

Medical lead Molecular Information

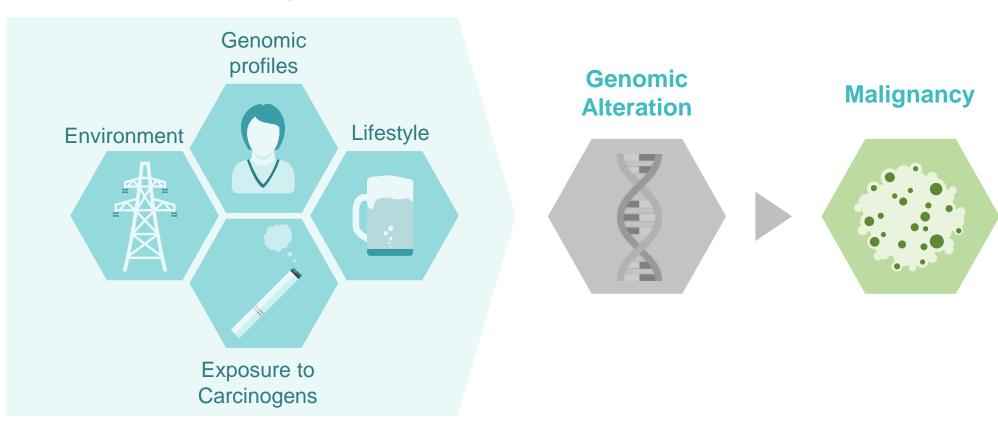
Region Europe

25 th October 2016

Why should physicians consider profiling?

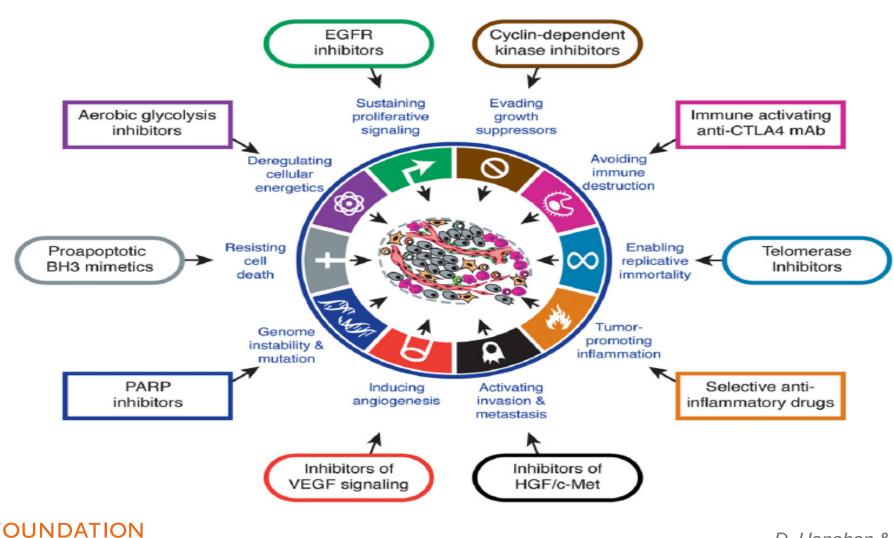
CGP from Foundation Medicine – *understanding the difference*

Foundation Medicine's experience – translating into clinical benefit

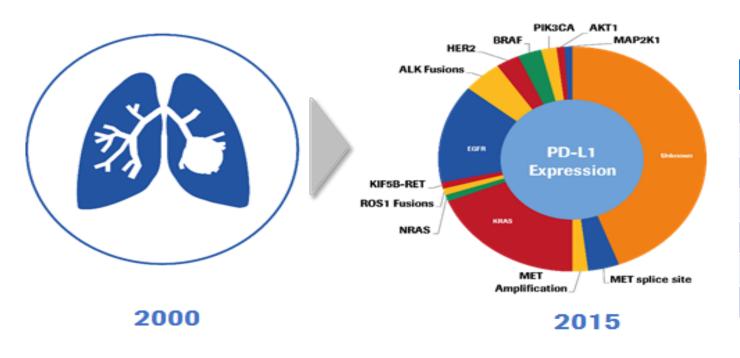


Cancer is a disease of the genome

Our understanding of cancer has been evolving


Etiology

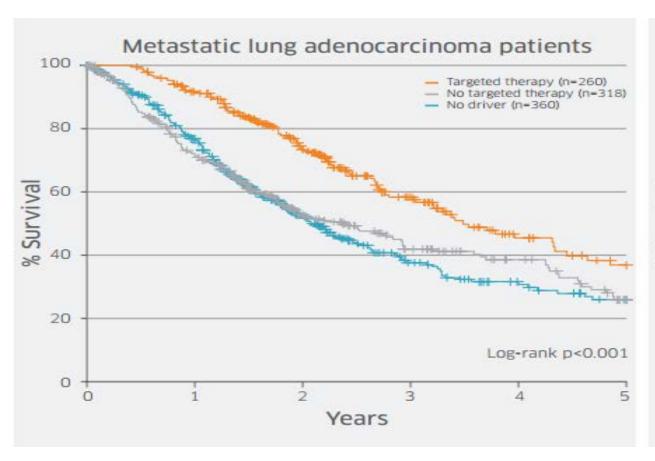
Many genetically driven characteristics many therapeutic options

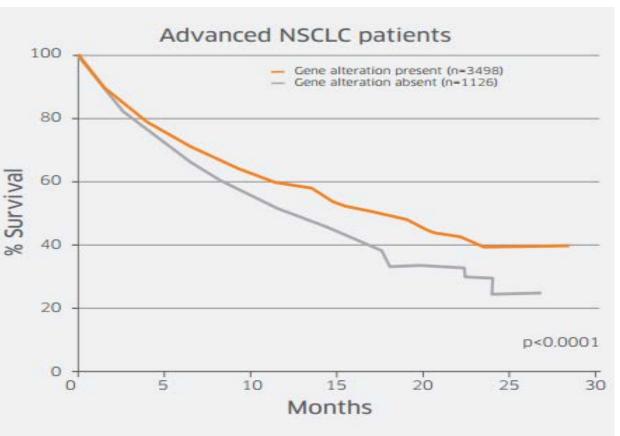


Lung Adenocarcinoma:

Moving from one disease to multiple disease types by molecular alterations that require distinct tx plans

2015 NSCLC NCCN guidelines recommend broad molecular profiling for the following biomarker/drug associations:


Biomarker	Drugs
EGFR mutations	erlotinib, gefitinib, afatinib
ALK rearrangements	crizotinib
BRAF V600E	vemurafenib*, dafrafenib*
MET amplifications	crizotinib
ROS1 rearrangements	crizotinib
HER2 mutations	trastuzumab*, afatinib
RET rearrangements	cabozantinib*



^{*} Drugs not approved for lung cancer

Treating Lung Cancer patients based on their tumour profiling results improves outcomes

Meta-analysis of Phase II studies – 32 149 patients

Meta-analysis of 570 Phase II, single-agent studies (including total of 32,149 patients) studying the impact of personalized and targeted treatment strategies in diverse cancer types

RR, PFS and OS from pooled meta-analyses 20 40 Survival (months, 95% CI) Median Progression-Free Median Overall Survival (months, 95% Cl) Pooled analysis Pooled analysis 18 Pooled analysis Arms included Response Rate (%, 95% CI) ■ Meta-analysis ■ Meta-analysis ■Meta-analysis (pooled and meta-analyes): RR: Personalized n = 112 not p < 0.001personalized n = 526p < 0.001p < 0.001**PFS**: Personalized n = 86 Not 10 personalized n = 444 15-**OS:** Personalized n = 49 Not 10. personalized n = 392Personalized Not Personalized Not Not Personalized Personalized Personalized Personalized

Personalized treatment strategies, across malignancies, were **independent predictors of better outcomes** and **fewer deaths** from treatment toxicity than non-personalized therapies

"Matched therapy using genomic markers offers better outcomes than using protein biomarkers"

"Matched therapies are associated with better outcomes than nonmatched therapies"

Schwaederle, M., et al. (2015), J Clin Oncol 33(32):3817-25.

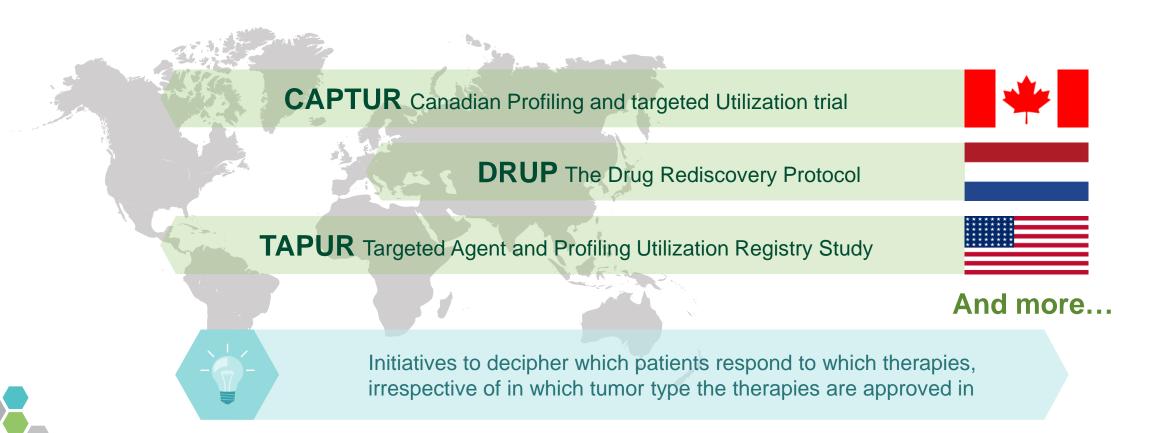
OS: Overall survival; PFS: Progression-free survival; RR: Response rate; CI: Confidence interval

Profiling guidelines

Roche

NCCN Guidelines® now recommend "broad molecular profiling" for advanced NSCLC patients

Genomic Alterations (i.e. driver event)	Available targeted agents with activity against driver event in lung cancer
EGFR mutations	erlotinib, gefitinib, afatinib
ALK rearrangements	crizotinib, ceritinib
HER2 mutations	trastuzumab, afatinib
BRAF V600E mutations	vemurafenib, dabrafenib
MET amplification	crizotinib
ROS1 rearrangements	crizotinib
RET rearrangements	cabozantinib


NCCN Guidelines® Referenced with permission from the NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines®) for Non-Small Cell Lung Cancer V.4.2016. © National Comprehensive Cancer Network, Inc. 2016. All rights reserved. Accessed March 13, 2016. To view the most recent and complete version of the guideline, go online to NCCN.org. NATIONAL COMPREHENSIVE CANCER NETWORK®, NCCN®, NCCN GUIDELINES®, and all other NCCN Content are trademarks owned by the National Comprehensive Cancer Network, Inc. now recommends "broad molecular profiling" for advanced NSCLC patients

Profiling initiatives

Investigating the potential to match treatments to genomic alterations across tumor types

Why should physicians consider profiling?

Comprehensive genomic profiling from Foundation Medicine

How to benefit from Foundation Medicine's experience

Foundation Medicine

Pioneer and leader in molecular information

- Founded 2010 in Cambridge, MA, USA
- Proprietary molecular information platform
- First to market comprehensive genomic profiling solutions for cancer
- 90,000+ clinical cases profiled
- 30+ pharmaceutical clinical trial partners
- Roche collaboration for R&D and commercialization outside USA

Foundation Medicine offers two solutions

FoundationOne® and FoundationOne® Heme

Comprehensive: Detect all classes of genomic alterations

Coding regions of 315 genes

Introns of 28 genes

Known as drivers of solid tumors

Frampton G, et al. Nature Biotech, 2013, 31, 1023-34

DNA sequences of 405 genes

RNA sequences (cDNA) of 265 genes

hematologic malignancies(leukemia, lymphoma and myeloma) and

Jie H et al. Blood 2016

How does FoundationOne work?

A process that follows standard operating processes

Pre-Analytic Process (Pre-Sequencing)

Post-Analytic Process (Post-Sequencing)

Powered by 20+ bioinformaticians and genomic scientists who optimize state-of-the art algorithms to report the most clinically relevant information for a patient

Why should physicians consider profiling?

CGP from Foundation Medicine – *understanding the difference*

How to benefit from Foundation Medicine's experience

Types of genomic alterations driving tumor growth

Limitations of traditional and hotspot testing

BRAF V600E (BRAF inhibitor)

Base Substitutions

EGFR Exon 19 deletion (EGFR inhibitor)

Insertions and Deletions

HER2 amplification (HER2 inhibitor)

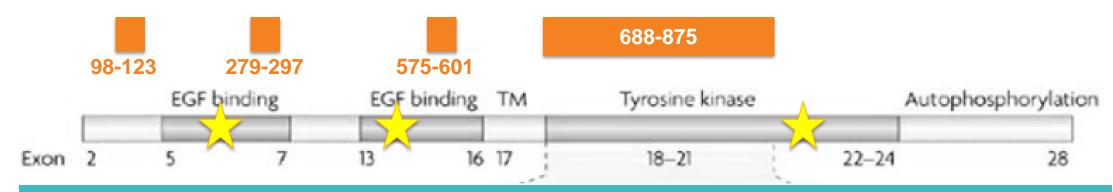
Copy Number Alterations

ALK fusion (ALK inhibitor)

Rearrangements

Test	Detects	Can Miss
IHC	Protein expression	Any alteration not known of ahead of time
FISH	Copy number alterations, Rearrangements	Insertions & deletions, Substitutions
Hot Spot NGS*	Substitutions	Insertions & deletions, Copy number alterations, Rearrangements

Foundation Medicine finds more targets



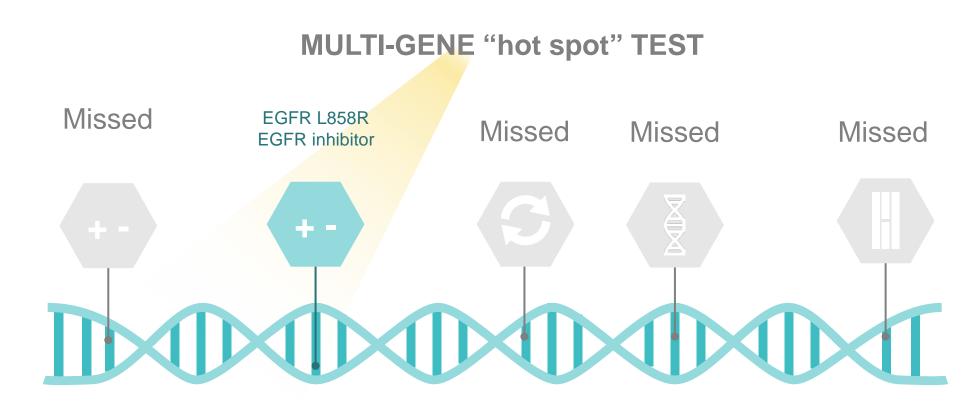
Completely sequencing genes enables detection of novel alterations missed by hot spot testing

Example: EGFR gene

Hot spot tests detect selective alterations in selective parts of the EGFR gene*

....When there is an insertion/deletion or rearrangement that removes one of the primer sites, hot spot tests will not amplify the region or detect the alteration

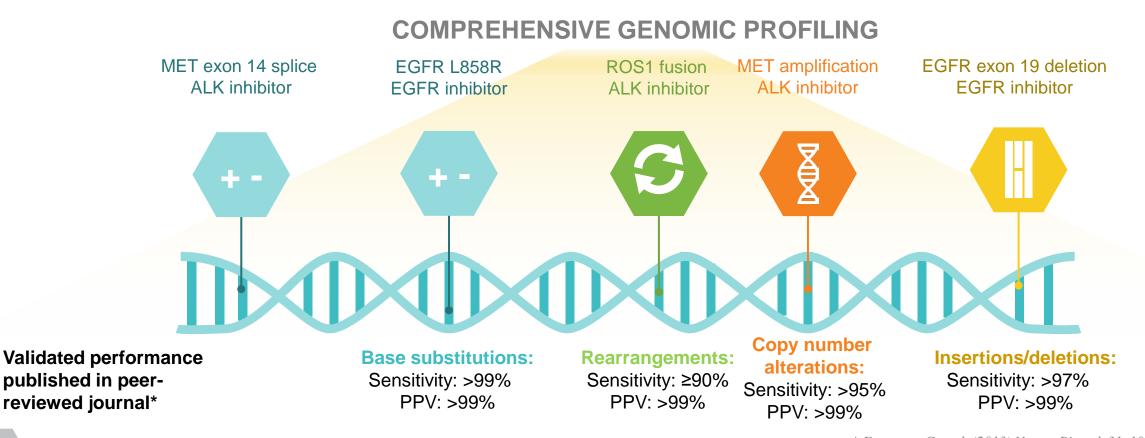
FoundationOne detects all genomic alterations across the entire EGFR gene

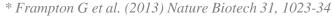

= Mutations not detected by hot spot

Foundation Medicine finds more targets

Roche

While hot spot tests can miss alterations...





Foundation Medicine finds more targets

...Comprehensive Genomic Profiling identifies all four classes of alterations with validated performance

Why should physicians consider profiling?

Comprehensive genomic profiling from Foundation Medicine

How to benefit from Foundation Medicine's experience

Improve profiling of NSCLC patients

FoundationOne finds more alterations associated with NCCN guidelines than single gene or hot spot NGS

SINGLE GENE TESTING

misses up to 35% of ALK rearrangements by FISH¹ and 17% of EGFR alterations by hot spot test²

Hot spot NGS

Up to 50% of targetable alterations can be missed without supplemental FISH³

FOUNDATION ONE

detects all four classes of NSCLC clinically relevant alterations³ and genetic biomarkers⁴ included in the NCCN Guidelines[®]

^{1.} Ali S et al. (2016) Oncologist. doi:10.1634/theoncologist.2015–0497. 2 Schrock AB et al. (2016) Clin Cancer Res. Mar 1. pii: clincanres.1668.2015.

³ Suh J et al. (2016) Oncologist. http://dx.doi.org/10.1634/theoncologist.2016—0030

^{4.} NCCN Guidelines® Referenced with permission from the NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines®) for Non-Small Cell Lung

Clinical utility of finding more alterations with FoundationOne NSCLC patients can benefit from targeted therapies

of NSCLC patients with EGFR exon 19 deletions can respond to EGFR tyrosine kinase inhibitors, with median OS > 1 year²

of ALK-rearranged cases missed by FISH³

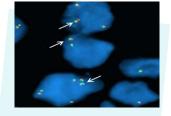
of ALK-rearranged patients identified by FoundationOne respond to ALK inhibitor crizotinib³

^{2.} Sequist LV et al. (2007) J Clin Oncol. 25:587–95.

^{3.} Ali AM et al. (2016) The Oncologist

Patient case: EGFR/ALK negative

Identification of complex fusion led to treatment/response


Patient Information

- 43-year-old male
- Never-smoker

At Presentation

- Pericardial tamponade
- No detection of EGFR mutation; atypical FISH staining for ALK

Atypical pattern of double 3'ALK signals (red) fused with 5'ALK signal (green)

Diagnosis

Metastatic NSCLC with a pericardial tamponade

Treatment status

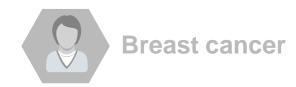
 Disease progression despite 4 cycles of cisplatin/pemetrexed

FoundationOne® analysis and subsequent treatment

- Identification of complex EML4-ALK fusion separated by genomic shards
- Initiation of treatment with crizotinib

Chest PET-CT before (*) and after 4 months (**) crizotinib treatment showing a significant shrinkage of the primary lesion

Patient had a rapid response to crizotinib treatment; **75% shrinkage** of primary lesion (RECIST) after 4 months of treatment


FoundationOne may lead to improved outcomes Studies show potential in other tumor types, ability to impact

physician decisions

Targeted therapy based on tumor genomic alterations

Targeted therapy based on tumor genomic alterations

Targeted therapy based on tumor genomic alterations

Improved response (33% vs. 8%, p=0.018) & longer progression-free survival¹ (6.4 vs. 1.9 months; p=0.001)


Radiologic response or stability in 64% of patients²

41% of treatment decisions influenced by FoundationOne³

^{2.} Rodriguez-Rodriguez L et al. (2016) Gynecologic Oncology 141: 2-9

^{3.} Reinbolt RE et al. (2016) Ohio State University, ASCO poster

Targeting ERBB2 Mutations in Metastatic Breast Cancer

Clinical Cancer Research

Human Cancer Biology

Relapsed Classic E-Cadherin (*CDH1*)–Mutated Invasive Lobular Breast Cancer Shows a High Frequency of *HER2* (*ERBB2*) Gene Mutations ☑

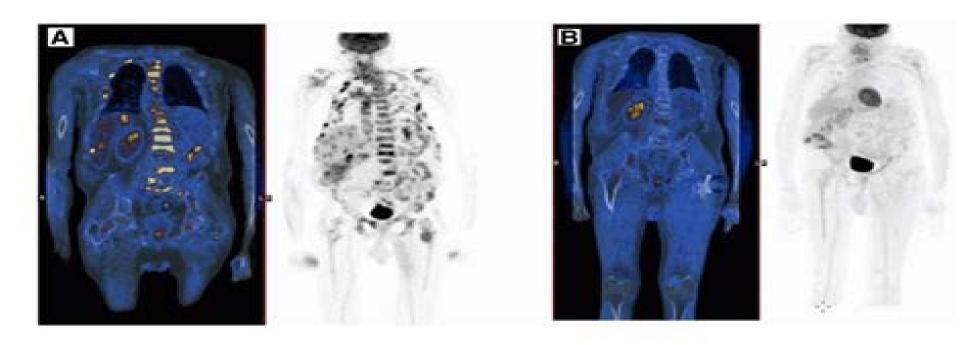
Jeffrey S. Ross^{1,2}, Kai Wang², Christine E. Sheehan¹, Ann B. Boguniewicz¹, Geoff Otto², Sean R. Downing², James Sun², Jie He², John A. Curran², Siraj Ali², Roman Yelensky², Doron Lipson², Gary Palmer², Vincent A. Miller², and Philip J. Stephens²

RESEARCH ARTICLE

Activating HER2 Mutations in HER2 Gene Amplification Negative Breast Cancer

Ron Bose^{1,2}, Shyam M. Kavuri¹, Adam C. Searleman¹, Wei Shen¹, Dong Shen³, Daniel C. Koboldt³, John Monsey¹, Nicholas Goel¹, Adam B. Aronson¹, Shunqiang Li^{1,2}, Cynthia X. Ma^{1,2}, Li Ding^{1,2,3,4}, Elaine R. Mardis^{2,3,4}, and Matthew J. Ellis^{1,2}

- Responses reported with both antibody therapeutics and kinase inhibitors
- 38% response rate in ERBB2 mutated BC to kinase inhibitor at SABCS
- High frequency (> 30%) of *ERBB2* mutations in *CDH1* mutated relapsed
 ILC



Response of a HER2 FISH/IHC Negative Cutaneous Adnexal Carcinoma with an *ERBB2* S310f Mutation to anti-HER2 Targeted Therapy

Vornicova O et al. The Oncologist 2014;19:1006-1007

Why consider profiling with Foundation Medicine?

- **Profiling has been shown to improve outcomes for patients** with lung cancer or considering clinical trials, while evidence is evolving in additional indications¹⁻³
- Foundation Medicine's profiling services are designed to capture all four types of genomic alterations which single gene and hotspot NGS testing can miss
- Proprietary bioinformatics have been optimized over 90,000 cases to call alterations
- These alterations are delivered in a comprehensive report which describes potential therapies, trials, and the latest clinical literature to inform physician's decisions
- Evidence has shown **FoundationOne detects alterations in patients that are pan-**negative with single gene panels⁴⁻⁶, and in some indications can improve outcomes^{8-4, 7-}

Doing now what patients need next

