

WETENSCHAPPELIJK INSTITUUT VOLKSGEZONDHEID

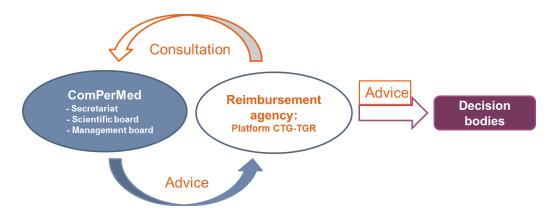
INSTITUT SCIENTIFIQUE DE SANTÉ PUBLIQUE

NGS tests and algorithms in (hemato)-oncology

Symposium NGS 2016 | sciensano.be

Els Van Valckenborgh – Aline Hébrant

Introduction



- Targeted NGS is gradually introduced in molecular diagnostics in daily practice as it enables more precise decision-making:
 - diagnosis
 - prognosis
 - therapeutic choices for targeted drugs or conventional treatments
- A permanent monitoring and assessment of the state-of-the-art in this domain is essential
- → Commission of Personalized Medicine (ComPerMed)

Commission Personalized Medicine (ComPerMed)

- Aim: provide evidence-based advices to the platform CTG-TGR of the RIZIV-INAMI
 - technical aspects of NGS testing
 - <u>clinical use of NGS for detecting somatic mutations in cancer patients</u>
 - assessment of novel 'omics' technologies

- Belgian professionals and experts in the field of (hemato)-oncology

Technical aspects of NGS

NGS guidelines:

- → to **facilitate the implementation** of NGS in the laboratories
- → to help labs to generate accurate NGS data e.g. Identical sample analysis should lead to an identical list of variants even if processed by a different operator on a different day.
- → to facilitate the evaluation by the auditors from the accreditation bodies (Belac)

BJNO PRACTICE GUIDELINES 56

The Belgian next generation sequencing guidelines for haematological and solid tumours

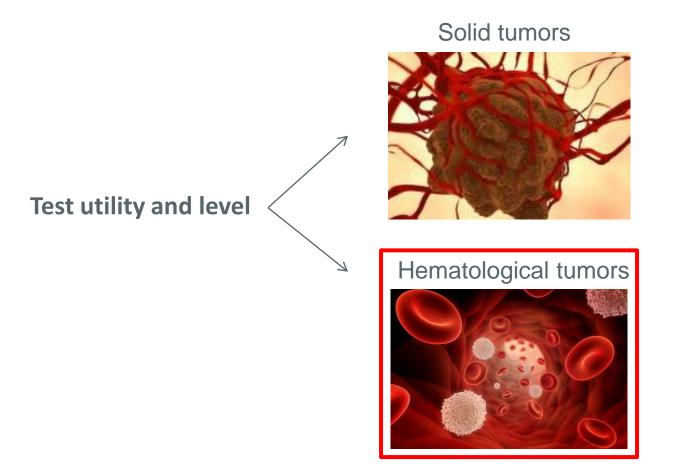
A. Hébrant, Ir, PhD¹, G. Froyen, PhD², B. Maes, MD, PhD², R. Salgado, MD³, M. Le Mercier, PhD⁴, N. D'Haene, MD, PhD⁴, S. De Keersmaecker, PhD⁵, K. Claes, PhD⁶, J. Van der Meulen, PhD⁶, P. Aftimos, MD⁷, J. Van Houdt, PhD⁸, K. Cuppens, MD⁹, K. Vanneste, PhD⁵, E. Dequeker, PhD⁸, S. Van Dooren, PhD¹⁰, J. Van Huysse, MD¹¹, F. Nollet, PhD¹², S. van Laere, PhD¹³, B. Denys, MD¹², V. Ghislain¹⁴, C. Van Campenhout, PhD¹⁴, M. Van den Bulcke, PhD¹

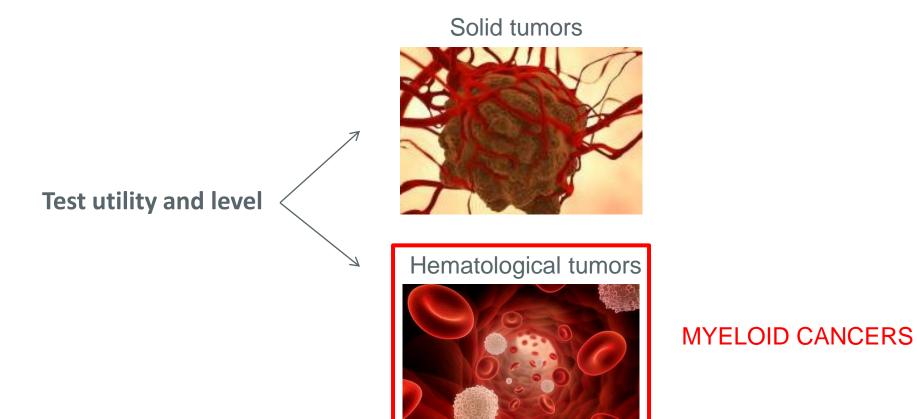
Belg J Med Oncol 2017 Apr 1;11(2):56-67

Selection of genes with regard to their test utility for a specific tumor

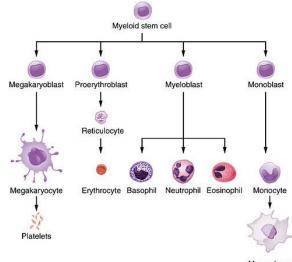
- \rightarrow diagnosis
- → therapeutic response (to predict sensitivity or resistance)
- → **prognosis** (patient outcome)

biomarker/test levels


- Standard of care biomarker for diagnosis and/or prognosis *
- Biomarker predictive of a response or a resistance to a reimbursed drug in Belgium for this indication
- Recommended standard of care biomarker for diagnosis and/or prognosis +
- Biomarker predictive of response or resistance to an EMA-approved drug for this indication
- Biomarker predictive of response or resistance to a reimbursed drug in Belgium for another indication (clinical trial available in Belgium or EU)
- Compelling clinical evidence supporting the biomarker for diagnosis and/or prognosis
- Biomarker predictive of a response or a resistance to
 - a non EMA-approved drug in this indication
- a reimbursed drug in Belgium for another indication (clinical trial not available in Belgium or EU)
 - an EMA-approved drug for another indication
- Compassionate use of drug
- * Standard of care: Included in guidelines (WHO) AND consensus from experts ComPerMed
- + Recommended standard of care: Clinical evidence AND consensus from experts ComPerMed


* Standard of care: Included in guidelines (WHO) AND consensus from experts ComPerMed

+ Recommended standard of care: Clinical evidence AND consensus from experts ComPerMed



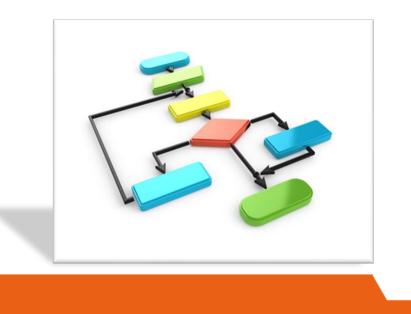
List of myeloid cancers for which an NGS test is useful:

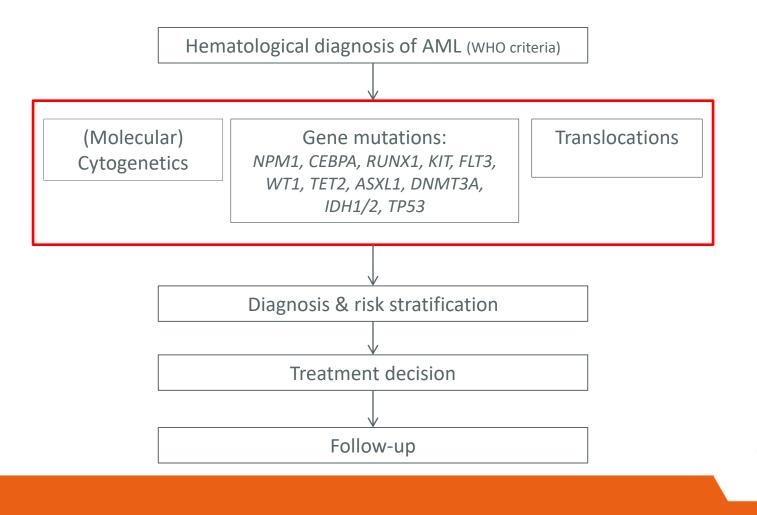
- Acute myeloid leukemia (AML) _
- Myeloproliferative neoplasm (MPN) _
 - Chronic neutrophilic leukemia (CNL) _
 - Primary Myelofibrosis (PMF) _
- Myelodysplastic syndrome (MDS) _
- MDS/MPN _
 - Chronic myeolomonocytic leukemia (CMML) _
 - Atypical CML (aCML) _
 - MDS/MPN-RS-T _

List of genes which should be analyzed at minimum by NGS: level 1 & 2A

Acute myeloid leukemia							
Genes	Diagnosis	Prognosis	Therapy				
ASXL1	x (2A)	x (1)					
CEBPA*	x (1)	x (1)					
DNMT3A*	x (2A)	x (1)					
FLT3	x (2A)	x (1)	x (2B)				
IDH1	x (2A)	x (1)	x (3)				
IDH2	x (2A)	x (1)	x (3)				
KIT	x (2A)	x (1)	x (2B)				
NPM1	x (1)	x (1)					
RUNX1*	x (1)	x (1)					
TET2*	x (2A)	x (1)					
TP53*	x (2A)	x (1)	x (3)				
WT1	x (2A)	x (1)					

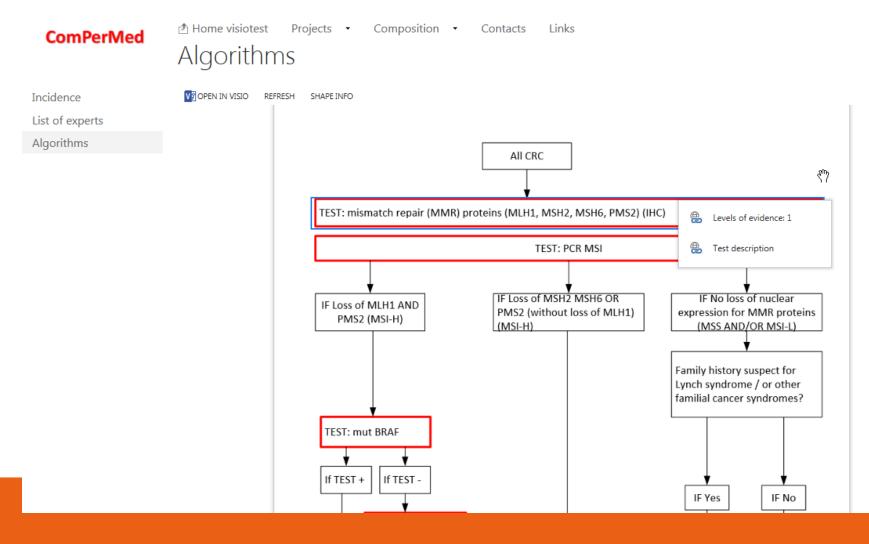
List of genes which should be analyzed at minimum by NGS: level 1 & 2A


Genes	AML	MDS	MPN PMF	MPN CNL	MDS/MPN aCML	MDS/MPN CMML	MDS/MPN RS-T
ASXL1	Х	Х	Х	Х	х	Х	
CALR			х		х		х
CEBPA	х						
CSF3R				Х	х		
DNMT3A	х	Х					
EZH2		Х	х				
FLT3	х						
IDH1	х		х				
IDH2	х		х				
JAK2			x		х		х
KIT	х						
MPL			x		х		X
NPM1	х						
RUNX1	х	х					
SETBP1				Х	х	х	
SF3B1		х	х				х
SRSF2		х	x	Х	x	X	
TET2	х	Х	х	Х		х	
TP53	х	Х					
U2AF1		Х					
WT1	Х						

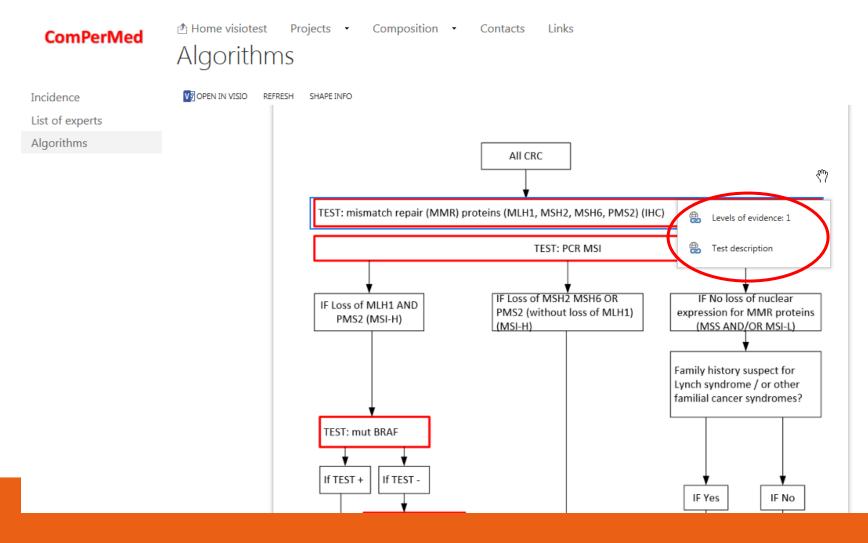

Algorithms

- → Display the NGS test in the context with all the other molecular tests (FISH, IHC, PCR,...)
- \rightarrow Define the indications for NGS testing

Example: algorithm of acute myeloid leukemia


Integrate NGS testing and algorithm in a website

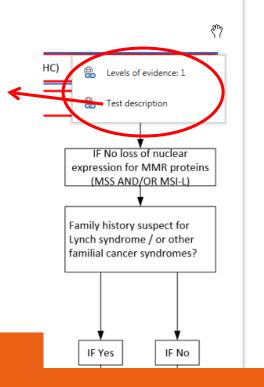
Integrate NGS testing and algorithm in a website



Integrate NGS testing and algorithm in a website

ComPerMed	Algorithms	 Composition 	Contacts Links	
Incidence List of experts Algorithms	V∰OPEN IN VISIO REFRESH SHAPE	INFO	All CRC	ని")
	TES	T: mismatch repair (MMR)	proteins (MLH1, MSH2, MSH6, PMS2) (IH TEST: PCR MSI	C) 🛞 Levels of evidence: 1
	IFI	Loss of MLH1 AND PMS2 (MSI-H)	IF Loss of MSH2 MSH6 OR PMS2 (without loss of MLH1) (MSI-H)	IF No loss of nuclear expression for MMR proteins (MSS AND/OR MSI-L)
	Тт	ST: mut BRAF		Family history suspect for Lynch syndrome / or other familial cancer syndromes?
		TEST + If TEST -		IF Yes IF No

Integrate NGS testing and algorithm in a website



Integrate NGS testing and algorithm in a website

MMR proteins test by IHC and/or PCR MSI in CRC

Microsatellite instability (MSI) is a hypermutable phenotype caused by the loss of DNA mismatch repair activity. Microsatellites are non-coding DNA sequences constituted by repeated units of 2-9 base pairs. They are randomly dispersed throughout the human genome. Microsatellite instability (MSI) is defined as a change (deletion or insertion of repeating units) in the microsatellite sequences in a tumor compared to the normal tissue. Microsatellite instability (MSI) is caused by a defect in the DNA mismatch repair (MMR) genes which normally occurs to correct errors during DNA replication.

The PCR detection by the amplification of 5 mono/di-nucleotide microsatellite markers is the standard test. MSI tests can be divided into three groups: MSI-H, when \geq 30% of markers exhibit

Future work

- Website: January 2018
- Regularly update clinical use of NGS: genes and algorithms
- Clinical use of NGS in other hematological cancers (lymphoid)
- Clinical use of NGS in pediatric cancers
- Harmonize variant annotation and clinical interpretation

