Marc Ladanyi, M.D. Chief, Molecular Diagnostics Service Member, Human Oncology and Pathogenesis Program

The MSK-IMPACT program: Experience with comprehensive clinical testing for cancer gene alterations and oncogenic fusions in over 20,000 patients with advanced solid cancers

Memorial Sloan Kettering Cancer Center

Proliferation of targetable molecular subsets Example: lung adenocarcinoma

Jordan E, et al., *Cancer Discovery* (in press) 2017

Awad et al. J Clin Oncol. 2016 Mar 1;34(7):721-30

Proliferation of targetable molecular subsets Example: lung adenocarcinoma

ALK RET ROS1

Proliferation of targetable fusions

Promiscuity of major fusion genes: recombine with multiple partners

Pan Genomic Analysis

- Whole genome
- Whole exome
- Whole transcriptome

Targeted

Assays

- Single gene assays
- Low multiplex
- NGS panels:
 - Hybrid capture
 - Amplicon capture

Primarily research labs

 Unbiased approach – comprehensive • Higher cost limits sequencing depth Longer turnaround time (TAT) – usually not suitable for therapeutic decisions in most clinical lung cancer settings

Clinical Labs

- Higher coverage of genomic regions of interest
 - Lower cost and time
 - Enrichment methods to improve detection
 - Provide results in clinical time frame

Ideal Features of a Clinical NGS assay for Cancer Molecular Diagnosis

- Can be performed at high volume in a resource-efficient manner
- Clinically viable time to final results (3 weeks or less)
- Performs well on typical clinical samples (small FFPE biopsies)
- Multiple types of genetic alterations studied by a single test
- Multiple types of cancer studied by a single test
- Relatively easy to update content

•Platforms

- Illumina sequencing
- Ion Torrent sequencing

Target enrichment

- Hybrid capture
- Amplicon capture (highly multiplexed PCR)

MiSeq

NovaSeq

Targeted Deep Sequencing of Key Cancer Genes

10 – 100s of genes

Advantage: lowest input DNA requirement Disadvantages: poorly suited to detection of copy number changes and rearrangements

100s to 20,000 genes

Advantage: better suited to detection of copy number changes and rearrangements , more sensitive Disadvantages: higher input DNA requirement

Illumina MiSeq

Ion Torrent PGM

Illumina HiSeq

Ion Torrent Proton

The MSK-IMPACT initiative at MSKCC

- <u>Overview</u> of test design and validation, data and experience; secondary germline testing, driving basket trials; sharing data
- 2. <u>Gene fusions</u>: novel and underestimated; need for complementary targeted RNAseq

Integrated Mutation Profiling of Actionable Cancer Targets

DNA from **FFPE Tumor** and **Normal** cells

Capture DNA for 468 cancer genes

MSK-IMPACT

Cheng DT, et al., J Mol Diagnostics, March 2015 - Method

Next-gen Sequencing (500 - 1000 X)

Align to genome and analyze

Somatic Mutations (Tumor-Normal Pairs):

Base Substitutions Small Indels **Copy Number Alterations** Select Rearrangements

MSK-IMPACT: bioinformatic pipeline overview

MSK-IMPACT: Current content (468 genes)

ABL1	BRCA2	CUL3	FANCC	IDH1	MAPK1
AKT1	BRD4	DAXX	FAT1	IDH2	MAX
AKT2	BRIP1	DCUN1D1	FBXW7	IFNGR1	MCL1
AKT3	ВТК	DDR2	FGF19	IGF1	MDC1
ALK	CARD11	DICER1	FGF3	IGF1R	MDM2
ALOX12B	CASP8	DIS3	FGF4	IGF2	MDM4
APC	CBFB	DNMT1	FGFR1	IKBKE	MED12
AR	CBL	DNMT3A	FGFR2	IKZF1	MEF2B
ARAF	CCND1	DNMT3B	FGFR3	IL10	MEN1
ARID1A	CCND2	DOT1L	FGFR4	IL7R	MET
ARID1B	CCND3	E2F3	FH	INPP4A	MITF
ARID2	CCNE1	EED	FLCN	INPP4B	MLH1
ARID5B	CD274	EGFL7	FLT1	INSR	MLL
ASXL1	CD276	EGFR	FLT3	IRF4	MLL2
ASXL2	CD79B	EIF1AX	FLT4	IRS1	MLL3
ATM	CDC73	EP300	FOXA1	IRS2	MPL
ATR	CDH1	EPCAM	FOXL2	JAK1	MRE11A
ATRX	CDK12	EPHA3	FOXP1	JAK2	MSH2
AURKA	CDK4	EPHA5	FUBP1	JAK3	MSH6
AURKB	CDK6	EPHB1	GATA1	JUN	MTOR
AXIN1	CDK8	ERBB2	GATA2	KDM5A	MUTYH
AXIN2	CDKN1A	ERBB3	GATA3	KDM5C	MYC
AXL	CDKN1B	ERBB4	GNA11	KDM6A	MYCL1
B2M	CDKN2A	ERCC2	GNAQ	KDR	MYCN
BAP1	CDKN2B	ERCC3	GNAS	KEAP1	MYD88
BARD1	CDKN2C	ERCC4	GREM1	КІТ	MYOD1
BBC3	CHEK1	ERCC5	GRIN2A	KLF4	NBN
BCL2	CHEK2	ERG	GSK3B	KRAS	NCOR1
BCL2L1	CIC	ESR1	H3F3C	LATS1	NF1
BCL2L11	CREBBP	ETV1	HGF	LATS2	NF2
BCL6	CRKL	ETV6	HIST1H1C	LMO1	NFE2L2
BCOR	CRLF2	EZH2	HIST1H2BD	MAP2K1	NKX2-1
BLM	CSF1R	FAM123B	HIST1H3B	MAP2K2	NKX3-1
BMPR1A	CTCF	FAM175A	HNF1A	MAP2K4	NOTCH1
BRAF	CTLA4	FAM46C	HRAS	MAP3K1	NOTCH2

NOTCH4	PRDM1	SDHAF2	TNFAIP3	H3F3A	RHEB	M
NPM1	PRKAR1A	SDHB	TNFRSF14	H3F3B	SH2B3	M
NRAS	PTCH1	SDHC	TOP1	HIST1H3A	SRSF2	NTI
NSD1	PTEN	SDHD	TP53	HIST1H3C	STAT3	NU
NTRK1	PTPN11	SETD2	TP63	HIST1H3D	STAT5A	PDCD
NTRK2	PTPRD	SF3B1	TRAF7	HIST1H3E	STAT5B	PPA
NTRK3	PTPRS	SH2D1A	TSC1	HIST1H3F	TCEB1	PPP
PAK1	PTPRT	SHQ1	TSC2	HIST1H3G	TCF3	PRD
PAK7	RAC1	SMAD2	TSHR	HIST1H3H	TCF7L2	PRI
PALB2	RAD50	SMAD3	U2AF1	HIST1H3I	TRAF2	PR
PARK2	RAD51	SMAD4	VHL	HIST1H3J	VEGFA	PR
PARP1	RAD51C	SMARCA4	VTCN1	HIST2H3C	XRCC2	PTP
PAX5	RAD51L1	SMARCB1	WT1	HIST2H3D	ZFHX3	RA
PBRM1	RAD51L3	SMARCD1	ΧΙΑΡ	HIST3H3	ZRSR2	REC
PDCD1	RAD52	SMO	XPO1	HLA-A	AGO2	RRA
PDGFRA	RAD54L	SOCS1	YAP1	HOXB13	BABAM1	RR
PDGFRB	RAF1	SOX17	YES1	ID3	CARM1	RR
PDPK1	RARA	SOX2	ACVR1	INHA	CDC42	RTI
PHOX2B	RASA1	SOX9	ANKRD11	INHBA	CSDE1	RX
PIK3C2G	RB1	SPEN	BCL10	MALT1	CYLD	SES
PIK3C3	RBM10	SPOP	BIRC3	MAP3K14	CYSLTR2	SES
PIK3CA	RECQL4	SRC	CALR	МАРКЗ	DROSHA	SES
PIK3CB	REL	STAG2	CD79A	MGA	DUSP4	SHC
PIK3CD	RET	STK11	CEBPA	MST1	ELF3	SL
PIK3CG	RFWD2	STK40	CENPA	MST1R	EPAS1	SM
PIK3R1	RHOA	SUFU	CSF3R	NCOA3	ERF	SO
PIK3R2	RICTOR	SUZ12	CXCR4	NEGR1	EZH1	SPR
PIK3R3	RIT1	SYK	DNAJB1	NFKBIA	FAM58A	ST
PIM1	RNF43	TBX3	EIF4A2	NUP93	HLA-B	TA
PLK2	ROS1	TERT	EIF4E	PGR	INPPL1	TA
PMAIP1	RPS6KA4	TET1	EPHA7	PLCG2	KMT2B	TE
PMS1	RPS6KB2	TET2	ERRFI1	POLD1	KMT5A	TP53
PMS2	RPTOR	TGFBR1	FOXO1	PPM1D	KNSTRN	UP
PNRC1	RUNX1	TGFBR2	FYN	PPP6C	LYN	WH
POLE	RYBP	TMEM127	GLI1	RAB35	MAPKAP1	WHS

MSK-IMPACT Genes Panel includes exons, introns, and other noncoding regions

15,265 cases **341 genes: 2,894 cases** 410 genes: 9,880 cases **468 genes: 2,491 cases**

Cancer Gene Promoters: TERT promoter

Cancer Gene Exons:

6,614 protein-coding exons of 468 genes

- actionable mutations
- targets of investigational agents
- frequently mutated in cancer
- cancer susceptibility genes

Cancer Gene Introns:

70 introns of 20 recurrently rearranged genes

SNP Probes: >1,000 non-coding SNPs - copy number analysis, various QC checks

Target Territory = 1.52 Mb

Sequencing Coverage Distribution

- > 99.5% are sequenced to >100X ullet
- **98.6%** are sequenced to >250X \bullet
- Important for detection of low allele frequency mutations and gene rearrangements
- Important for generation of informative copy number profiles \bullet

MSK-IMPACT: sample statistics

1300	1400	1500	1600	1700	1800	1900	2000	

Ryma Benayed, Ahmet Zehir

Accuracy

Reproducibility

Sensitivity

MSK-IMPACT: Validation of Clinically Actionable Targets

100% ... 50% ... 25% ... 12.5% ...

Normal vs normal analysis to set conservative thresholds that minimize false positives in the MSK-IMPACT hybrid capture assay (sequence normal DNA twice and declare one to be tumor)

Filtering criteria based on coverage depth (DP), number of mutant reads (AD), variant frequency (VF)

Hotspots: $DP \ge 20$, $AD \ge 8$, $VF \ge 2\%$

Non-hotspots: $DP \ge 20, AD \ge 10, VF \ge 5\%$

Based on normal vs normal variant calling experiments, the detection limit for low frequency variants was set at 2% for 'hotspot' mutations and 5% for non-'hotspot' mutations.

"mutant" allele frequency

Sequencing depth at position

Hotspots

Non-hotspots

Donavan Cheng

Validation of Clinically Actionable Targets

Submitted to NYS Department of Health: Dec 18, 2013 Full approval granted: July 15, 2014

Marc Ladanyi Mike Berger Maria Arcila Cyrus Hedvat Khedoudja Nafa Donavan Cheng Ahmet Zehir Ronak Shah Aijaz Syed Zheng Zha Raghu Chandramohan Tony Liu Alifya Oultache Ryma Benayed Talia Mitchell Catherine O'Reilly Justyna Sadowska Laetitia Borsu Meera Hameed Snjezana Dogan Dara Ross Jaclyn Hechtman Wei Song JinJuan Yao Liying Zhang Lu Wang, and many more ...

The Journal of Molecular Diagnostics, Vol. 17, No. 3, May 2015

Memorial Sloan Kettering-Integrated Mutation Profiling of Actionable Cancer Targets (MSK-IMPACT)

A Hybridization Capture-Based Next-Generation Sequencing Clinical Assay for Solid Tumor Molecular Oncology

Donavan T. Cheng,* Talia N. Mitchell,* Ahmet Zehir,* Ronak H. Shah,* Ryma Benayed,* Aijazuddin Syed,* Raghu Chandramohan,* Zhen Yu Liu,* Helen H. Won,* Sasinya N. Scott,* A. Rose Brannon,* Catherine O'Reilly,* Justyna Sadowska,* Jacklyn Casanova,* Angela Yannes,* Jaclyn F. Hechtman,* Jinjuan Yao,* Wei Song,* Dara S. Ross,* Alifya Oultache,* Snjezana Dogan,* Laetitia Borsu,* Meera Hameed,* Khedoudja Nafa,* Maria E. Arcila,* Marc Ladanyi,*[†] and Michael F. Berger^{*†}

From the Department of Pathology* and the Human Oncology and Pathogenesis Program,[†] Memorial Sloan Kettering Cancer Center, New York, New York

Journal of Molecular Diagnostics (March 20, 2015)

the **Journal of** Molecular Diagnostics

jmd.amjpathol.org

- \bullet
- \bullet
- Source of Normal DNA:
 - Whole Blood sample (preferred) : 5–10ml of peripheral blood in an EDTA tube
 - Normal tissue block: 5 20 unstained FFPE sections, 10 microns thick
 - Other sources: saliva, nail clippings
- Turnaround time: approx 2-3 weeks from receipt of T + N in the lab
 - 92% of cases returned in <3 weeks.

MSK-IMPACT: results obtained in >85% of submitted FFPE samples

Ryma Benayed

MSK-IMPACT: determinants of success

a

Assay performance as a function of genomic DNA input values

Association of different submitted specimen types with assay performance

Assay Performance

Ryma Benayed

MSK-IMPACT: detection of somatic point mutations

Coverage Is Specific to Target Exons

Lung adenocarcinoma case

MSK-IMPACT: robust detection of copy number changes

EGFR and ERBB2 (HER2) amplification in two colorectal cancers

MSK-IMPACT: robust detection of copy number changes

Glioblastoma (also had EGFRvIII)

Neuroblastoma (also had ALK F1174L mutation)

This plot shows the copy number changes in the patient. Each dot represents a probeset and the values on the y-axis show the log2 transformed ratio of tumor vs normal. You can he plot on the bottom can be used to zoom in on certain regions.

Targeted exons per chromosome

MSK-IMPACT: DNA-based Detection of Cancer Fusion Genes (by intron capture sequencing of rearranged introns)

Specific introns of cancer fusion genes captured by MSK-IMPACT

Gene	Introns	Target (kb)
ALK	17, 18, 19	3.9
BRAF	7, 8, 9, 10	18.3
CD74	4, 5, 6	2.9
DNAJB1	1, 2	1.4
EGFR	7, 17, 24, 25, 26	4.4
ETV6	4, 5	30.3
EWSR1	7, 8, 9, 10, 11, 12, 13	11.7
GFR2	16, 17	5.3
GFR3	15, 16, 17, 18	0.6
MET	13, 14	3.1
NAB2	2, 3, 4, 5, 6	3.5
NTRK1	3, 7, 8, 9, 10, 11, 12	5.8
NTRK2	15	6.2
NUT	1	1.9
PAX8	8, 9, 10	16.2
RELA	1,2	0.7
RET	7, 8, 9, 10, 11	4.5
ROS1	30, 31, 32, 33, 34, 35	20.4
TFE3	3, 4, 5	4.9
MPRSS2	1, 2	13.3

MSK-IMPACT: Detecting Specific Rearrangements

Lung adenocarcinoma

ALK

EML4

EML4

ALK

MSK-IMPACT: Detecting Specific Rearrangements

Lung adenocarcinoma

File Genomes View	Tracks Regi	ons Tools Geno	omeSpace He	elp		IGV							
Human hg19	¢ chr5	*	chr5:149,782,	110-149,782,698	Go	Î	• • 🖗 🛙	I X 🖵				- 11111	
	p15.32 p15.2	p14.3 p13.3	p13.1 p11	q11.2 q12.2	q1 3.2	q14.1	q14.3 q15	q21.2 q22	.1 q23.1	q23.3	q31.2	q32 q33.2	q34
	bp	149,782,200 bp 	1	149,782,300 bp 	1		589 bp 149,782,400 bp I	1	149,782,500 b	p	I	149,782,600 bp 	I
S12-60732-Tbam Coverage	[0 - 26]										_		
S12-60732-T_bc19_IMPACTv3-C 001_L000_mrg_cl_ain_srt_MD_IF .bam													
Sequence ➡ RefSeq Genes							CD74						
4 tracks loaded chr5:	149,782,143												

CD74

CD74

ROS1

Run MSK-IMPACT in patients with recurrent/metastatic solid cancers

- Carcinomas, sarcomas, brain tumors
- Provide improved diagnosis and better prognostication
- Select approved targeted therapies based on mutations
- eligibility, especially "basket" trials

Ahmet Zehir^{1,13}^o, Ryma Benayed^{1,13}, Ronak H Shah¹, Aijazuddin Syed¹, Sumit Middha¹^o, Hyunjae R Kim¹^o, Preethi Srinivasan¹, Jianjiong Gao², Debyani Chakravarty², Sean M Devlin³, Matthew D Hellmann⁴, David A Barron⁵, Alison M Schram⁴, Meera Hameed¹, Snjezana Dogan¹, Dara S Ross¹, Jaclyn F Hechtman¹, Deborah F DeLair¹, JinJuan Yao¹, Diana L Mandelker¹, Donavan T Cheng^{1,12}, Raghu Chandramohan^{1,12}, Abhinita S Mohanty¹, Ryan N Ptashkin¹, Gowtham Jayakumaran¹, Meera Prasad¹, Mustafa H Syed¹, Screen (or pre-screen) patients for clinical trial Anoop Balakrishnan Rema¹⁽⁰⁾, Zhen Y Liu¹, Khedoudja Nafa¹, Laetitia Borsu¹, Justyna Sadowska¹, Jacklyn Casanova¹, Ruben Bacares¹, Iwona J Kiecka¹, Anna Razumova¹, Julie B Son¹, Lisa Stewart¹, Tessara Baldi¹, Kerry A Mullaney¹, Hikmat Al-Ahmadie¹, Efsevia Vakiani¹, Adam A Abeshouse³, Alexander V Penson^{3,6}, Philip Jonsson^{3,6}, Niedzica Camacho¹, Matthew T Chang^{3,6}, Helen H Won¹, Benjamin E Gross², Ritika Kundra², Zachary J Heins², Hsiao-Wei Chen², Sarah Phillips², Hongxin Zhang², Jiaojiao Wang², Angelica Ochoa², Jonathan Wills⁷, Michael Eubank⁷, Stacy B Thomas⁷, Stuart M Gardos⁷, Dalicia N Reales⁸, Jesse Galle⁸, Robert Durany⁸, Roy Cambria⁸, Wassim Abida⁴, Andrea Cercek⁴, All results are reported to the ordering clinician and Darren R Feldman⁴, Mrinal M Gounder⁴, A Ari Hakimi⁹, James J Harding⁴, Gopa Iyer⁴, Yelena Y Janjigian⁴, Emmet J Jordan⁴, Ciara M Kelly⁴, Maeve A Lowery⁴, Luc G T Morris⁹, Antonio M Omuro¹⁰, Nitya Raj⁴, placed in patient medical record Pedram Razavi⁴, Alexander N Shoushtari⁴⁽²⁾, Neerav Shukla¹¹, Tara E Soumerai⁴, Anna M Varghese⁴, Rona Yaeger⁴, Jonathan Coleman⁸, Bernard Bochner⁸, Gregory J Riely⁴, Leonard B Saltz⁴, Howard I Scher⁴, Paul J Sabbatini⁴, Mark E Robson⁴, David S Klimstra¹, Barry S Taylor^{2,3,6}, Jose Baselga^{4,6}, Nikolaus Schultz^{2,3,6}, David M Hyman⁴, Maria E Arcila¹, David B Solit^{2,4,6}, Marc Ladanyi^{1,6} & Michael F Berger^{1,2,6}

MSK-IMPACT: Institution-wide Clinical Sequencing Initiative

Started in 2014; surpassed 10,000 patients in May 2016

Mutational landscape of metastatic cancer revealed from prospective clinical sequencing of 10,000 patients

NATURE MEDICINE VOLUME 23 | NUMBER 6 | JUNE 2017

Now > 20,000 patients; running approx 800/month on 5 HiSeq 2500 sequencers

Secondary Germline MSK-IMPACT

Memorial Sloan Kettering Cancer Center

Secondary Germline MSK-IMPACT: Prevalence of Pathogenic/Likely Pathogenic Variants

- Anonymized analysis of first 1566 cases (MSK-IMPACT)
- Considered all cancer susceptibility genes
- Variants curated by Ingenuity and manual review
- About 13% of MSK-IMPACT cases contain pathogenic/ presumed pathogenic germline variants in cancer susceptibility genes, of which about 40% are linked to the current cancer

 \geq 21 pathogenic or likely pathogenic variant

- Schrader KT, *et al.*, *JAMA Oncology*, Nov 2015
 - \rightarrow Germline cancer susceptibility variants are not rare in cancer patients undergoing tumor mutation profiling
 - Analyzing the germline in tumor-normal analysis is superior to phenotype-directed testing to identify cancer susceptibility variants in cancer patients.

Memorial Sloan Kettering Cancer Center

Secondary Germline MSK-IMPACT: Prevalence of Pathogenic/Likely Pathogenic Variants

- \bullet germline analysis

JAMA | Preliminary Communication

(Germline) Mutation Detection in Patients With Advanced Cancer by Universal Sequencing of Cancer-Related Genes in Tumor and Normal DNA vs Guideline-Based Germline Testing

Diana Mandelker, MD, PhD; Liying Zhang, MD, PhD; Yelena Kemel, MS, ScM; Zsofia K. Stadler, MD; Vijai Joseph, PhD; Ahmet Zehir, PhD; Nisha Pradhan, BA; Angela Arnold, MS; Michael F. Walsh, MD; Yirong Li, PhD; Anoop R. Balakrishnan, MS; Aijazuddin Syed, MS; Meera Prasad, MS; Khedoudja Nafa, PharmD, PhD; Maria I. Carlo, MD; Karen A. Cadoo, MD; Meg Sheehan, MS; Megan H. Fleischut, MS; Erin Salo-Mullen, MS, MPH; Magan Trottier, MS, MSc; Steven M. Lipkin, MD, PhD; Anne Lincoln, MS; Semanti Mukherjee, PhD; Vignesh Ravichandran, MS; Roy Cambria, BS; Jesse Galle, BA; Wassim Abida, MD, PhD; Marcia E. Arcila, MD; Ryma Benayed, PhD; Ronak Shah, MS; Kenneth Yu, MD; Dean F. Bajorin, MD; Jonathan A. Coleman, MD; Steven D. Leach, MD; Maeve A. Lowery, MD; Julio Garcia-Aguilar, MD, PhD; Philip W. Kantoff, MD; Charles L. Sawyers, MD; Maura N. Dickler, MD; Leonard Saltz, MD; Robert J. Motzer, MD; Eileen M. O'Reilly, MD; Howard I. Scher, MD; Jose Baselga, MD, PhD; David S. Klimstra, MD; David B. Solit, MD; David M. Hyman, MD; Michael F. Berger, PhD; Marc Ladanyi, MD; Mark E. Robson, MD; Kenneth Offit, MD, MPH

report on first 1040 patients who signed additional MSK-IMPACT consent for

• 65 patients (6.3%) who would not have been tested based on clinical guidelines had moderate or high penetrance mutations in a cancer susceptibility gene

JAMA September 5, 2017 Volume 318, Number 9

MSK-IMPACT: Distribution of Tumor Types

\rightarrow Large case numbers provide statistical power to analyses for new drivers.

n = 12,670 tumors from 11,369 patients

Zehir A, et al. Mutational Landscape of Metastatic Cancer Revealed from Prospective Clinical Sequencing of 10,000 Patients. *Nature Medicine,* June 2017

MSK-IMPACT: Mutation Counts by Major Tumor Types

Zehir A, et al. Mutational Landscape of Metastatic Cancer F Nature Medicine, June 2017

Zehir A, et al. Mutational Landscape of Metastatic Cancer Revealed from Prospective Clinical Sequencing of 10,000 Patients.

IGV screenshot of MSIsensor on a microsatellite locus in an MSS tumor (left) and an MSI-H (right) tumor

NFORMATICS APPLICATIONS NOTE

Sequence analysis

MSIsensor: microsatellite instability detection using paired tumor-normal sequence data

Beifang Niu^{1,†}, Kai Ye^{1,2,*,†}, Qunyuan Zhang^{1,2}, Charles Lu¹, Mingchao Xie¹, Michael D. McLellan¹, Michael C. Wendl¹ and Li Ding^{1,2,3,4,*} ¹Departments of Genetics and Mathematics, The Genome Institute, ²Department of Genetics, Division of Statistical Genomics, ³Department of Medicine and ⁴Siteman Cancer Center, Washington University in St. Louis, MO 63108, USA

MSK-IMPACT panel contains approx 1500 microsatellite loci

MSK-IMPACT: Detecting microsatellite instability by MSIsensor analysis

Vol. 30 no. 7 2014, pages 1015–1016 doi:10.1093/bioinformatics/btt755

Advance Access publication December 25, 2013

q22.1 q22.3	q31.2 q31.32 q32.1 q33 q34 q35 q36.1 q36.3
116,381,140 bp	116,381,160 bp
1	
	Tumor
	Normal
- TTTGGTTTGG	
· · · · ·	· · · · · · · · · · · · · · · · · · ·

Sumit Middha, Ahmet Zehir, Jackie Hechtman

Sumit Middha Liying Zhang Khedoudja Nafa Gowtham Jayakumaran Donna Wong Hyunjae R. Kim Justyna Sadowska Michael F. Berger Deborah F. Delair Jinru Shia Zsofia Stadler David S. Klimstra Marc Ladanyi Ahmet Zehir Jaclyn F. Hechtman

Reliable Pan-Cancer Microsatellite Instability Assessment by Using Targeted Next-Generation Sequencing Data

Conclusion MSI status can be reliably inferred by MSIsensor from large-panel targeted NGS data. Concurrent MSI testing by NGS is resource efficient, is potentially more sensitive for MMR-D than MSI PCR, and allows identification of MSI-H across various cancers not typically screened, as highlighted by the finding that 35% (68 of 193) of all MSI-H tumors were non-CRC/UEC.

JCOTM Precision Oncology October 4, 2017

MSK-IMPACT: Integrated Mutation Profiling of Actionable Cancer Targets

Precision medicine at Memorial Sloan **Kettering Cancer Center: clinical** Drug Discovery Today next-generation sequencing enabling next-generation targeted therapy trials Hyman D, et al. August 2015

Mike Berger, Ahmet Zehir

MSK-IMPACT: clinical annotation of results

Chakravarti D, et al. OncoKB: A Precision Oncology Knowledge Base. JCO Precision Oncol, May 2017

MSK-IMPACT: Institution-wide Clinical Sequencing Initiative

Memorial Hospital For Cancer & Allied Diseases

Molecular Diagnostics Service, Department of Pathology

Memorial Sloan Kettering Cancer Center 1275 York Avenue New York, NY, 10065 Tel: (212) 639-8280 | Fax: (212) 717-3515 MSK-IMPACT Testing Report

Patlent Name	Redacted	Medical Record #	Redacted
Date of Birth	Redacted	Accession #	Redacted
Gender	Redacted	Specimen Submitted	N/A
Tumor Type	High-Grade Serous Ovarian Cancer	Surgical Path. #	Redacted
Ref. Physician	Redacted	Account #	Redacted
Date of Receipt	Redacted	Date of Report	Redacted
Date of Procedure	Redacted		

Summary	1 mutation, 20 copy number alterations, no structural variants detected. 2 alterations have OncoKB interpretations.
Comments	MSK-IMPACT tiling probes also show a high level gain at 3q13, in a region that includes CD47, CBLB, and ALCAM (genes that are not represented on the MSK-IMPACT panel).
	Copy number profile is suggestive of a fragmented genome

Somatic alterations detected in this sample:

Gene Type		Iteration Location Additional Info		Additional Information	on	
Mutations						
TP53	Frameshift Deletion	L93Rfs*30 (c.278del)	exon 4	MAF: 63.3%	0	α
Copy Number	Alterations					
FGFR1	Whole gene	Amplification	8p11.22	FC: 2.3 3B	0	
MYC	Whole gene	Amplification	8q24.21	FC: 2.0	0	
KRAS	Whole gene	Amplification	12p12.1	FC: 2.0	0	
CCNE1	Whole gene	Amplification	19q12	FC: 2.7	0	
PIK3R1	Whole gene	Deletion	5q13.1	FC: -2.1	0	
BRCA1	Whole gene	Deletion	17q21.31	FC: -2.0	0	
RAD21	Whole gene	Amplification	8q24.11	FC: 2.0		
AGO2	Whole gene	Amplification	8q24.3	FC: 2.0		
RECQL4	Whole gene	Amplification	8q24.3	FC: 2.0		
PIK3C2G	Whole gene	Amplification	12p12.3	FC: 2.0		
RECQL	Whole gene	Amplification	12p12.1	FC: 2.0		
CYLD	Whole gene	Amplification	16q12.1	FC: 2.2		
WHSC1L1	Whole gene	Amplification	8p11.23	FC: 2.3		
CALR	Whole gene	Amplification	19p13.2	FC: 2.9		
DNAJB1	Whole gene	Amplification	19p13.12	FC: 2.9		
STAT5B	Whole gene	Deletion	17q21.2	FC: -2.0		
STAT5A	Whole gene	Deletion	17q21.2	FC: -2.0		

STAT3	Whole gene	Deletion	17q21.2	FC: -2.0
EZH1	Whole gene	Deletion	17q21.2	FC: -2.0
MAP3K14	Whole gene	Deletion	17q21.31	FC: -2.0

+: A glossary of terms and icons used in this report can be found after the "Test and Methodology" section . ^α: Denotes clinically/analytically validated variants.

RefSeq IDs for the genes with reported variants along with a list of all 468 genes can be found on the last page

FDA Approved and/or NCCN recommended biomarker:						
Alteration(s)	Drugs(s)	Annotation				
Level 1 BRCA1 Deletion FC: -2.0	Rucaparib	BRCA1 is a tumor suppressor involved in the DNA damage response. Select germline mutations of BRCA1 are associated with a significantly increased lifetime risk of developing breast and ovarian cancer. BRCA1 deletion is likely oncogenic. PARP-inhibitors olaparib and rucaparib are FDA-approved for the treatment of patients with BRCA1-mutant ovarian cancer who have received prior lines of therapy. While olaparib is only FDA-approved in the germline setting and is considered standard care for the treatment of BRCA1-mutant ovarian cancers in the somatic setting, rucaparib is FDA-approved in both the germline and somatic setting for these patients.				
Investigational bior	narker:					
Level 3B FGFR1 Amplification FC: 2.3	AZD4547, Debio1347	FGFR1, a receptor tyrosine kinase, is altered by mutation, chromosomal rearrangement or amplification in a diverse range of cancers, including lung and breast cancers. FGFR1 amplification is known to be oncogenic. While there is promising clinical data supporting the use of FGFR-inhibitors such as AZD4547 in patients with high-level FGFR1-amplified squamous cell lung cancer, their clinical utility in patients with FGFR1-amplified high-grade serous ovarian cancer is unknown.				

Technical Assessments						
Tumor Coverage	632X	Test Version	468 genes			
Status	Matched Sample	Run Number	2017-111			

Coverage assessment: Unless specified, all exons tested had minimum depth of coverage of 100X.

Mutation assessment: Mutation assessment: Mutations are called against the patient's matched normal sample. This assay reports somatic variants confirmed to be absent in the matched normal.

Copy number assessment: The criteria for gene amplification and deletions are as follows: if the fold change is greater than 2, it is reported as amplification. If the fold change is -2 or below, it is reported as a deletion. The degree of copy number change is influenced by tumor content and the ability to detect copy number changes is progressively compromised in samples with less than 50% tumor. For samples with low tumor content, the absence of detectable copy number changes should be interpreted with caution.

Test and Methodology

MSK-IMPACT (Integrated Mutation Profiling of Actionable Cancer Targets) was used to identify specific mutations in 468 genes (Cheng DT et al., 2015, JMD). The following table shows the exons that have been clinically validated:

Gene	RefSeq ID	Exon(Amino Acid range)
AKT1	NM_001014431	exon3 (16-59), exon3 (16-59)
ALK	NM_004304	exon23 (1172-1215), exon25 (1248-1279), exon23 (1172-1215), exon25 (1248-1279)
BRAF	NM_004333	exon11 (439-478), exon15 (581-620), exon11 (439-478), exon15 (581-620)
EGFR	NM_005228	exon18 (688-728), exon19 (729-761), exon20 (762-823), exon21 (824-875), exon18 (688-728), exon19 (729-761), exon20 (762-823), exon21 (824-875)
ERBB2	NM_004448	exon8 (301-341), exon19 (737-769), exon20 (770-831), exon8 (301-341), exon19 (737-769), exon20 (770-831)
FGFR2	NM_000141	exon7 (250-313), exon9 (362-429), exon12 (521-558), exon7 (250-313), exon9 (362-429), exon12 (521-558)
FGFR3	NM_000142	exon7 (247-310), exon9 (359-422), exon18 (759-807), exon7 (247-310), exon9 (359-422), exon18 (759-807)

Select Basket Studies @ MSKCC

<u>Histology-independent or multi-histology trial design</u>

- Pre-defined qualifying genomic alteration(s)
- Uniform therapy (single drug or combination)
- Multiple disease-specific cohorts each with independent statistical analysis
- Centralized prospective single target molecular screening uncommon

→ Assumes that ongoing broad clinical genotyping effort can prepopulate genetically informed basket trials

Gene(s)	Alterations	Drug
BRAF	V600	Vemurafenib
FGFR1, FGFR2, FGFR3	Fusions, Amplification, Select Missence Mutations	Debio1347
PIK3CA	Missence Mutations	Taselisib
ERBB2, ERBB3	Select Missence Mutations, Fusions	Neratinib
AKT1	Select Missence Mutations	AZD5363
NTRK1, NTRK2, NTRK3	Fusions	LOXO-101
ALK1, ROS1, NTRK1, NTRK2, NTRK3	Fusions, Select Missence Mutations	Entrectinib
TSC1, TSC2, mTOR	Truncating Mutations (TSC1/2), Select mTOR mutants	Everolimus
MDM2	Amplifications (High Copy Number)	AMG232
SMARCA4	Truncating Mutations	Tazemetostat
RET	Fusions, Select Missence Mutations	RXDX-105
IDH1	Select Missence Mutations	AG-120

MSK-IMPACT Extramural Data Sharing:

FINDING CURES TOGETHER*

- The Center for Personalized Cancer Treatment, The Netherlands
- Dana-Farber Cancer Institute
- Institut Gustave Roussy, France
- Johns Hopkins University's Sidney Kimmel Comprehensive Cancer Center
- Memorial Sloan Kettering Cancer Center
- Princess Margaret Cancer Centre, Canada
- Vanderbilt-Ingram Cancer Center

PROJECTGENIE

Genomics Evidence Neoplasia Information Exchange

Memorial Sloan Kettering Cancer Center..

VANDERBILT 🤯 UNIVERSITY

Aggregate and Link International Clinical Oncology Datasets into a Single, Shared Database

The clinical cancer genomics meta-database

The longitudinal clinical outcomes database

The MSK-IMPACT initiative at MSKCC

- <u>Overview</u> of test design and validation, data and experience; secondary germline testing, driving basket trials; sharing data
- 2. <u>Gene fusions</u>: novel and underestimated; need for complementary targeted RNAseq

MSK-IMPACT: DNA-based Detection of Cancer Fusion Genes (by intron capture sequencing of rearranged introns)

Specific introns of cancer fusion genes captured by MSK-IMPACT

Gene	Introns	Target (kb)
ALK	17, 18, 19	3.9
BRAF	7, 8, 9, 10	18.3
CD74	4, 5, 6	2.9
DNAJB1	1, 2	1.4
EGFR	7, 17, 24, 25, 26	4.4
ETV6	4, 5	30.3
EWSR1	7, 8, 9, 10, 11, 12, 13	11.7
GFR2	16, 17	5.3
GFR3	15, 16, 17, 18	0.6
MET	13, 14	3.1
NAB2	2, 3, 4, 5, 6	3.5
NTRK1	3, 7, 8, 9, 10, 11, 12	5.8
NTRK2	15	6.2
NUT	1	1.9
PAX8	8, 9, 10	16.2
RELA	1,2	0.7
RET	7, 8, 9, 10, 11	4.5
ROS1	30, 31, 32, 33, 34, 35	20.4
TFE3	3, 4, 5	4.9
MPRSS2	1, 2	13.3

MSK-IMPACT: DNA-based Detection of Cancer Fusion Genes

Prospective Clinical Sequencing of 10,000 Patients. *Nat Med*, June 2017

MSK-IMPACT: DNA-based Detection of Cancer Fusion Genes (by intron capture sequencing of rearranged introns)

Fusion Gene A-B Translocation breakpoint

Specific introns of cancer fusion genes captured by **MSK-IMPACT**

Gene	Introns	Target (kk
ALK	17, 18, 19	3.9
BRAF	7, 8, 9, 10	18.3
CD74	4, 5, 6	2.9
DNAJB1	1, 2	1.4
EGFR	7, 17, 24, 25, 26	4.4
ETV6	4, 5	30.3
EWSR1	7, 8, 9, 10, 11, 12, 13	11.7
FGFR2	16, 17	5.3
FGFR3	15, 16, 17, 18	0.6
MET	13, 14	3.1
NAB2	2, 3, 4, 5, 6	3.5
NTRK1	3, 7, 8, 9, 10, 11, 12	5.8
NTRK2	15	6.2
NUT	1	1.9
PAX8	8, 9, 10	16.2
RELA	1,2	0.7
RET	7, 8, 9, 10, 11	4.5
ROS1	30, 31, 32, 33, 34, 35	20.4
TFE3	3, 4, 5	4.9
TMPRSS2	1, 2	13.3

Anchored multiplex PCR for targeted next-generation sequencing

Zongli Zheng^{1,2}, Matthew Liebers¹, Boryana Zhelyazkova¹, Yi Cao¹, Divya Panditi¹, Kerry D Lynch¹, Juxiang Chen^{1,3}, Hayley E Robinson¹, Hyo Sup Shim^{1,4}, Juliann Chmielecki⁵, William Pao⁵, Jeffrey A Engelman⁶, A John Iafrate^{1,6} & Long Phi Le^{1,6}

NATURE MEDICINE VOLUME 20 | NUMBER 12 | DECEMBER 2014

Targeted RNAseq (Archer FusionPlex panels)

- captures any fusion partners of genes of interest
- uses one gene-specific primer + one universal primer
- fusion detection sensitivity is good <5% tumor content -minimum RNA input is 50ng.
 - -samples with 1< RIN<2: min input is 250ng
 - -works well on most FFPE RNA samples
- paired-end sequencing (2x150) on Illumina MiSeq (or NextSeq)

AAAA

ITTELETION IN T

MSK Archer Custom Solid Tumor Targeted RNAseq Panel

ALK	EPC1	FUS	MET	NRG1	PPARG	TCF12
BCOR	ERBB2	GLI1	MGEA5	NTRK1	PRKACA	TFE3
BRAF	ERG	GRB7	MKL2	NTRK2	RET	TFEB
CAMTA1	ETV6	HMGA2	MYB	NTRK3	ROS1	TFG
CCNB3	EWSR1	JAK3	NCOA1	PDGFB	RSPO2	TMPRSS2
CIC	FGFR2	JAZF1	NCOA2	PDGFRA	RSPO3	USP6
COL6A3	FGFR3	KIT	NOTCH1	PHF1	SS18	YWHAE
DNAJB1	FOSB	MAML2	NOTCH2	PIK3CA	STAT6	
EGFR	FOXO1	MEAF6	NR4A3	PLAG1	TAF15	

→ Allows robust detection in FFPE RNA of any fusion involving these genes, regardless of the fusion partner.

ALK

BRAF

CD74

DNAJB1

EGFR

ETV6

EWSR1

FGFR2

FGFR3

MET

NAB2

NTRK1

NTRK2

NUT

PAX8

RELA

RET

ROS1

TFE3

TMPRSS2

RED: cancer fusion genes covered by only one panel

DNA-based fusion detection

MSK-IMPACT + Archer for efficient fusion detection in clinical cancer samples

ALK	EPC1	FUS	MET	NRG1	PPARG	TCF:
BCOR	ERBB2	GLI1	MGEA5	NTRK1	PRKACA	TFE
BRAF	ERG	GRB7	MKL2	NTRK2	RET	TFE
CAMTA1	ETV6	HMGA2	MYB	NTRK3	ROS1	TFC
CCNB3	EWSR1	JAK3	NCOA1	PDGFB	RSPO2	TMPR
CIC	FGFR2	JAZF1	NCOA2	PDGFRA	RSPO3	USP
COL6A3	FGFR3	ΚΙΤ	NOTCH1	PHF1	SS18	YWH
DNAJB1	FOSB	MAML2	NOTCH2	PIK3CA	STAT6	
EGFR	FOXO1	MEAF6	NR4A3	PLAG1	TAF15	

KNA-based fusion detection

Lung adenocarcinoma clinical testing workflow – MSKCC 2017

The MSK-IMPACT initiative at MSKCC

- <u>Overview</u> of test design and validation, data and experience; secondary germline testing, driving basket trials; sharing data
- 2. <u>Gene fusions</u>: novel and underestimated; need for complementary targeted RNAseq

Clinical MSK-IMPACT Leadership Team

Marc Ladanyi

Ahmet Zehir

Memorial Sloan Kettering Cancer Center Michael Berger

Maria Arcila

Ryma Benayed

Center for Molecular Oncology

David Solit

Clinical MSK-IMPACT Bioinformatics Team

Abhinita Mohantya

Sumit Middha

Raghu Chandramohan

Sample Prep

Sequencing

Ronak Shah

Gowtham Jayakumaran

Liu (Tony) Zhen

Ryan

Ptashkin

Informatics Pipeline

Informatics Review

Path Signout

Nelio Chaves

Elise Gallahger Mustafa Syed

Sample Prep

Sequencing

Informatics Pipeline

Informatics Review

Path Signout

Clinical MSK-IMPACT Sequencing Team

Iwona

Justyna Sadowska

Sample Prep

Sequencing

Jackie Casanova

Anna Razumova

Julie Son

Informatics Pipeline Informatics Review

Path Signout

Mutational landscape of metastatic cancer revealed from **Prospective Comprehensive Molecular** prospective clinical sequencing of 10,000 patients Characterization of Lung Adenocarcinomas for Efficient Patient Matching to Approved Ahmet Zehir^{1,13}, Ryma Benayed^{1,13}, Ronak H Shah¹, Aijazuddin Syed¹, Sumit Middha¹, Hyunjae R Kim¹, Preethi Srinivasan1, Jianjiong Gao2, Debyani Chakravarty2, Sean M Devlin3, Matthew D Hellmann4, David A Barron⁵, Alison M Schram⁴, Meera Hameed¹, Snjezana Dogan¹, Dara S Ross¹, Jaclyn F Hechtman¹, and Emerging Therapies 😂 🤮 Deborah F DeLair¹, JinJuan Yao¹, Diana L Mandelker¹, Donavan T Cheng^{1,12}, Raghu Chandramohan^{1,12},

Abhinita S Mohanty¹, Ryan N Ptashkin¹, Gowtham Jayakumaran¹, Meera Prasad¹, Mustafa H Syed¹, Anoop Balakrishnan Rema¹^o, Zhen Y Liu¹, Khedoudja Nafa¹, Laetitia Borsu¹, Justyna Sadowska¹, Jacklyn Casanova¹, Ruben Bacares¹, Iwona J Kiecka¹, Anna Razumova¹, Julie B Son¹, Lisa Stewart¹, Tessara Baldi¹, Kerry A Mullaney¹, Hikmat Al-Ahmadie¹, Efsevia Vakiani¹, Adam A Abeshouse³, Alexander V Penson^{3,6}, Philip Jonsson^{3,6}, Niedzica Camacho¹, Matthew T Chang^{3,6}, Helen H Won¹, Benjamin E Gross², Ritika Kundra², Zachary J Heins², Hsiao-Wei Chen², Sarah Phillips², Hongxin Zhang², Jiaojiao Wang², Angelica Ochoa², Jonathan Wills⁷, Michael Eubank⁷, Stacy B Thomas⁷, Stuart M Gardos⁷, Dalicia N Reales⁸, Jesse Galle⁸, Robert Durany⁸, Roy Cambria⁸, Wassim Abida⁴, Andrea Cercek⁴, Darren R Feldman⁴, Mrinal M Gounder⁴, A Ari Hakimi⁹, James J Harding⁴, Gopa Iyer⁴, Yelena Y Janjigian⁴, Emmet J Jordan⁴, Ciara M Kelly⁴, Maeve A Lowery⁴, Luc G T Morris⁹, Antonio M Omuro¹⁰, Nitya Raj⁴, Pedram Razavi⁴, Alexander N Shoushtari⁴⁽ⁱ⁾, Neerav Shukla¹¹, Tara E Soumerai⁴, Anna M Varghese⁴, Rona Yaeger⁴, Jonathan Coleman⁸, Bernard Bochner⁸, Gregory J Riely⁴, Leonard B Saltz⁴, Howard I Scher⁴, Paul J Sabbatini⁴, Mark E Robson⁴, David S Klimstra¹, Barry S Taylor^{2,3,6}, Jose Baselga^{4,6}, Nikolaus Schultz^{2,3,6}, David M Hyman⁴, Maria E Arcila¹, David B Solit^{2,4,6}, Marc Ladanyi^{1,6} & Michael F Berger^{1,2,6}

NATURE MEDICINE VOLUME 23 | NUMBER 6 | JUNE 2017

Analysis of first 10,000 patients (all solid cancer types) \rightarrow now > 20,000 patients

Emmet J. Jordan¹, Hyunjae R. Kim², Maria E. Arcila², David Barron³, Debyani Chakravarty⁴, JianJiong Gao⁴, Matthew T. Chang^{5,6}, Andy Ni⁶, Ritika Kundra⁴, Philip Jonsson^{5,6}, Gowtham Jayakumaran², Sizhi Paul Gao⁵, Hannah C. Johnsen⁵, Aphrothiti J. Hanrahan⁵, Ahmet Zehir², Natasha Rekhtman², Michelle S. Ginsberg⁷, Bob T. Li⁸, Helena A. Yu⁸, Paul K. Paik⁸, Alexander Drilon⁸, Matthew D. Hellmann⁸, Dalicia N. Reales⁵, Ryma Benayed², Valerie W. Rusch⁹, Mark G. Kris⁸, Jamie E. Chaft⁸, José Baselga^{1,5}, Barry S. Taylor^{4,5,6}, Nikolaus Schultz^{4,6}, Charles M. Rudin⁸, David M. Hyman¹, Michael F. Berger^{2,4}, David B. Solit^{1,4,5}, Marc Ladanyi^{2.5}, and Gregory J. Riely⁸

JUNE 2017 CANCER DISCOVERY

Analysis of first 860 lung adenocarcinoma patients \rightarrow now > 3,900 NSCLC patients

Analysis of the first 860 lung adenocarcinomas studied by MSK-IMPACT

Characteristics	N=860 (%)	Samples (n	
_			
Age			
18-50	122 (14.2)	134	
51-75	615 (71.5)	652	
>75	123 (14.3)	129	
Sex			
Men	354 (41.2)	369	
Women	506 (58.8)	546	
Smoking status			
Never	277 (32.2)	302	
Former light (≤15 pack year)	153 (17.8)	167	
Former heavy (>15 pack year)	420 (48.8)	436	
Current heavy	10 (1.2)	10	

Jordan EJ, et al. Prospective comprehensive molecular characterization of lung adenocarcinomas for efficient patient matching to approved and emerging therapies. *Cancer Discovery* 2017 Mar 23

MSK-IMPACT testing of lung adenocarcinomas: how many received matched therapy ? How many enrolled on a clinical trial ?

Jordan EJ, et al. *Cancer Discovery* 2017 Mar 23

MSK-IMPACT testing of lung adenocarcinomas: how many benefited from the matched therapy received based on mutation data?

Jordan EJ, et al. Cancer Discovery 2017 Mar 23

vel 1	Total Patients N	Clinical Be Matched Th N (%)
95%	214	173/204 (8
91%	33	28/30 (93
65%	20	11/13 (84
el 2A		
65%	26	13/17 (76
61%	18	8/11 (72.3
62%	13	6/8 (759
	11	1/2 (50%
/el 2B		
	12	1/5 (209
	11	0 (0%
	6	0 (0%)
vel 3		
	228	1/2 (50%
50%	20	4/10 (40
vel 4		
	17	0/1 (0%
	16	0/16 (09
50% 75% 1 nical Benefit I Matched Therapy	100%	

