

NGS for oncogenetics

Marc Abramowicz Centre de Génétique Humaine, ULB

Hereditary cancer

 5-10% of patients with breast, or colon cancer have an inherited predisposition = inherited cancer syndrome

20% of patients with (epithelial) ovarian cancer

- Predisposition < mutated gene
- Predisposition may be passed via germ-line and inherited in family

NGS for oncogenetics

- Large, multiple gene panels available for testing
 - Tumor DNA (somatic cells)=> Precision therapy
 - Patient DNA (constitutive/germ line cells) => 2ary prevention in patient
 => prevention in family relatives
- Areas of uncertainty
 - Gene level : penetrance
 - Genetic variant/mutation level : VUS
- Tumor driving, somatic mutation may be present in patient's germline
 - => need strategy for prevention in patient's family relatives

Large, multiple gene panels

Dropping cost of DNA sequencing

Increasing costs of DNA tests

Preparing patient's DNA sequence DNA (library)

- Bioinformatics analyses for relevant DNA variants
- Medical interpretation
- ISO15189 certification/ accreditation

Increasing costs of DNA tests

Preparing patient's DNA (library)

- Bioinformatics analyses for relevant DNA variants
- Medical interpretation
- ISO15189 certification/ accreditation

Testing cancer patients for an inherited predisposition

- Blood sample => germ line DNA analysis
- If inherited predisposition is suspected
 - Breast / ovarian cancer
 - Colorectal / endometrial cancer
 - Multiple Endocrine Neoplasia
 - others

Clinical pedigree

To test or not to test?

Guidelines : see www.BeSHG.be > guidelines

- HBOC (Hereditary Breast and Ovarian Cancer Syndrome)
- HNPCC Lynch syndrome (pending)
- Cystic fibrosis
- others

Benefits of mutation identification

- Identify risk of cancer in other organ (ovary) for secondary prevention (BRCA; PTEN, and all syndromic BC genes)
- Refine risk of recurrence (CHEK2, ATM)
- Precision drugs (olaparib in BRCA carriers)
- Individualized therapy (avoid radiotherapy in TP53)
- Trace risk in relatives > 1ary / 2ary prevention

Testing cancer patients for an inherited predisposition: how large should a gene panel be?

AREAS OF UNCERTAINTY:

- Penetrance of the gene defect
 Penetrance = probability of disease if mutation present
- •Clinical significance of the patient's variant in the gene
 Disease causing mutation >< normal variant, harmless (polymorphism)

Large multigene panels include genes with unknown penetrance, and identify variants of unknown significance (VUS)

GENETIC VARIANTS

VARIANT	Frequency	Penetrance (fonctional effect)
Mutation	Rare	High
VUS	Rare	??
Polymorphism	Frequent	Low or null
« Rare polymorphism »	Rare	Low or null

VUS = variant of uncertain clinical significance : currently impossible to tell if high penetrance (phenotype-causing, mutation) or low/null penetrance (« rare polymorphism »)

VUS classification will require time:

- epidemiology of mutation and/or
- functional data (bioinformatics, machine learning approach)

ACCE criteria for genetic tests Center of Disease Control, USA

✓ Analytical validity

You bet! CLIA and ISO15189

Clinical validity

Which gene variants (which alleles)

cause disease risks?

✓ Clinical utility

How much risk?

✓ Ethical, Legal & Social issues

CLINICAL VALIDITY: Which variants cause disease risk?

 We will eventually need epidemiological evidence of causality for each mutation i.e., each genetic variant, each allele

- Class of variant may indicate functional effect on gene
 - Truncating variant (premature stop codon) >< missense variant

CLINICAL VALIDITY: Which variants cause disease risk?

 We will eventually need epidemiological evidence of causality for each mutation i.e., each genetic variant, each allele

- Class of variant may indicate functional effect on gene
 - Truncating variant (premature stop codon) >< missense variant

Current functional interpretation of variants:

- ✓ Disease-causing (mutation)
- ✓ Non-disease causing (polymorphisms, frequent or rare in population)
- ✓ VUS (variants of uncertain clinical significance)

CLINICAL UTILITY

magnitude of the risk caused by gene variant

Limitations in clinical utility of test:

- VUS
- RR of various alleles in one gene may differ
- RR is higher in patients with strong family histories
 => overestimated in individual patients (Evans et al 2014 JMG)

Strong family histories select for:

- Modifyer genes
- Lifestyle, hormonal factors, reproductive history

CLINICAL UTILITY

magnitude of the risk caused by gene variant

High penetrance genes / alleles
 Disease incidence > 4 x normal

Cumulative risk, lifetime * > 32%

Moderate penetrance genes / alleles
 Disease incidence 2 – 4 x normal

18 - 32 %

Low penetrance genes / alleles
 Disease incidence <2 x normal

< 18 %

* Baseline = 9%

Clinical utility depends on allele penetrance

Age (yr) Struewing et al. 1997, NEJM 336: 1401-8.

If mutation explains risk only partially, caveat:

- Undue alarm in mutation carrier
- False reassurance in non-carrier

Clinical utility depends on allele penetrance

If mutation explains risk only partially, caveat:

- Undue alarm in mutation carrier
- False reassurance in non-carrier

Phenocopies chance occurrence of BC in non-carrier

Recommendations of the Belgian College of Human Genetics

Clinically useful, 2016

Non syndromic BC

- BRCA1
- BRCA2
- PALB2
- TP53
- CHEK2 (mutation c.1100delC)

Syndromic BC

- STK11 (Peutz Jeghers)
- NF1 (neurofibromatosis)
- CDH1 (lobular BC + linitis plastica)
- PTEN (Cowden)

Research Only

- BARD1
- BRIP1
- RAD51C
- RAD51D
- MRE11A
- RAD50
- NBN
- FAM175A
- ATM
- CHEK2 (other mutations)
- XRCC2
- MEN1

Testing tumor DNA for pathway analysis

Cancer Genetics

In tumors (tumor DNA = somatic DNA) : ←
 Molecular pathology; tumorigenesis routes.

- Genetic
- Epigenetic

In patients (constitutional DNA = germ-line DNA):
 Cancer risk profiling, from inherited mutations/polymorphisms

Somatic mutation may be present in the germ line

Driver mutations in tumors of some cancer patients are also present in all other cells

- e.g., BRCA1/2 mutations in ~20% epithelial ovarian cancer
 - = 15% constitutive + 5% tumor only
- •These patients are at higher risk for other tumors
 - e.g., breast cancers and/or ovarian cancers
- Constitutive change is present in germ line
- => at-risk relatives need genetic counseling in view of presymptomatic genetic testing

Germline BRCA mutations are frequent in ovarian carcinoma

Germ line Frequency of mutations in cases of ovarian cancer by tumor histology.

Category	No. (%)	Total no.			
	BRCA1	BRCA2	BRCA1 and BRCA2	Total	of cases
Tumor histology					
Serous	81	52	2	135 (18.0%)	751
Endometrioid	18	8	0	26 (9.1%)	287
Mucinous	0	0	0	0 (0%)	112
Clear cell	1	1	0	2 (2.2%)	91
Carcinosarcoma	1	0	0	1 (7.1%)	14
Brenner	0	0	0	0 (0%)	4
Other	0	0	0	0 (0%)	4
Not specified	6	6	0	12 (15.2%)	79

S. Zhang et al. / Gynecologic Oncology 121 (2011) 353-357

BRCA mutations (germ line + somatic) in 15%-25% ovarian cancer tissue

- Somatic BRCA1/2 mutation in 19% of ovarian cancers unselected for type (n=235; Hennessy et al 2012 JCO)
 - 23% in high-grade serous tumors
 - Among tumors with mutations, 20-40% are somatic only
- Germline BRCA1/2 mutations in 15% of (non-mucinous) ovarian carcinoma (n=1001; Alsop et al. 2012 JCO)
 - Better progression-free and better overall survival
 - 44% had no reported family history of breast or ovarian cancer
- Beyond BRCA1/2, homologuous recombination defect in up to 50% high-grade serous ovarian adenocarcinomas (TCGA research network 2011 Nature)

Most BRCA1/2 mutations found in ovarian carcinomas are also present in germline

☐☐ If mutation is present in germ line, it may be inherited and present in other family members!

=> Need for integrated clinical work up and patient trajectories from oncology to pathology to genetics

If BRCA1/2 mutation present in germline

- Genetic counseling is indicated in FAMILY MEMBERS
- Presymptomatic genetic testing in young adult relatives at-risk
 - Asymptomatic 20-25 years old
 - With psychological support and coaching
 - Pre-test and post-test counseling
 - If mutation present, start prevention of BREAST and OVARIAN cancer

Ovarian cancer patients with germline BRCA mutation: 44% had no reported family history of breast or ovarian cancer

Alsop et al. 2012 JCO

Test ovarian carcinoma DNA and blood DNA (= germ line) for BRCA1/2 mutation

- In every patient with high grade serous epithelial ovarian carcinoma
- Blood DNA analysis allows for exon duplication / deletion analysis (10-15% of all BRCA1/2 mutations)

- Blood DNA analysis goes beyond BRCA1/2
 - Multigene panel of 26 genes, including 5 validated, high penetrance genes

- Some mutations are somatic only
 - Test tumor DNA + blood DNA in parallel

Patients with epithelial ovarian carcinoma, serous, high grade

NGS for oncogenetics 2016-17: conclusions

- Variants of Uncertain Clinical Significance (VUS) limit clinical validity of test
 - Genetic evidence must be collected over the coming years
- Penetrance limit clinical utility of test
 Lower penetrance means higher unexplained risk in patient
 - Undue alarm, false reassurance
 - Education of lay public, genetic counseling (pretest)
- Hence too large multi gene panels are not recommended
- Sequencing is cheap but medical genetic testing is expensive
- Tumor DNA tests allow for precision therapy: eg, BRCA1/2 in ovarian
- Many cancer-driving mutations in tumors are also present in germ line => need for integrated patients trajectory onco/pathol/genetics

Testing strategy, riziv inami coverage

Specific syndrome

Semi-specific

Non-specific syndrome

Gene panel, sequenced with 100% accuracy.

=> Confirm / exclude known diagnosis (NPV!)

Covered by riziv inami

Mendeliome +
CORE GENES, for
which sequencing
completed to 100%
accuracy

All genes (exome),

whatever their individual sequencing accuracy.

=> *Include* any diagnosis

Not covered by riziv

Gene panel

Exome

Sequencing efficiency

Sequencing width

Remboursement INAMI echelonné des analyses génétiques

		76 EUR	152 EUR		350 EUR	547 EUR	1350 EUR
Simple test			Simple test	Exceptional	Complex test	Complex test	Complex test
				category,			
	r a fev		One or a set mutations,	for simple	- Less than 10 amplicons	- Between 10 and 39	- 40 or more amplicons
		inalysed in	analysed in one or 2 PCR	testing, not		amplicons, or between	per gene or more than
	_	R reactions	reactions and/or	related to a	OR	1.5 and 9kb coding	kb coding sequence pe
or wit	h (sim	ple) kits	sequencing reactions, or	specific	- Deletion/ duplication	sequence per gene or per	gene or per package of
			with (more elaborate) kits	disease.	analysis (as the only test for a specific diagnosis)	package of genes (equals per diagnosis)*	genes (equals per diagnosis)*
					OR	OR	OR
					- Simple PCR-based test which are in some cases	- Sets of dynamic mutations	- Sequence capture results
					complemented with		
			(Default category for		Southern blot		
			simple tests (O and P				
			categories), until		OR		
			BELMOLGEN advises to move them to O)		- Dynamic mutation		
			·		OR		
					- Diagnostic confirmation		
					by sequencing (specific	*Testing includes	*Testing includes
					cases, e.g.	mutation analysis plus	mutation analysis plus
					very rare conditions,	deletion/	deletion/
					parental confirmation)	duplication analysis	duplication analysis
					(Default category for		
					complex tests (Q, R and S		
					categories), until		
					BELMOLGEN advises to		

+ liste limitative des tests remboursables, mise à jour 1x/an