Valley, California, USA). Both reference materials were 

delivered with a certificate of authenticity confirming their identity. 

 

Methanol and acetonitrile (both HPLC grade), hydrochloric acid solution (37 m/m%), ammonia 

solution (25 m/m%), sodium hydroxide pellets and ethanol were purchased from Fisher Scientific 

(Leicestershire, United Kingdom). Ammonium formate was procured from Sigma-Aldrich (St. Louis, 

Missouri, USA). Formic acid, ammonium acetate and acetic acid were all purchased from Acros 

Organics (Geel, Belgium). Boric acid was acquired from Carl Roth (Karlsruhe, Germany). 

The water, used during this study, was produced by a MilliQ-Gradient A10 system (Millipore, 

Billerica, Massachusetts, USA) and will be referred to as ‘water’ in the next paragraphs. 

Three buffers with a pH of 3, 6 and 9 were prepared, all of which had a concentration of 0.01 M. The 

buffer with pH 3 consisted of ammonium formate which was acidified with formic acid. Ammonium 
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acetate was used to prepare the second buffer, which was brought to pH 6 with acetic acid. The 

third buffer was composed of boric acid, alkalinized to pH 9 with sodium hydroxide. 

 

2.3 Sample preparation 

2.3.1 Preparation of reference standards 

Reference material of both plants was crushed, ground and pulverized into powder using a pestle 

and mortar and a mill (IKA Works GmbH & Co. KG,  Staufen, Germany). The obtained powders were 

sieved (pore size of 0.71 mm) in order to obtain a uniform particle size. Subsequently, 125 mg of the 

acquired powder was dissolved in 25 mL of the appropriate extraction solvent. The appropriate 

solvent was determined using a full factorial experimental design (see next sections). This 

suspension was vortexed for 30 seconds (Mistral vortex, Lab-Line, Mumbai, India) prior to sonication 

during 30 minutes (Branson, Danbury, Connecticut USA). Next, both extracts were filtered through a 

nylon membrane with a pore size of 0.45 µm and collected in a vial. 

 

2.3.2 Preparation of triturations 

In order to verify whether the proposed fingerprint method is suitable for the detection of the 

targeted plants in a herbal matrix, triturations of the plant reference material were prepared and 

subsequently analyzed using the described HPLC-PDA and HPLC-MS method after determination of 

the optimal analytical method for the respective plant reference. Four matrices were tested for both 

plant reference materials, i.e. lactose (Fagron, Rotterdam, the Netherlands) and three different 

herbal matrices (all received from the FAMPH) which were previously tested and found negative for 

the presence of synthetic compounds. All four matrices were tested at three different 

reference/matrix ratios, i.e. 1/2, 1/5 and 1/10 w/w%. Pulverized and sieved powder of both plant 

references was mixed separately with the respective matrix in the appropriate proportion using a 

pestle and a mortar. Subsequently, 125 mg of the acquired mixture was dissolved in 25 mL of the 

appropriate extraction solvent and further preparation was carried out as described in section 2.3.1. 
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2.3.3 Preparation of samples 

A number of samples were tested for the presence of the targeted plants. Capsules were opened 

and tablets were crushed and homogenized. From this powder, 125 mg was dissolved in the 

appropriate extraction solvent. From the sample consisting of a viscous liquid 125 mg was weighed 

in the form of droplets and mixed with the appropriate extraction solvent. Subsequent steps in the 

sample preparation are analogous to those described in section 2.3.1. 

 

2.4 HPLC – PDA: equipment and chromatographic conditions 

All samples were analyzed using a HPLC-system coupled to a PDA detector (Agilent 1200 Series, 

Agilent Technologies®, Santa Clara, California, USA). Two Alltima columns were tested: a C8 column 

(250 mm × 4.6 mm; 5 µm particle size) and a C18 column (250 mm × 3 mm; 5 µm particle size) 

(Grace, Columbia, Maryland, USA). Two organic phases, i.e. methanol and acetonitrile, and three 

aqueous phases, i.e. the three buffers described in section 2.2, were tested in a full factorial 

experimental design (section 2.6). The mobile phase was run in a gradient starting at 90% buffer and 

10% organic phase which was held for two minutes. During the next five minutes the ratio changed 

to 50% buffer and 50% organic phase. This ratio was kept for seven minutes. The next six minutes 

the gradient altered to 10% buffer and 90% organic phase, which was held for five minutes. Finally, 

during the last five minutes, the gradient returned to its starting condition, making a total run of 30 

minutes for each sample. Depending on the fingerprints acquired for both plant references, this 

gradient was subsequently optimized (Results section). The gradient was run at a flow rate of 0.5 

mL/min. Twenty µL of each sample was injected at room temperature while the column was set at 

30°C. PDA signals were measured at a wavelength of 254 nm. Data acquisition was achieved using 

the OpenLAB ChemStation software Edition for LC and LC/MS systems (Agilent). 

The full factorial experimental design showed that for I. paraguariensis a mobile phase consisting of 

methanol and an ammonium acetate buffer (pH 6) run on the C8 column provided the best 
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fingerprints. For A. fangchi the same column and organic phase proved best; the optimal buffer 

turned out to be the boric acid based buffer (pH 9).  

 

2.5 HPLC – MS: equipment and chromatographic conditions 

Samples were analysed a second time using a HPLC (Dionex Ultimate 3000 UHPLC+ focussed, 

Thermo Scientific, Waltham, Massachusetts, USA) equipped with a MS system (Bruker, Billerica, 

Massachusetts, USA). The column and mobile phase used for these analyses were optimized using a 

full factorial experimental design (see next paragraph and Results section). The mobile phase 

gradient, found to be optimal for the HPLC-PDA analyses (Results section) was transferred along with 

the remaining HPLC parameters, i.e. column temperature, injection volume, flow rate and run time.  

The mass spectrometer used for this analysis was an AmaZon Speed ETD iontrap (Bruker). Ionisation 

was obtained by electrospray which was operated in positive mode with a spray voltage of 4.5 kV 

and an end plate voltage of 500 V. The nebulizer was set to three bar. The desolvation gas 

temperature was heated to 300 °C and the flow rate was fixed at 12 L/min. The mass spectrometer 

was operated in Auto MS2 mode in the mass range of 50 to 1200 m/z and total ion chromatograms 

were collected. For the selection of MS/MS precursors the most intense ions were isolated above 

the absolute intensity of 2500 and 5% relative intensity threshold. The ion charge control was set to 

200.000 with a maximum accumulation time of 200 ms. Collision induced dissociation was 

performed with helium as collision gas. The target mass was set to 600 m/z, with a fragmentation 

amplitude of 100% using SmartFrag™ Enhanced for amplitude ramping (75 - 150%). Data acquisition 

was performed using the Compass DataAnalysis software (version 4.2) by Bruker Daltonik GmbH. 

 

2.6 Experimental design 

A full factorial experimental design was conducted to develop a suitable analytical method aiming at 

acquiring the most informative fingerprints of the targeted plants, i.e. fingerprints showing the 

highest number of peaks possible. Three factors were included, i.e. extraction solvent and both the 
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organic phase and the aqueous phase of the mobile phase. This experimental design was conducted 

twice for both plant reference standards during which a different column was tested. For each 

column the optimal combination of factors was determined. Subsequently, the fingerprints acquired 

when using these optimal combinations on both columns were compared in order to decide which 

column is most suited for the aimed purpose. 

 

2.6.1 Column and factors to be optimized 

As already mentioned, two Alltima columns were tested: a C8 column (250 mm × 4.6 mm; 5 µm 

particle size) and a C18 column (250 mm × 3 mm; 5 µm particle size) (Grace, Columbia, Maryland, 

USA). Methanol and acetonitrile were both tested for the organic phase of the mobile phase. The 

aqueous phase consisted of a buffer (0.01 M), of which three different types were tested: (1) an 

ammonium formate buffer pH 3, (2) an ammonium acetate buffer pH 6 and (3) a borate buffer pH 9. 

Seven different extraction solvents were taken into consideration for the extraction of both plant 

standards and were therefore included in the experimental design: (1) acetonitrile, (2) a mixture of 

acetonitrile and water (50/50 v/v%), (3) water, (4) a methanol/water mixture (50/50 v/v%), (5) 

methanol, (6) a hydrochloric acid solution (7.4 m/m%) and (7) an alcoholic ammonia solution. The 

used 7.4 m/m% hydrochloric acid solution was prepared by diluting a 37 m/m% hydrochloric acid 

solution five times with water. The alcoholic ammonia solution was prepared by diluting one mL of a 

25 m/m% ammonia solution to 100 mL with ethanol. 

All three possible pH values, seven extraction solvents and both organic modifiers were assigned a 

numerical code ranging from -1 to 1 in order to take their influence into account as can be seen in 

Table 10.1. 
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Table 10.1 Numerical coding used during the full factorial experimental design 

Factor Value Numerical code 

pH buffer (aqueous phase) 

3 -1 

6 0 

9 1 

organic modifier 
Methanol -1 

Acetonitrile 1 

extraction solvent 

ammonia solution in ethanol -1 

methanol -0.67 

methanol/water (50/50 v/v%) -0.33 

water 0 

acetonitrile/water (50/50 v/v%) 0.33 

acetonitrile 0.67 

hydrochloride solution (7.4 m/m%) 1 

 

 

2.6.2 Defining the most suitable method 

During the full factorial experimental design all possible combinations of the three variables were 

tested, resulting in 42 different experiments for each plant reference, which were performed twice 

using the two different columns. The advantage of such an approach is that effects, due to 

interactions between the tested factors, are included when determining the optimum for each 

parameter. 

 

In order to decide on which analytical method is most suitable for the analysis of each targeted 

plant, the number of peaks in the fingerprint with an area above 100 mAU was taken into 

consideration for each tested combination of factors. An analysis of variance (ANOVA) test was 

performed, resulting in a series of coefficients for each of the tested factors and their interactions. 

Furthermore, the significance of each of these factors was calculated and expressed as a p-value. 

The acquired coefficients describe the effect of the tested factors on the outcome y. y is the number 

of peaks, expressed as a function of the factors x1, x2, x3, representing the pH, organic modifier and 

extraction solvent, respectively.  
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In order to calculate the response surface plots, the following formula was used [33]: 

 

y = b0 + b1x1 + b2x2 + b3x3 + b4(x1)
2 + b5(x2)

2 + b6(x3)
2 + b7x1x2 + b8x1x3 + b9x2x3   

 

b0 to b9 represent the coefficients, generated by ANOVA, which describe the influence of the 

respective parameter or interaction of two factors on y with b0 being the intercept. The interaction 

between two factors is expressed as the multiplication of the respective factors, for instance, the 

factor b7x1x2 represents the influence of the interaction between the pH and the organic phase. The 

calculated response surface plots were visualized using Matlab version 8.0.0 (The Mathworks, 

Natick, Massachusetts, USA) and allow for a visual interpretation of the acquired results, thereby 

defining the optimal value for each of the tested factors. For each plant reference separately, the 

optimal pH, organic phase, extraction solvent and column were determined and used in all further 

experiments. 

 

2.7 Stability testing of extracts 

The stability of the liquid extracts of both plant reference standards was evaluated by analysing the 

extracts four times in a time span of approximately 14 days using the optimal method determined by 

the full factorial experimental design. The acquired fingerprints were compared visually by creating 

overlays. These visual evaluations provided insight on the stability of the extracts.  

 

2.8 Data analysis 

The calculations for the experimental design, i.e. ANOVA and calculation of the response surface 

plots using the described formula, were performed in Microsoft Excel (version 2010). Furthermore, a 

visual evaluation of the acquired fingerprints was performed by creating overlays in Excel. 



Chapter X.                                                     Chromatographic fingerprinting as a means to identify plants 

238 
 

The second part of the data analysis was performed using Matlab version 8.0.0 (The Mathworks, 

Natick, Massachusetts, USA). This software was used for the creation of surface response plots and 

to perform a PCA. The algorithm for PCA was part of the ChemoAC toolbox (Freeware, ChemoAC 

Consortium, Brussels, Belgium, version 4.0). To obtain an indication of correlation between 

triturations/samples and the respective plant reference material, correlation coefficients were 

calculated and visualized using a correlation plot.  

 

 

3. Results and discussion 

 

3.1 Method development 

3.1.1 Experimental design 

In order to decide on the best pH and organic modifier for the mobile phase and the best extraction 

solvent for both plant reference standards, all possible combinations were tested in a full factorial 

experimental design. The number of acquired peaks was mathematically expressed as a function of 

the three tested factors, using the described regression equation. These results were used to 

generate response surface plots which visualize the amount of information, i.e. number of peaks, in 

function of two tested factors. Based on these response surface plots, the optimum combination of 

factors is determined. Every analysis was run on two different columns. After interpretation of the 

response surface plots for both columns, the column generating the most informative fingerprints 

will be chosen. 
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3.1.1.1 Ilex paraguariensis     When conducting an ANOVA on the data acquired for the C8 column, 

only the pH turns out to be significant (p<0.05) whereas the effects of the organic modifier (p=0.15) 

and the extraction solvent (p=0.93) are insignificant. The effects of the different factors were 

calculated using the described formula and visualized in response surface plots for the number of 

peaks y. Fig. 10.1 shows the response surface plots for I. paraguariensis acquired on the C8 column. 

It can be derived from Fig. 10.1A and C that methanol should be chosen as organic modifier (dark 

red surface localized at the value -1 (Table 10.1) for the organic modifier). Defining the optimum for 

the pH of the aqueous phase of the mobile phase and the extraction solvent is more difficult. Fig. 

10.1A and B shows that the best extraction solvents are acetonitrile/water (0.33), water (0) and 

methanol/water (-0.33). The optimum pH value lies between 3 (-1) and 6 (0).  

However, a survey of the fingerprints acquired at both pH values using all three extraction solvents 

showed that the fingerprint obtained at pH 6 using the methanol/water mixture as extraction 

solvent is the most informative one, i.e. largest number of peaks. Therefore these factors are chosen 

as the optimum for the C8 column. 

 

The calculation and creation of the response surface plots were repeated for the C18 column 

(response surface plots not shown). ANOVA shows that none of the three tested factors are 

significant: p=0.05 (pH), p=0.89 (organic modifier) and p=0.51 (extraction solvent). Exploration of the 

response surface plots does not result in a straightforward elucidation for the optimum parameters. 

Both methanol and acetonitrile are considered to be appropriate as organic modifier. The optimum 

for the pH varies between 3 and 6. Furthermore, all three extraction solvents, which were taken into 

consideration for the C8 column, are also regarded as suitable for this particular column. 

Comparison of the acquired fingerprints seems to be conclusive: the most informative fingerprint 

was acquired at a pH of 6 using methanol as organic modifier and performing the extraction of the 

reference with methanol/water.  
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3.1.1.2 Aristolochia fangchi     The full factorial experimental design was also performed twice for 

the reference of A. fangchi. None of the tested factors seem to have a significant effect, when using 

the C8 column, with p values of 0.66 (pH), 0.29 (organic modifier) and 0.18 (extraction solvent). 

However, the optimum combination of factors can be relatively easy derived from the acquired 

response surface plots (shown in Fig. 10.2). Fig 10.2A shows that methanol is the best organic 

modifier, which is clearly confirmed on Fig 10.2C. The optimal pH turns out to be 9, as depicted on 

Fig. 10.1 Response surface plots in three dimensions (left) and in top view (right) for I. paraguariensis: (A) 
extraction solvent versus organic modifier, (B) extraction solvent versus pH and (C) organic modifier versus pH. 
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response surface plots B and C. Fig 10.2A and C demonstrate that both water and the 

methanol/water mixture are suitable extraction solvents. However, visual comparison of the 

fingerprints acquired under the described optimal conditions for pH and organic modifier, using 

water and methanol/water as extraction solvents, showed that methanol/water resulted in the 

highest informative fingerprint. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10.2 Response surface plots in three dimensions (left) and in top view (right) for A. fangchi: (A) extraction 
solvent versus organic modifier, (B) extraction solvent versus pH and (C) organic modifier versus pH. 
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Full factorial experimental design on the C18 column showed that only the extraction solvent has a 

significant effect (p<0.05). The pH and organic modifier are characterized by p values of 0.90 and 

0.52, respectively, thereby showing that they do not influence the acquisition of fingerprints in a 

significant way. The resulting surface plots were constructed using Matlab (figures not shown). For 

this column, methanol as organic modifier provides the best fingerprints. Study of the plots reveals 

that the pH is best set at 9. Both water and methanol/water seem to be appropriate extraction 

solvents. Comparison of the fingerprints acquired using the described optimum for organic modifier 

and pH and water and methanol/water as extraction solvents illustrated clearly that methanol/water 

is more suitable. 

 

3.1.1.3 Choice of column and overview of optimum method     Ideally, the analytical methods of 

both plant references are similar, which would make implementation in routine analysis easier. An 

attempt to achieve this is performed by trying to make a compromise between both optimum 

methods, thereby reducing the informative nature of the acquired fingerprints as little as possible. 

However, quality of the acquired fingerprints takes priority over convenience of execution. 

Comparison of all four described optima, i.e. of the two plant reference materials tested on both 

columns, shows that the optima are very similar. Consequently, a compromise could be easily made 

after deciding on the most appropriate column. The acquired fingerprints are not optimal since the 

mobile phase gradient has not yet been optimized but visual examination revealed that the 

difference in fingerprints for each plant reference tested on both columns is rather small. However, 

it was chosen to continue with the C8 column since this column results in a slightly elevated number 

of peaks compared to the C18 column.  

Both methods run on the C8 column are quite similar with the exception of the pH. However, it was 

chosen to continue with two different buffers since changing the pH to 6 for A. fangchi or to 9 for I. 

paraguariensis resulted in a substantial loss of information. The optimum for the tested factors on 

the C8 column is summarized in Table 10.2. 
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Table 10.2 Optima of the tested factors for I. paraguariensis and A. fangchi 

Factor  Optimum 

extraction solvent  methanol/water (50/50 v/v%) 

organic modifier  methanol 

pH 
I. paraguariensis 6 

A. fangchi 9 

 

3.1.2 Mobile phase gradient optimization 

The optima for the organic modifier, pH and extraction solvent are determined and a column is 

chosen. In order to continue with the necessary analyses, the mobile phase gradient needs to be 

optimized in order to obtain as much peaks as possible and to improve the separation of the peaks. 

For each plant reference separately, the mobile phase was adjusted until a good separation of the 

peaks was obtained. When adjusting the gradient, the initial and final conditions were kept constant. 

The optimized gradient for I. paraguariensis and A. fangchi are described in Tables 10.3 and 10.4.  

 

Table 10.3 Mobile phase gradient for I. paraguariensis 

Time  

(minutes) 

Buffer solution 

(%) 

Organic modifier 

(%) 

0 90 10 

2 90 10 

7 50 50 

14 50 50 

20 10 90 

25 10 90 

30 90 10 

 

Table 10.4 Mobile phase gradient for A. fangchi 

Time  

(minutes) 

Buffer solution 

(%) 

Organic modifier 

(%) 

0 90 10 

1 90 10 

7 50 50 

8 50 50 

16 10 90 

25 10 90 

30 90 10 
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A B 

These optimum gradients are used in all upcoming analyses. The fingerprints acquired for I. 

paraguariensis and A. fangchi using the optimized factors (Table 10.2) and gradient are shown in Fig. 

10.3. 

 

 

 

 

 

 

3.2 Stability testing of extracts 

The stability of the liquid extracts of both plant references in methanol/water was tested by 

preparing an extract and keeping it refrigerated. These extracts were analysed four times in a time 

span of 14 days using the above mentioned HPLC-PDA method with the optimal mobile phase (i.e. 

optimal pH and methanol) and mobile phase gradient. The stability of the extracts was evaluated 

visually by comparing the acquired fingerprints via overlays (Fig. 10.4). It can be seen on this figure 

that the liquid extracts of both I. paraguariensis (Fig. 10.4A) and A. fangchi (Fig. 10.4B) are not very 

stable; the fingerprints acquired at day 1 and day 8 are quite different while the fingerprints 

measured at days 1 and 5 or 6 seem very similar. Therefore, it can be concluded that the liquid 

extracts are not very stable in time. They can be stored refrigerated for a maximum of five to six 

days but, preferably, they are to be analysed immediately after preparation. 

 

 

 

 

Fig. 10.3 Fingerprints acquired for I. paraguariensis (A) and A. fangchi (B) using the described optimal 
conditions. 
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3.3 HPLC-PDA analysis 

For both plant reference materials a number of triturations were prepared in four different matrices, 

i.e. lactose and three herbal matrices previously tested negative for synthetic compounds. For each 

matrix separately, three triturations were prepared with differing concentrations, i.e. 1/2, 1/5 and 

1/10 dilutions of reference standard in each respective matrix. These triturations were analysed with 

HPLC-PDA using the optimal method for the respective plant reference in order to determine 

whether the fingerprint method is capable to detect the targeted plant in synthetic and complex 

herbal matrices. In addition, five unknown samples were analysed twice, using the optimal 

Fig. 10.4 Fingerprints acquired for an extract of I. paraguariensis (A) and of A. fangchi (B) 
after analysis during a time span of 10 days. 
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conditions for each plant reference, in order to screen these samples for the presence of the 

targeted plants. 

 

3.3.1 Ilex paraguariensis 

3.3.1.1 Triturations     The fingerprints acquired for all four matrices are shown for each tested 

concentration along with the fingerprint of the I. paraguariensis reference standard in Fig. 10.5. As 

can be seen on Fig. 10.5A I. paraguariensis can easily be detected visually in a dilution of 1/2, no 

matter the present matrix.  

When evaluating the 1/5 dilution, it is clear that a visual detection is no longer possible. The 

characteristic fingerprint of the pure extract of I. paraguariensis is hardly recognisable in all four 

matrices, including lactose. Furthermore, this figure also demonstrates that some of the herbal 

matrices interfere more with the pure extract fingerprint than others. For instance, herbal matrix 2 

shows some peaks around 5 and 15 minutes, which clearly interfere with the characteristic peaks of 

the pure extract at those time points. Herbal matrices 1 and 3 seem to interfere less. This 

observation shows a limitation of the fingerprint approach and should always be considered when 

analysing herbal supplements since its exact composition is often unknown. To overcome this 

limitation, another detection technique such as MS could prove useful. 

As can be expected, considering the observation made for the 1/5 dilution, a visual detection of the 

targeted plant in a 1/10 concentration ratio is not possible. The characteristic profile of I. 

paraguariensis cannot be recognised and the recorded fingerprints are merely the result of the 

considered matrices. 
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Fig. 10.5 Acquired fingerprints for all four matrices shown per tested concentration: (A) 1/2 dilution, (B) 1/5 
dilution and (C) 1/10 dilution. 
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3.3.1.2 Unknown samples     Five unknown herbal samples were tested for the presence of I. 

paraguariensis; two of these samples claim the presence of the targeted plant. Fig. 10.6 shows the 

fingerprints acquired for the latter two along with the fingerprint of pure I. paraguariensis extract. 

 

Visual comparison of the fingerprints acquired for both samples with the pure extract shows that 

visual detection of the targeted plant in the unknown samples is not possible. This could be due to 

the fact that the targeted plant is present in an amount too low to be detected visually, as was also 

the case in all 1/5 and 1/10 triturations, or that the targeted plant is not present at all. Since these 

samples were received from the FASFC and the source of these samples is unknown, this second 

possibility should be taken into consideration. Perhaps analysis using MS detection could provide 

Fig. 10.6 Fingerprints acquired for two unknown samples claiming the presence of I. paraguariensis along with 
the fingerprint acquired for the pure extract of the targeted plant. 
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more clarity. Visual comparison via overlays was also performed for the remaining three samples 

(figures not shown) but no indication of the presence of I. paraguariensis was established. 

 

3.3.2 Aristolochia fangchi 

3.3.2.1 Triturations     The fingerprints acquired for all tested triturations are shown in Fig. 10.7 

along with the fingerprint of pure A. fangchi extract. 

As can be seen on Fig. 10.7A, the presence of A. fangchi can easily be established visually for the 1/2 

dilutions since the characteristic fingerprint of the targeted plant is recognisable in all four matrices. 

When exploring the overlays shown in Fig. 10.7B, it is clear that visual detection is not obvious any 

more for the 1/5 dilutions. Some of the characteristic A. fangchi peaks are still visible, however they 

are very small and could possibly be considered as noise. Therefore, it is best to state that the 

targeted plant cannot be detected in a visual way when present in a ratio of 1/5. In accordance with 

this observation, it is clear that the 1/10 dilution (Fig. 10.7C) does not allow a visual detection of A. 

fangchi either. However, conform with I. paraguariensis, MS detection could provide the means to 

overcome this limitation. 

 

3.3.2.2 Unknown samples     The five samples, with unknown composition, were analysed a second 

time using the conditions optimal for A. fangchi. Two exemplary fingerprints are shown in Fig. 10.8 

along with the characteristic fingerprint of A. fangchi. For the third unknown sample, it is quite clear 

that A. fangchi is probably not present since the characteristic peaks of the targeted plant cannot be 

seen on the profile of the sample. However, for the fourth unknown sample, conclusions are less 

straightforward. A number of the peaks characteristic for A. fangchi seem to be present in the 

fingerprint of the sample as well. However, since only a small fraction of the characteristic A. fangchi 

peaks are present, and not the entire characteristic profile, it should be concluded that A. fangchi is 

not present in the respective sample. This visual evaluation was also performed for the remaining 

three samples (figures not shown) but no indication for the presence of A. fangchi was obtained. 
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Fig. 10.7 Acquired fingerprints for all four matrices shown per tested concentration: (A) 1/2 dilution, (B) 1/5 
dilution and (C) 1/10 dilution. 
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3.3.3 Chemometric data analysis 

All obtained profiles, i.e. of the pure extracts of I. paraguariensis and A. fangchi, triturations of I. 

paraguariensis and A. fangchi and all five samples (analysed twice using the optimal HPLC-PDA 

method for each of the targeted plants) were included in the chemometric data analysis. Prior to 

data analysis all fingerprints were cut in order to limit the elution time window from three to 30 

minutes. Exploration of the fingerprints acquired for both pure extracts showed that this wide 

elution time window was necessary to take all characteristic peaks into account. Subsequently, all 

fingerprints were normalized. First PCA was used to explore potential data patterns, secondly the 

correlation between all samples was visualized using a correlation plot.   

 

Fig. 10.8 Fingerprints acquired for two unknown samples along with the fingerprint acquired for the pure 
extract of A. fangchi. 
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 3.3.3.1 PCA     The resulting score plot, acquired by PCA, is depicted in Fig. 10.9. It was chosen to 

retain the first three PCs since 88.66% of the total variance was explained (PC1=63.98%, PC2=11.18% 

and PC3=5.50%). However, the best visual result was obtained by including only PC2 and PC3 (Fig. 

10.9). The yellowish samples are the samples analysed by the method of I. paraguariensis, the red 

ones by the method of A. fangchi. 

 

 

 

 

 

 

  

 

 

 

 

 

 

Both pure extracts can be easily separated from another. Despite the fact that no clear 

discrimination is acquired based on the present targeted plant, a trend to discrimination is however 

present. The triturations containing A. fangchi (black) are mainly localized on the left side of the plot, 

the ones with I. paraguariensis (blue) on the right side. For most samples, no indication of the 

presence of I. paraguariensis or A. fangchi was obtained. As a consequence, the composition of the 

samples is unknown and no clear conclusions can be drawn from their position on the plot. 

However, one sample is exempted from this observation. One red sample is localized very close to 

the pure extract of A. fangchi; this sample is the one, described in section 3.3.2.2, which shows 

partial resemblance with the fingerprint of A. fangchi.  

Fig. 10.9 Score plot obtained by Principal Component Analysis. 
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3.3.3.2 Correlation     The correlation between each pair of samples was calculated and visualized in 

a correlation plot (Fig. 10.10). 

 

 
 
 

 

 

 

 

 

 

 

 

 

Two large 18x18 squares are indicated by the black frames, the lower left one contains the pure 

extract of I. paraguariensis, triturations containing I. paraguariensis and the five unknown samples 

analysed by means of the optimal I. paraguariensis method. The upper right square contains the 

pure extract and triturations (marked by grey frames) of A. fangchi and the samples analysed by the 

respective method. Within each square large differences in correlation exist. In the left square, the 

first row (designated by the white frame) depicts the correlation between pure I. paraguariensis and 

each of the other profiles. In the right square, the correlation between pure A. fangchi and the 

remaining profiles is visualized on row 19 (designated by the white frame). 

When looking at this first (left square) and nineteenth (right square) row, a similar trend can be 

observed for both plants. The three boxes following the pure extract are the triturations in lactose in 

order of decreasing concentration of reference material. This decreasing concentration can be 

observed on the plot since the correlation within these respective three boxes gradually decreases 

I. paraguariensis                     A. fangchi 

Triturations with matrix 3 
 

Triturations with matrix 2 
 

Triturations with matrix 1 
 

Triturations with lactose 

Fig. 10.10 Correlation plot depicting the correlation between each pair of samples. 
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as well. The next three boxes are the triturations in the first herbal matrix, also in order of 

decreasing concentration which is mirrored by the lowering correlations. The same can be observed 

for the next six boxes which depict the triturations in herbal matrices two and three in order of 

decreasing concentration of reference standard. The 1/2 dilutions are characterized by a higher 

correlation (more red) compared to the 1/5 and 1/10 dilutions. This trend seems logic and was also 

observed previously when visually exploring the overlays of the obtained fingerprints (sections 

3.3.1.1 and 3.3.2.1). In both sections, it was clear that in a 1/2 dilution, the targeted plant can be 

detected visually, but that this mode of operation was not useful in case of the 1/5 and 1/10 

dilutions.  

A second trend can be observed. Within both black frames, four groups characterized by high 

correlation can be noticed (indicated for the A. fangchi frame by grey lines). The high similarity 

within these four groups is due to the matrices used to prepare the triturations, i.e. lactose and 

three herbal matrices. 

When focussing on the samples, i.e. last five little squares in each cluster, they are all characterized 

by a lower correlation with the respective pure extracts (bluish coloured boxes). This seems to be in 

accordance with the absence of both targeted plants, observed with the HPLC-PDA fingerprints.  

 

3.4 HPLC-MS analysis 

The analysis of both pure extracts, the respective 1/5 and 1/10 triturations in all four matrices and 

the five unknown samples was repeated using HPLC-MS. In order to eliminate potential ion 

suppression, the respective buffers were replaced by pure water. The organic phase was also slightly 

modified, formic acid was added in a concentration of 0.1% (v/v). Other chromatographic 

parameters remained the same. 
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3.4.1 Ilex paraguariensis 

3.4.1.1 Triturations     A visual comparison between the fingerprint of the pure extract of I. 

paraguariensis and the fingerprints acquired for the triturations was performed. Based on this 

evaluation a number of peaks characteristic for the pure extract were selected and their respective 

MS2 spectra were compared with the corresponding peaks in the triturations. This mode of 

operation allows a much more specific and accurate detection of the targeted plant compared to 

PDA. The fingerprints obtained for the pure extract of I. paraguariensis and the triturations with a 

1/10 concentration ratio are shown in Fig. 10.11.  

Four characteristic peaks of I. paraguariensis were chosen, which are indicated on Fig. 10.11. Their 

specific MS2 spectra were determined and all triturations were screened for the presence of these 

characteristic peaks based on retention time and mass spectrum. As demonstrated in Fig. 10.11, all 

four characteristic peaks could be easily retrieved in the triturations, even in the three complex 

herbal matrices, based on the retention time and mass spectrum. I. paraguariensis could readily be 

detected in all tested matrices, even in the concentration ratio of targeted plant versus matrix of 

1/10. This is previously shown to be infeasible when using a PDA detector. This observation clearly 

demonstrates the strength of MS over PDA detection; MS is a highly valuable tool in the screening of 

targeted plants and could be of great advantage when screening unknown samples. 

 

3.4.1.2 Unknown samples     The fingerprints acquired for the five unknown samples are also 

screened for the presence of I. paraguariensis by means of exploring the mass spectra of the present 

peaks. As already mentioned, two samples (i.e. samples 1 and 2) claim the presence of I. 

paraguariensis but this claim could not be verified by means of a HPLC-PDA analysis (section 3.3.1.2). 

The fingerprints acquired by MS for these two samples are shown in Fig. 10.12 along with the profile 

of pure I. paraguariensis. The characteristic peaks of the pure extract are indicated on this figure as 

well.   

 



Chapter X.                                                     Chromatographic fingerprinting as a means to identify plants 

256 
 

Fi
g.

 1
0

.1
1

 F
in

ge
rp

ri
n

ts
 a

cq
u

ir
ed

 b
y 

M
S 

o
f 

p
u

re
 I

. p
a

ra
g

u
a

ri
en

si
s 

an
d

 t
h

e 
1

/1
0

 t
ri

tu
ra

ti
o

n
s 

in
 a

ll 
fo

u
r 

te
st

ed
 m

at
ri

ce
s.

 F
o

u
r 

ch
ar

ac
te

ri
st

ic
 p

ea
ks

 o
f 

I.
 p

a
ra

g
u

a
ri

en
si

s 
w

er
e

 
se

le
ct

ed
, t

h
ei

r 
sp

ec
if

ic
 m

as
s 

sp
ec

tr
a 

w
er

e 
d

et
er

m
in

ed
 a

n
d

 a
ll 

tr
it

u
ra

ti
o

n
s 

w
er

e 
sc

re
en

ed
 f

o
r 

th
e 

p
re

se
n

ce
 o

f 
th

e
se

 c
h

ar
ac

te
ri

st
ic

 p
ea

ks
. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

I.
 p

a
ra

g
u

a
ri

en
si

s 

La
ct

o
se

 

H
e

rb
al

 m
at

ri
x 

1
 

H
e

rb
al

 m
at

ri
x 

2
 

H
e

rb
al

 m
at

ri
x 

3
 



Chapter X.                                                     Chromatographic fingerprinting as a means to identify plants 

257 
 

Screening of both samples for the presence of the four characteristic peaks of I. paraguariensis 

reveals that none of these peaks could be retrieved in the fingerprints of the two unknown samples, 

despite claiming the presence of I. paraguariensis on the package. Even though both samples show a 

number of peaks with retention times similar to the characteristic peaks of I. paraguariensis, the 

matching MS2 spectra do not correspond. It could be possible that the targeted plant is not present 

at all in both samples since the source of these samples is unknown. Furthermore, it is unknown 

whether these samples are produced following certain quality standards or whether these products 

underwent any quality control at all. A second possibility could be that the targeted plant is only 

present in trace amounts which are too low to be detected. The fingerprints of the remaining 

samples (of which the composition is unknown due to Asian language use on the package) were also 

screened for the presence of I. paraguarensis (figure not shown) but also in these samples, the 

target plant is not found. 

 

 

 

 

 

 

 

 

3.4.2 Aristolochia fangchi 

3.4.2.1 Triturations     Similar to I. paraguariensis, a number of peaks characteristic for A. fangchi 

were selected and the matching MS2 spectra were determined. This information is used to screen all 

triturations for the presence of A. fangchi. The triturations in all four tested matrices with a 

concentration ratio of 1/10 are shown in Fig. 10.13, along with the fingerprint of the pure A. fangchi 

extract. 

Fig. 10.12 Fingerprints acquired by MS for the pure extract and two unknown samples claiming the presence of I. 
paraguariensis. The peaks characteristic for I. paraguariensis are indicated by the striped rectangles. 
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Fig. 10.13 clearly shows that in all 1/10 triturations, even in the complex herbal matrices, the three 

characteristic peaks of A. fangchi could be detected based on retention time and matching mass 

spectra. Also for this plant, MS proves to be valuable since PDA detection only allows verification of 

presence of the targeted plant in a concentration ratio of 1/2 (section 3.3.2.1).  

 

3.4.2.2 Unknown samples     All five samples were screened for the presence of the characteristic 

peaks and hence, for the presence of A. fangchi. Screening for the presence of A. fangchi reveals 

that three unknown samples (i.e. samples 1, 2 and 4) contain two peaks corresponding with the 

second and third characteristic peak of A. fangchi (Fig. 10.14). Furthermore, two of these three 

unknown samples (samples 1 and 4) show a peak with the same retention time as the first 

characteristic A. fangchi peak but the matching MS2 spectra do not correspond. Comparison of this 

particular peak in unknown samples 2 and 4 shows that these peaks have the same mass spectrum 

(respective MS2 spectrum designated by a black frame in Fig. 10.14). Since only two of the three 

peaks correspond exactly with the pure A. fangchi extract, it might not be correct to state that these 

three samples contain A. fangchi, but it could be possible that they contain another species of the 

Aristolochia genus. The remaining two samples are also screened for the presence of A. fangchi 

(figures not shown) but the targeted plant is not detected since the fingerprints and matching mass 

spectra do not correspond. 
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4. Conclusion 

Herbal supplements are increasingly gaining popularity in industrialized countries; therefore, quality 

control of these products is a highly important issue. However, this is not a simple task since plants 

are often crushed and mixed with other plants, which complicates their identification by usage of 

classical approaches such as microscopy and macroscopy. This chapter demonstrates that 

chromatographic fingerprinting could provide a useful means to identify plants in a complex herbal 

mixture. By usage of self-made triturations with three different herbal matrices, which mimic the 

influential effects that could be expected when analysing herbal supplements, it is shown that the 

presence of targeted plants can be verified by means of chromatographic fingerprinting. PCA of the 

triturations has shown that a visual clustering can be obtained based on the presence of different 

targeted plants, thereby providing an indication whether or not a certain plant is present. A 

Fig. 10.14 Fingerprints acquired by MS for the pure extract of A. fangchi and three unknown samples. The two 
peaks characteristic for A. fangchi which are found in all three samples are indicated by the striped rectangles. 
Two unknown samples contain a peak with the same retention time as the first characteristic peak but their 
matching mass spectrum does not correspond. 
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correlation plot can provide the same indication as well. However, data analysis methods are heavily 

influenced by the concentration of the targeted plant. If the targeted plant is present in a low 

concentration, both data analysis methods could result in false negative conclusions. This is 

especially apparent for the correlation plot since both 1/5 and 1/10 triturations have shown to result 

in lower correlation, which indicates that low concentrations of targeted plants might go unnoticed. 

 

Two detection techniques are tested to acquire chromatographic fingerprints, i.e. PDA and MS. Both 

detection techniques have their advantage but the fingerprints acquired by PDA need to be treated 

with the necessary caution. PDA has the advantage of being easy in use and widely available. 

However, in case of low concentrations of the targeted plants, there is always the risk of their 

presence going unnoticed. Furthermore, as was observed for the fingerprints of I. paraguariensis, it 

is possible that the herbal matrix interferes with the detection of the characteristic profile of the 

targeted plant, thereby complicating its detection as well. Moreover, the visual evaluation of PDA 

fingerprints will only result in a certain probability of presence of the considered plants. The 

influence of the herbal matrix can never be excluded since an extraction will always extract 

components from other plants present in the matrix as well. A fingerprint should therefore be 

considered as a profile that can be compared to the fingerprint of the reference materials. Since two 

profiles are compared to each other, one can only estimate the resemblance of the two profiles, 

which will result in an estimation of the probability that a certain plant is present. Fortunately, these 

disadvantages can be partially overcome by using MS detection, which allows a certain confirmation 

of presence. Even if the targeted plant is present in low amounts or if the matrix interferes with its 

characteristic profile, screening of the mass spectra of characteristic signals will still allow for the 

detection of the targeted plant, thereby generating a strong indication whether or not the targeted 

plant is present. In conclusion, it is best to use a HPLC-PDA-MS system if possible. This system allows 

a first indication of presence of the targeted plants by a visual evaluation of the acquired fingerprints 

and concomitant chemometric data analysis. Afterwards, a strong indication of presence/absence of 
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the considered plants can be acquired by comparing the mass spectra of characteristic peaks. This 

mode of operating has shown its usefulness since the targeted plants were detected in all 

triturations. 

 

However, a number of additional remarks have to be taken into consideration. First, when aiming at 

screening for certain plants, a reference standard of these targets needs to be available which is 

sometimes not the case. For instance, interesting target plants for herbal slimming aids are the 

plants from the Ephedra genus. Unfortunately, it was not possible to obtain reference material 

accommodated with a certificate of authentication from a reliable source. Secondly, it should be 

mentioned that, when screening for certain plants, the extraction procedure and chromatographic 

method need to be optimized beforehand for each plant individually. However, this disadvantage 

might be partially overcome by seeking a compromise which could serve as a screening method for 

multiple plants. However, seeking this compromise could be very time consuming. A third important 

remark is that the number of unknown samples, included in this study, is very low and that presence 

of the targeted plants was partially unknown. Three samples provided information in an Asian 

language only, while the remaining two samples claimed the presence of I. paraguariensis. Despite 

using both detection techniques, I. paraguariensis was not found in the respective samples. The 

source of these samples is unknown and, therefore, it is unknown whether the labelling of these 

samples is trustworthy. Consequently, it is difficult to conclude whether the targeted plant is truly 

absent or whether the fingerprinting method is unreliable. However, the triturations used during 

this study are an appropriate means to test the effectiveness of the fingerprint strategy and it was 

observed that the targeted plant could be detected in quite low concentrations. Despite the fact that 

testing the fingerprint strategy on real life samples was rather limited in this study, it can still be 

concluded that the fingerprint strategy could be a valuable approach to screen dubious samples for 

the presence of forbidden or regulated plants, providing that the extraction procedure and analytical 

method is optimized for the considered targeted plants. 
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Public health is threatened worldwide by counterfeit medicines. Not only developing countries are 

vulnerable; despite effective regulatory systems and market control, industrialized countries are not 

exempt from pharmaceutical forgery either. This is mainly due to the extension of the Internet. 

Moreover, the distribution of counterfeit medicines poses a significant risk of these forged products 

to infiltrate the legal medicine supply chain. Despite all efforts to tackle the distribution of 

counterfeit medicines, high amounts keep entering the European market. As a consequence, 

analytical techniques aiming to detect and characterise these kind of products and to distinguish 

them from genuine medicines are indispensable. This important issue is addressed in this 

dissertation. Since the types of medicines sold most as counterfeit in industrialized countries 

comprise PDE-5 Inhibitors and slimming aids, this thesis focuses on these two groups of 

pharmaceuticals. 

 

Different analytical setups and techniques are explored for their screening and discriminating 

abilities in Part II. These techniques were tested on a sample set of PDE-5 Inhibitors. Most of these 

techniques have one important thing in common: they result in a characteristic fingerprint of each 

analysed sample. The fingerprint approach has already shown its effectiveness in the field of 

Pharmacognosy and could provide a useful means for the detection of counterfeit medicines as well. 

This non-targeted approach has the advantage of generating distinct fingerprints for all included 

samples, which could be useful for discriminating genuine from counterfeit medicines without any a 

priori knowledge about the considered samples. Furthermore, some types of fingerprints could 

provide additional useful information concerning the potential public health threat posed by these 

kind of products. Fingerprints generate a large amount of information, which can be analysed by 

usage of chemometrics. Chemometrics has the advantages of enabling high-throughput data 

analysis and allows for the creation of programmable diagnostic models which can predict the 

authentic/counterfeit nature of future unknown samples. 
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All considered analytical techniques are characterized by a number of advantages and 

disadvantages. Two very simple techniques, i.e. physical profiling and IR spectroscopy, have both 

proven their capability of distinguishing genuine pharmaceuticals from counterfeit ones (Chapter V). 

These two techniques are characterized by their simplicity of usage and inexpensive nature. 

Moreover, no sophisticated equipment is necessary which makes these techniques applicable on the 

spot, e.g. customs offices, by untrained personnel. These advantages, however, come with a price: 

no information whatsoever concerning the composition of the included samples is obtained. 

Therefore, one cannot draw any conclusions concerning the potential toxicity of the considered 

samples. By usage of these techniques, one can only discriminate between genuine and counterfeit 

medicines. These techniques could have their usefulness to perform an initial screening of suspected 

products on the spot.    

The use of ATR-FTIR spectroscopy in the fight against counterfeit medicines is explored in Chapter 

VI. This particular technique is also user friendly and requires only relatively cheap equipment which 

is easy to handle. When using this technique in combination with appropriate chemometric models, 

two types of information can be obtained: (1) whether a particular sample is a genuine or a 

counterfeit and (2) whether or not sildenafil or tadalafil is present. In comparison with the previous 

mentioned techniques, ATR-FTIR spectroscopy is able to generate additional information. This 

additional information is, however, limited to the presence of sildenafil and tadalafil. Nevertheless, 

this technique can have its particular benefit by testing samples, which claim to be all natural or 

herbal, for the presence of undeclared synthetic APIs. During the course of this thesis, the 

applicability of ATR-FTIR spectroscopy to screen for adulterations with sibutramine was 

demonstrated as well [1]. 

Next, chromatographic fingerprinting was tested for its discriminating ability (Chapter VII). In this 

study, chromatographic fingerprinting was performed in a way to obtain impurity profiles which 

visualize impurities and secondary substances. Two types of fingerprints were included in the study: 

(1) fingerprints obtained by PDA and (2) fingerprints obtained by MS when operating in full scan 
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mode (both MS1 and MS2 fingerprints). It is quite obvious that these types of fingerprints require 

more sophisticated equipment which needs to be handled by trained staff. Furthermore, the usage 

of these techniques is subjected to much higher costs as compared to physical profiling and (ATR-

FT)IR spectroscopy. It is shown that both types of fingerprints can make a distinction between 

genuine and counterfeit medicines. Moreover, it was also tested if genuine Viagra® could be 

distinguished from generic products, which proved to be possible to a certain extent when using 

both types of fingerprints. The information obtained in these fingerprints is only used for 

discriminating purposes, but if necessary additional information can be obtained. The fingerprints, 

acquired for the counterfeit samples, could be compared in order to screen for common peaks. 

These particular peaks could subsequently be identified using high resolution MS or NMR. This mode 

of operation could provide information concerning the toxicity of the included samples or 

information that could possibly point to a common source of counterfeit samples. It can therefore 

be concluded that chromatographic fingerprinting can generate plenty of information but its 

application is subjected to high costs and the necessity of trained staff. Furthermore, these analyses 

can be quite time-consuming.  

The use of gas chromatographic fingerprinting for the analysis of counterfeit medicines is 

investigated in Chapter VIII. When performing GC impurity fingerprinting, one focuses on volatile 

impurities and secondary substances, of which the residual solvents are the most important. This 

chapter has shown that a perfect discrimination between genuine and counterfeit medicines is 

obtained based on these particular fingerprints. Furthermore, when coupling GC to MS, it is possible 

to screen counterfeit samples for the presence of residual solvents and to identify them. This feature 

makes GC-MS a particular useful method in the fight against counterfeit medicines. The additional 

information, acquired when identifying residual solvents, clearly contributes to the knowledge about 

potential health hazards posed by counterfeit medicines. However, the same disadvantages of liquid 

chromatographic fingerprinting apply to GC impurity fingerprinting, i.e. need of sophisticated and 

expensive equipment and trained staff.      
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It is clear that a universal technique, generating ample information concerning the examined 

samples in a simple, cheap and non-time-consuming way, does not exist. Depending on the 

circumstances (e.g. analytical laboratory or customs office), available resources (e.g. easy-to-use or 

sophisticated equipment) and the type of information one wishes to obtain the most appropriate 

technique needs to be selected. Obviously, the easier the chosen technique, the more limited the 

acquired information will be. For instance, physical profiling or IR spectroscopy do not require any 

sophisticated equipment, they are easy to use and they can be used on the spot in customs offices. 

These techniques are able to distinguish counterfeit medicines from authentic ones, but they will 

not yield any additional information concerning the composition of a sample or the potential health 

threats these samples could pose. When using GC-MS, counterfeit medicines will not only be 

discriminated from genuines, but supplementary information will be acquired about present volatile 

secondary components, such as residual solvents, which give a clear indication of the potential 

toxicity of the considered samples. 

All in all, prior to sample analysis, one needs to reflect about the type of information required and 

the available resources. Based on this knowledge, the most appropriate analytical technique can be 

selected which will yield the required information in the most efficient way. 

 

The second group of frequently counterfeited pharmaceuticals, i.e. slimming aids, are investigated 

as well in this dissertation (Part III). The pharmaceutical treatment of obesity is rather limited. 

Therefore, the amount of counterfeits circulating is rather small. For this specific pharmacological 

class, most of the seized samples are products containing banned APIs such as sibutramine and 

phenolphthalein. Many of these products claim to be herbal but analysis shows that they are very 

often adulterated with synthetic compounds. Another fraction of seized products are from synthetic 

origin claiming the presence of banned APIs, of which sibutramine is used most. Very often, these 

products are offered for sale on dubious websites. 
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It has been demonstrated, in Chapter IX, that chromatographic fingerprinting by usage of a PDA and 

MS detector allows to discriminate samples according to the present APIs. Three types of 

fingerprints were tested of which the MS fingerprints proved to be superior. Suitable diagnostic 

models could be constructed which are able to classify samples according to present synthetic APIs 

and to predict the presence of these APIs in unknown samples, thereby enabling automated and 

high-throughput data analysis. In case of encountering unknown compounds (e.g. new sibutramine 

analogues), these can be identified using the ToF system. However, two important remarks have to 

be taken into consideration. Firstly, the MS system used in this study is very expensive and often not 

widely available. However, if unknown compounds are to be identified, such expensive equipment is 

required. Secondly, a number of samples are classified as placebo since no synthetic active 

substances were detected. Unfortunately, this does not necessarily indicate that these products are 

safe for use. Literature has shown several examples of herbal preparations which contain toxic 

plants [2-6]. Therefore, these particular samples need to be treated with the necessary precaution 

and additional testing might be recommended. 

A potentially useful strategy to screen these particular samples for the presence of toxic plants is 

explored in Chapter X. Identification of plants in these kind of products is a difficult task since plants 

are powdered and mixed with other (herbal) powders. However, chromatographic fingerprinting has 

shown to be efficacious in the identification of forbidden plants, especially when using MS detection. 

By comparing the fingerprint of the reference material of the targeted plants with the fingerprints 

acquired for the considered samples, the targeted plants could be detected, even in complex herbal 

matrices. Therefore, chromatographic fingerprinting provides a useful means to screen herbal 

preparations for the presence of forbidden or regulated plants. 

 

In general, it can be concluded that fingerprinting proves to be a useful strategy for the screening of 

counterfeit medicines and adulterated products. Both chromatographic and spectroscopic 

techniques have demonstrated their usefulness. Based on the desired information, a suitable 
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analytical technique can be selected. Furthermore, coupling of the desired analytical technique with 

data analysis by chemometrics results in the creation of suitable models. Once these models are 

constructed, they can be maintained and expanded over time by including new and unknown 

samples, thereby including more sources of inter-sample variation and making the respective model 

more robust. These tested and validated models can subsequently be programmed, which allows 

high-throughput screening and automated data interpretation. These kind of programmed models 

can aid both customs officers and researchers in the detection of counterfeit medicines. 

In the future, this working strategy could potentially be expanded to other pharmacological classes 

of counterfeit medicines such as sleeping aids and pain killers. 
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Summary of the thesis 
 

Counterfeit medicines pose a global threat to public health; both developing and industrialized 

countries are exposed to pharmaceutical forgery. These products are not subjected to quality 

control and therefore their safety, efficacy and quality cannot be guaranteed. The types of medicines 

which are sold most as counterfeits in industrialized countries are commonly referred to as ‘life style 

drugs’ and comprise PDE-5 Inhibitors for the treatment of erectile dysfunction and weight loss 

products. High amounts of counterfeit pharmaceuticals enter the European market. Consequently, 

analytical techniques able to detect these kind of products and distinguish them from genuine 

medicines are indispensable. 

 

Part II of this dissertation describes all research performed on PDE-5 Inhibitors. Both physical and 

chemical properties of these samples were taken into consideration to discriminate counterfeit 

medicines from genuine ones. Chapter V focuses on physical profiling and IR spectroscopy to obtain 

a prime discrimination between genuine and counterfeit Viagra® and Cialis® medicines. Hypothesis 

testing showed that most illegal samples differ significantly from genuine medicines, in particular for 

mass and long length of tablets. CART resulted in a good distinction between genuine and illegal 

medicines (98.93% correct classification rate for Viagra® and 99.42% for Cialis®). Moreover, CART 

confirmed that mass and long length are the key physical characteristics which determine the 

observed discrimination. IR analysis was performed on tablets without blister and on tablets in an 

intact blister. A perfect discrimination between genuine and counterfeit medicines can be obtained 

by SIMCA and PLS-DA without the need to remove the tablets from the blister, thereby keeping the 

blister intact. 

Chapter VI  explores the usage of ATR-FTIR spectroscopy for the screening of counterfeit medicines. 

ATR-FTIR spectroscopy has the advantages of being easy to use and little sample preparation is 

required. When combining ATR-FTIR spectroscopy and chemometrics, a suitable diagnostic model 

was acquired by SIMCA which is able to discriminate between genuine and counterfeit medicines 
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and to distinguish between counterfeit medicines containing a different API. This shows that 

chemometric analysis of ATR-FTIR fingerprints is a valuable tool to discriminate genuine from 

counterfeit samples and to classify counterfeit medicines. 

The potential use of chromatographic fingerprinting is investigated in Chapter VII. In this chapter a 

HPLC-PDA and HPLC-MS method were developed to acquire impurity fingerprints for a Viagra® and a 

Cialis® sample set. These fingerprints were included in the chemometric data analysis, aiming to test 

whether PDA and MS are complementary detection techniques. This extensive data analysis has 

shown that combining the fingerprints acquired by both types of detection is preferred due to less 

classification errors. For the Viagra® data set the combination of the MS1 fingerprints and the 

fingerprints acquired by 254 nm resulted in the best diagnostic models which discriminate between 

genuine, generic and counterfeit medicines. For the Cialis® sample set, conclusions are more 

complicated. For both PDA and MS fingerprints separately, perfect models were obtained supporting 

differentiation between genuine and counterfeit samples. However, the tested sample set is rather 

small. Therefore, when using a larger sample set including more possible sources of variation, more 

sophisticated detection techniques such as MS might be necessary.     

Chapter VIII describes the use of headspace-GC-MS impurity fingerprinting as a means to 

differentiate genuine from counterfeit medicines. This study shows that a perfect discrimination 

between genuine and counterfeit pharmaceuticals could be obtained using SIMCA. Furthermore, 

distinct groups of counterfeits could be defined based on the potential health hazards these 

products pose. 

 

Part III describes all testing performed on the available slimming aid samples. In Chapter IX 

chromatographic fingerprinting, using PDA and MS detection, was combined with chemometric data 

analysis. This data analysis showed that suitable diagnostic models can be obtained discriminating 

between samples containing different APIs. Furthermore, it was shown that MS is preferred over 

PDA; when using MS as detection technique two types of data sets could be acquired using a single 
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analytical run for each sample. Besides the classical chromatographic fingerprints, MS fingerprints 

were obtained as well. These MS fingerprints are able to generate more accurate models since even 

very low concentrations of API could be detected while these particular samples are classified as 

placebo based on other types of fingerprints.  

Illegal slimming aids do not only pose a threat to a patient’s health due to adulteration but also due 

to the presence of potentially toxic plants. A strategy to screen for these kind of plants is explored in 

Chapter X. Chromatographic fingerprinting has been shown to be useful to screen herbal 

preparations for the presence of forbidden or regulated plants. The disadvantage of this approach is 

that a reference standard of the targeted plants needs to be available and the development of a 

suitable analytical method can be quite time-consuming. However, once the method is developed, 

herbal samples can be screened for the targeted plants in an efficient way. 

 

In general, it can be concluded that fingerprinting proves to be a useful strategy for the screening of 

counterfeit medicines and adulterated products. Based on the desired information, a suitable 

analytical technique can be selected. In the future, this working strategy could potentially be 

expanded to other pharmacological classes of counterfeit medicines such as sleeping aids and pain 

killers. 
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Samenvatting van de thesis 
 

Namaakgeneesmiddelen vormen een wereldwijde bedreiging voor volksgezondheid; zowel 

ontwikkelingslanden als geïndustrialiseerde landen worden blootgesteld aan farmaceutische fraude. 

Deze producten worden niet onderworpen aan kwaliteitscontrole waardoor hun veiligheid, 

werkzaamheid en kwaliteit niet kunnen worden gegarandeerd. De geneesmiddelen die het meest als 

namaak worden verkocht in geïndustrialiseerde landen worden vaak ‘life style drugs’ genoemd; deze 

omvatten PDE-5 Inhibitoren voor de behandeling van erectiestoornissen en vermageringsproducten. 

Grote hoeveelheden namaakgeneesmiddelen komen op de Europese markt terecht. Bijgevolg zijn 

analytische methodes die in staat zijn deze producten te detecteren en onderscheiden van originele 

geneesmiddelen noodzakelijk. 

 

Deel II van dit proefschrift beschrijft al het onderzoek uitgevoerd op PDE-5 Inhibitoren. Zowel fysieke 

als chemische eigenschappen van deze stalen werden in aanmerking genomen om 

namaakproducten te onderscheiden van originele geneesmiddelen. Hoofdstuk V gaat dieper in op 

‘physical profiling’ en IR spectroscopie om een eerste onderscheid te verkrijgen tussen originele en 

namaakproducten van Viagra® en Cialis®. Een hypothese test gaf aan dat de meeste illegale stalen 

significant verschillen van originele geneesmiddelen, en dat voornamelijk voor de massa en de 

lengte van tabletten. CART resulteerde in een goed onderscheid tussen originele en 

namaakgeneesmiddelen (98.93% correcte graad van classificatie voor Viagra® en 99.42% voor 

Cialis®). Bovendien bevestigde CART dat de massa en de lengte de belangrijkste eigenschappen zijn 

die de geobserveerde discriminatie bepalen. Een IR analyse werd uitgevoerd op tabletten zonder de 

blister en op tabletten in een intacte blister. Er wordt een perfecte discriminatie verkregen tussen 

originele en namaakgeneesmiddelen met behulp van SIMCA en PLS-DA, en dit zonder de tabletten 

uit de blister te verwijderen. Hierbij wordt de blister intact gehouden. 

Hoofdstuk VI onderzoekt het gebruik van ATR-FTIR spectroscopie voor de screening van 

namaakgeneesmiddelen. ATR-FTIR spectroscopie heeft de voordelen van gebruiksvriendelijk te zijn 
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en enkel beperkte staalvoorbereiding is vereist. Chemometrische analyse van de verkregen ATR-FTIR 

data resulteerde in een geschikt model, verkregen door SIMCA, dat niet alleen in staat is om 

originele en namaakgeneesmiddelen van elkaar te onderscheiden maar ook om te discrimineren 

tussen namaakproducten die een verschillende actieve stof bevatten. Dit toont aan dat 

chemometrische analyse van ATR-FTIR fingerprints een waardevolle methode is om originele 

geneesmiddelen van namaakgeneesmiddelen te onderscheiden en om namaakproducten te 

classificeren.   

Het potentieel nut van chromatografische fingerprints wordt onderzocht in Hoofdstuk VII. Dit 

hoofdstuk beschrijft de ontwikkeling van een HPLC-PDA en een HPLC-MS methode die gebruikt 

werden om fingerprints op te meten van een groep Viagra® en Cialis® stalen. Op deze fingerprints 

werd een chemometrische data analyse uitgevoerd met als doel om na te gaan of PDA en MS twee 

complementaire detectie technieken zijn. Deze uitgebreide data analyse heeft aangetoond dat het 

combineren van fingerprints, verkregen door beide detectie methodes, de voorkeur geniet omwille 

van het lagere aantal classificatie fouten. Voor de Viagra® data resulteerde de combinatie van de 

MS1 fingerprints en de fingerprints verkregen bij 254 nm in de beste classificatie modellen die het 

onderscheid maken tussen originele, generische en namaakgeneesmiddelen. Voor de data van 

Cialis® zijn de conclusies complexer. Voor zowel PDA als MS fingerprints afzonderlijk werden 

perfecte modellen verkregen die in staat zijn om originele geneesmiddelen te onderscheiden van 

namaakproducten. Hierbij moet wel de opmerking worden gemaakt dat het aantal geteste stalen 

relatief laag is. Daarom zouden mogelijks meer geavanceerde technieken zoals MS nodig zijn 

wanneer een groter aantal stalen, en dus grotere variatie binnen de stalen, wordt getest. 

Hoofdstuk VIII beschrijft het gebruik van headspace-GC-MS fingerprints als een middel om originele 

en namaakgeneesmiddelen van elkaar te onderscheiden. Deze studie toont dat een perfecte 

discriminatie kan worden verkregen met behulp van SIMCA. Bovendien kunnen er ook verschillende 

groepen van namaakgeneesmiddelen worden gedefinieerd op basis van de mogelijke 

gezondheidsrisico’s die deze producten inhouden. 
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Deel III beschrijft het onderzoek uitgevoerd op de beschikbare vermageringsproducten. In 

Hoofdstuk IX worden chromatografische fingerprints, verkregen door PDA en MS detectie, 

gecombineerd met chemometrische data analyse. Deze data analyse toonde aan dat geschikte 

classificatie modellen kunnen verkregen worden die discrimineren op basis van aanwezige actieve 

stoffen. Bovendien werd er aangetoond dat MS de voorkeur geniet op PDA; wanneer MS wordt 

gebruikt als detectietechniek kunnen er twee types data worden verzameld tijdens één enkele 

analyse per staal. Naast de klassieke chromatografische fingerprints kunnen er ook MS fingerprints 

worden verkregen. Deze MS fingerprints genereren meer accurate modellen aangezien zelfs zeer 

lage concentraties van actieve stoffen kunnen worden gedetecteerd terwijl deze stalen doorgaans 

geclassificeerd worden als placebo op basis van andere fingerprint types. 

Illegale vermageringsproducten brengen niet alleen gezondheidsrisico’s met zich mee omwille van 

‘adulteration’ maar mogelijks ook door de aanwezigheid van potentieel giftige planten. Een 

mogelijke strategie om producten te screenen voor de aanwezigheid van dergelijke planten wordt 

voorgesteld in Hoofdstuk X. Chromatografische fingerprints hebben hun nut bewezen om 

plantaardige preparaten te screenen op verboden of gereglementeerde planten. Het nadeel van 

deze benadering is dat er een referentiestandaard nodig is van de planten waarvoor men wenst te 

screenen en de ontwikkeling van een gepaste analytische methode kan veel tijd in beslag nemen. 

Desalniettemin kunnen plantaardige stalen op een efficiënte manier worden onderzocht op 

aanwezigheid van de beoogde planten, eens de methode ontwikkeling beëindigd is. 

 

Er kan algemeen worden geconcludeerd dat fingerprints een interessante strategie vormen voor de 

screening van namaakgeneesmiddelen en plantaardige producten waaraan actieve stoffen werden 

toegevoegd zonder vermelding op de verpakking. Op basis van de gewenste informatie kan een 

gepaste techniek worden geselecteerd. Deze strategie zou in de toekomst mogelijks uitgebreid 

kunnen worden naar andere farmacologische klassen van namaakgeneesmiddelen zoals pijnstillers 

en slaapmiddelen. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

What we know is a drop, what we don't know is an ocean 
 

- Isaac Newton - 
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