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Any reports and responses or comments on the
article can be found at the end of the article.

Abstract
Two billion people are infected with  , leading toMycobacterium tuberculosis
10 million new cases of active tuberculosis and 1.5 million deaths annually.
Universal access to drug susceptibility testing (DST) has become a World
Health Organization priority. We previously developed a software tool, 

, which provided offline species identification and drugMykrobe predictor
resistance predictions for  from whole genome sequencingM. tuberculosis 
(WGS) data. Performance was insufficient to support the use of WGS as an
alternative to conventional phenotype-based DST, due to mutation
catalogue limitations. 

Here we present a new tool,  , which provides the sameMykrobe
functionality based on a new software implementation. Improvements
include i) an updated mutation catalogue giving greater sensitivity to detect
pyrazinamide resistance, ii) support for user-defined resistance catalogues,
iii) improved identification of non-tuberculous mycobacterial species, and
iv) an updated statistical model for Oxford Nanopore Technologies
sequencing data.   is released under MIT license atMykrobe
https://github.com/mykrobe-tools/mykrobe. We incorporate mutation
catalogues from the CRyPTIC consortium et al. (2018) and from Walker et
al. (2015), and make improvements based on performance on an initial set
of 3206 and an independent set of 5845   IlluminaM. tuberculosis
sequences. To give estimates of error rates, we use a prospectively
collected dataset of 4362  . Using culture basedM. tuberculosis isolates
DST as the reference, we estimate   to be 100%, 95%, 82%, 99%Mykrobe
sensitive and 99%, 100%, 99%, 99% specific for rifampicin, isoniazid,
pyrazinamide and ethambutol resistance prediction respectively. We
benchmark against four other tools on 10207 (=5845+4362) samples, and
also show that   gives concordant results with nanopore data. Mykrobe

We measure the ability of  -based DST to guide personalizedMykrobe
therapeutic regimen design in the context of complex drug susceptibility
profiles, showing 94% concordance of implied regimen with that driven by
phenotypic DST, higher than all other benchmarked tools.

Keywords
Antimicrobial resistance, tuberculosis, diagnostic, nanopore, whole genome
sequencing, antibiotic treatment
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Introduction
The software tool Mykrobe predictor1, released in 2015, identified isolates to the species level and predicted the 
drug susceptibility testing (DST) profile of Staphylococcus aureus and Mycobacterium tuberculosis directly 
from genomic sequencing data. Mykrobe predictor was developed to address four needs. First, it provided robust 
genotyping of single nucleotide polymorphisms (SNPs), insertions and deletions (indel) and gene alleles, 
independently of the location of mutations (where “location” is used both in the sense of coordinate, and in the 
sense of chromosomal versus plasmid). It also did this with error rates that did not depend on the phylogenetic 
position of the isolate of interest, a characteristic of all reference-genome methods2. We did this by building a  
de Bruijn “genome graph” representation of known variation in the species, incorporating both resistant and  
susceptible alleles, and also nearby variation that might affect k-mer matching (equivalent to neighbour-
ing mutations affecting a PCR probe (see Figure 1 of 1)). Second, it identified target species, with prior  
knowledge of likely contaminants, and prevented misdiagnosis of resistance due to shared elements. Third, it pre-
dicted phenotype from genotype, including from low (within-isolate) frequency alleles. Fourth, it integrated  
these functionalities in a fast, lightweight, internet-free and user-friendly platform.

In that initial publication1, for M. tuberculosis, the drug resistance conferring mutation panel was based on first 
and second generation line probe assays (LPA) (HAIN Lifesciences, Nehren, Germany) resulting in low sen-
sitivity but high specificity. We also showed that detecting minor populations of resistant alleles improved 
the ability to predict resistance for some second-line drugs (amikacin, capreomycin, ofloxacin), although 
the low number of samples with associated second-line phenotypic data left this analysis underpowered,  
and needing replication.

There were a number of improvements we wished to make over the 2015 Mykrobe predictor codebase. First, we 
wanted a cleaner codebase. Second we wanted users to be able to specify their own resistance catalogue. The  
latest Mykrobe predictor catalogue, updated since publication, was based on Walker et al.3. Walker et al. derived 
this catalogue by analysing the same 3500 samples which were used in the initial Mykrobe predictor perform-
ance analysis1 - thus no independent test or validation dataset were available to properly estimate error rates. 
Finally, we wanted to further develop the support for nanopore data which had been improved by the use of 
a slightly different statistical model4, but only tested on N = 5 replicates of a single strain of M. bovis substrain  
BCG.

A number of other tools for detection of resistance-associated alleles have been released: ABRicate  
(Seemann), ARIBA5, ARGs-OAP6, ARG-ANNOT7, CASTB8, KvarQ9, MTBseq10, PhyResSe11, RAST12, ResFinder13, 
RGI14, SRST215, SSTAR16, and TB-Profiler17. The majority look for gene presence, primarily in enterobacteriaceae, 
but some also look for SNP and indel mutations. In particular, SRST2 which maps reads to a panel of  
alleles (tested on S. aureus, Streptococcus pneumoniae, Salmonella enterica serovar Typhimurium, Shigella 
sonnei, Enterococcus faecium, Listeria monocytogenes and Klebsiella pneumoniae), and ARIBA which per-
forms local assembly (tested on E. faecium, S. sonnei and Neisseria gonorrhoeae). In the specific case of  
M. tuberculosis, where there is very little recombination, resistance prediction is dominated by the ability to cor-
rectly genotype SNPs and indels. Various tools have been developed to achieve this. These include the web-tool 
PhyResSE11, KvarQ9 which uses k-mers, and TB-Profiler17 which uses mapping; earlier versions were bench-
marked in 18. Another tool, MTBseq10 is a general mapping-based WGS pipeline for M. tuberculosis which 
can in particular be used to predict resistance. Our expectation was that for M. tuberculosis, the resistance panel 
would be the key determinant of sensitivity and specificity, as was previously demonstrated for S. aureus19.  
We confirm this below.

In a recent study on resistance to first-line tuberculosis (TB) drugs (rifampicin, isoniazid, ethambutol and  
pyrazinamide)20 the authors show, for the first time, that sequencing-based prediction of susceptibility is accu-
rate enough for clinical use. They classify resistance-associated gene mutations as i) resistance-causing muta-
tions, ii) definitely not resistance-causing mutations, or iii) unknown significance mutations. Their resistance 
mutation catalogue included variants from a systematic review from Miotto et al.21 and some new pncA mutations  
from 22. It also characterised all frame-shifts in pncA and katG as causing resistance to pyrazinamide or  
isoniazid respectively. Using phenotyping as gold standard, they measured performance characteristics of 
WGS-based DST, including sensitivity and specificity, on the samples for which a prediction can be made with 
high confidence. They propose a workflow where a sample is sequenced, and if an “unknown significance”  
mutation is seen, then no resistance/susceptibility prediction is made, but the sample is instead referred for  
phenotyping. This provides a means whereby healthcare systems can leverage the advantages of WGS for rapid  
and comprehensive DST, be informed when a given sample is pushing against the limits of our knowledge, and 
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revert to slower but well-understood and trusted phenotyping in order to provide clinicians with reliable results,  
and prospectively enrich available databases.

In this study we evaluate our new lightweight offline species-identification and resistance prediction tool, named 
simply Mykrobe23. The species-identification methodology is unchanged since1, but after publication Mykrobe 
predictor was heavily evaluated by Public Health England, and in order to pass their acceptance criteria, we 
improved our species-informative probes. We report the results of applying these prospectively at PHE below, 
but this study primarily concerns improvements in resistance prediction. We first combine the resistance cata-
logue from The CRyPTIC Consortium et al.20 with the pre-existing second-line drug resistance catalogue from 
Walker et al.3. We treat this catalogue as our first candidate catalogue and improve it in an iterative process,  
evaluating it on successive datasets.

We benchmark Mykrobe against a range of other tools: ARIBA (using the same catalogue as Mykrobe, as a  
control), and also KvarQ, MTBseq, and TB-profiler using their inbuilt catalogues. In contrast to the approach 
introduced in 20, Mykrobe has no concept of “unknown significance”, predicting susceptibility if there is no  
known resistance mutation. We quantify the trade-offs between these approaches.

The World Health Organisation (WHO) publishes guidelines for TB treatment including drug susceptible,  
single drug-resistant, multidrug-resistant (MDR-TB) and extensively drug-resistant TB (XDR-TB)24–27. 
These guidelines are regularly reviewed and updated to appropriately reflect, and adapt to, the evolution of  
M. tuberculosis resistance and the availability of novel TB drugs, whether new or re-purposed. Based on lat-
est WHO recommendations, we simulate the ability of Mykrobe to guide personalized therapeutic regimen design 
and compare the Mykrobe-inferred regimen against that implied by phenotypic testing. We find that Mykrobe 
compares favourably with the gold-standard approach and is superior to the other tools we benchmark. We  
believe that this is a novel and important metric for the evaluation of an in silico DST tool.

One ongoing challenge for the development of in silico DST, is that only limited phenotype and sequence 
data are shared openly for reuse and validation. We address both of these problems in this paper. First, we 
make available all our underlying data both in public and in easily-reusable text format. Second, we chose 
to publish in this journal specifically because we can update the paper as the catalogue is modified and when  
competitor tools are updated, to give current results pointing to the latest underlying data.

Results
Species identification
Mykrobe predictor was evaluated extensively by Public Health England (PHE) for species identification of Myco-
bacteria in 2016 and a need to improve on the identification of non-tuberculous Mycobacteria (NTMs) was iden-
tified. As a result, a new set of probes was built by augmenting the initial training set to 1018 samples, building 
a pooled de Bruijn graph, and searching for species informative contigs (method described in 1) to use as probes. 
These were evaluated in a PHE laboratory where all mycobacterial samples were prospectively sequenced 
over the course of one year, and the results published28: of 1902 samples for which Line Probe Assay (LPA)  
testing had identified a clinically important mycobacterium and whole genome sequencing data was also  
available, 1825 (96%) were correctly identified to the species level by Mykrobe (treating the LPA as gold  
standard). Mykrobe23 incorrectly identified 33 isolates as a different species within the same complex (6 MTBC, 
3 M. abscessus complex, 7 M. avium complex, and 17 M. fortuitum complex isolates). We have adopted the same  
probes in Mykrobe, and no further evaluation has been done in this study.

Drug resistance prediction
Data. We re-use the sequencing and phenotype data from 1,3 and 20; the latter included only first-line pheno-
types, so in this study we augment that data with second-line phenotype data. We also remove in advance those  
samples which were identified as likely sample-swaps in 20. We split the samples into three disjoint datasets:

•    Training set: N = 3206 isolates, from 1

•    Prospective set: N = 4362 isolates from 20; specifically these were the only isolates that were sampled  
prospectively (from Italy, Germany, the Netherlands and the UK) to enable realistic error-estimates.

•    Global set: N = 5845, the remaining isolates from 20.

See Figure 1 and Source data sample_data.tsv29 for a per-country breakdown of the datasets.

Page 5 of 29

Wellcome Open Research 2019, 4:191 Last updated: 02 JAN 2020

https://figshare.com/articles/sample_data_tsv/7556789


Initial development of resistance panel. We started with a mutation catalogue (candidate panel 1, CP1) built by 
combining those from 20 for first-line drugs and 3 for second-line drugs. An iterative process was used to remove 
variants from the panel after running Mykrobe on each dataset (see Methods and Figure 2 for details). First, CP1 
was evaluated on the Training set. This resulted in the removal of six variants from the panel which had pos-
itive predictive value less than 5%, producing candidate panel 2, CP2 (see Methods for details). CP1 is given in 
Source data panel.CP1.tsv30, panel.CP1.json31, and the six variants removed from CP1 to gener-
ate CP2 are in Source data removed_variants.tsv32. We then measured the performance of Mykrobe with  
this panel on the large Global dataset.

Resistance prediction performance on Global dataset. We show in Figure 3 a comparison of three sets of pre-
dictions on the Global dataset: those from 20, those from Mykrobe using the panel (“Walker-2015”) used by our 
previous software Mykrobe predictor, and those from Mykrobe using CP2 (complete results are in Extended 
data file accuracy_stats.tsv33). The greatest difference in performance based on Walker-2015 and CP2 
is in pyrazinamide, where sensitivity increases from 25% in Walker-2015 to 74% in CP2, at the cost of spe-
cificity falling from 98% to 94%. Numerous rare variants were the source of reduced pyrazinamide specifi-
city in CP2, most of which also cause true-positives (Extended data file variant_counts.tsv34). However, 
21 of these variants resulted in 29 false-positives and no true-positives and were therefore removed from CP2 to 
make CP3. We did however notice that of these 21, 16 were in the resistance catalogue from 22, which provides  
direct experimental evidence for their impact, and so we may reinstate them in future given further data.

The difference between Walker-2015 (86% sensitivity, 89% specificity) and CP2 (84% sensitivity, 89%  
specificity) for ethambutol is explained by two variants in the embB gene. The first site, M306, is included in all  
panels. However, in Walker-2015 it is present as any non-synonymous change, whereas in NEJM-2018 (and 
hence CP1 and CP2) only the more specific M306I and M306V are included. The variant M306L (in all samples 

Figure 1. Global (a) and European (b) origin of samples included in this study. Numbers represent the total numbers 
of samples from each region or country. Colours represent the proportion in each study dataset (see Source data 
sample_data.tsv for complete details29).
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Figure 2. Process for developing the new Mykrobe variant panel. See main text for details.

Figure 3. Comparison of NEJM-2018 (results from 20), Mykrobe using the Walker-2015 panel and Mykrobe using 
candidate panel 2 (CP2) on the Global dataset. Counts of susceptible samples are shown on the left, broken down 
for each tool/panel into those correctly identified as susceptible (in the colour of the tool/panel), those falsely identified 
as resistant coloured red and no-calls coloured grey. Similarly, resistant samples are shown on the right, with those 
correctly identified as resistant coloured by the tool/panel, those falsely identified as susceptible in red, and no-calls in 
grey. Note that second-line drugs were not considered in NEJM-2018, and so are not shown. E, ethambutol; H, isoniazid; 
Z, pyrazinamide; R, rifampicin; Am, amikacin; Cm, capreomycin; Cfx, ciprofloxacin; Km, kanamycin; Mfx, moxifloxacin; 
Ofx, ofloxacin; S, streptomycin.

found as ATG changed to CTG) causes 27 correct resistant calls, but also 14 false-positives. The second site 
is Q497K, which is in both Walker-2015 and CP1, causes 15 true-positive and 5 false-positive calls on the  
Global dataset, but was excluded from CP2 because its only contribution was 3 false-positives on the Training  
dataset.

In terms of bottom-line statistics on this, our largest dataset containing the widest range of resistance alle-
les, Very Major Error rate (VME, missed resistance) for the first-line drugs was 4.9%, 6.2%, 14.7%, 26.0% for 
rifampicin, isoniazid, ethambutol, pyrazinamide respectively, with corresponding negative predictive values of 
95.7%, 93.6%, 93.8%, 90.1%. The Major Error rate (false resistance prediction) was: 2.0%, 2.0%, 11.0%, 6.9% 
respectively. These results can be seen in Table 1b. We discuss below how the approach taken in 20 improved  
on this VME despite using essentially the same catalogue.

Resistance prediction performance on Prospective dataset Different resistance mutations occur at varying 
frequencies across the world. Therefore, in order for an error-rate estimate to be generalisable into clinical 
practise, the underlying data needs to be sampled in a way that is representative of prevalence somewhere. 
We used the Prospective dataset to get realistic estimates of error rates in the (low burden) countries from which 
these data were sampled. We show in Figure 4 a comparison of the predictions for that dataset from 20, Mykrobe  
using the old Mykrobe predictor panel (Mykrobe-2015)3, and Mykrobe with CP3.
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Table 1. Performance of Mykrobe during development of the variant panel. TP, number of phenotypically resistant 
samples that correctly identified as resistant (“true positives”); FP, number of phenotypically susceptible samples 
which are falsely identified as resistant (“false positives”); TN, number of phenotypically susceptible samples that 
are correctly identified as susceptible (“true negatives”); FN, number of phenotypically resistant samples that are 
incorrectly identified as susceptible (“false negative”); VME, very major error rate (false-negative rate); ME, major 
error rate (false-positive rate); PPV, positive predictive value; NPV, negative predictive value. 95% binomial confidence 
intervals calculated using the Wilson score interval.

(a) Candidate panel 1, Training dataset

Drug TP FP TN FN VME (95% CI) ME (95% CI) PPV (95% CI) NPV (95% CI)

Ethambutol 209 121 2807 22 9.52(6.4-14.0%) 4.13(3.5-4.9%) 63.33(58.0-68.3%) 99.22(98.8-99.5%)

Isoniazid 564 32 2538 38 6.31(4.6-8.5%) 1.25(0.9-1.8%) 94.63(92.5-96.2%) 98.52(98.0-98.9%)

Rifampicin 373 40 2714 11 2.86(1.6-5.1%) 1.45(1.1-2.0%) 90.31(87.1-92.8%) 99.6(99.3-99.8%)

Amikacin 56 3 702 8 12.5(6.5-22.8%) 0.43(0.1-1.2%) 94.92(86.1-98.3%) 98.87(97.8-99.4%)

Capreomycin 51 36 669 10 16.39(9.2-27.6%) 5.11(3.7-7.0%) 58.62(48.1-68.4%) 98.53(97.3-99.2%)

Ciprofloxacin 19 4 243 0 0.0(0.0-16.8%) 1.62(0.6-4.1%) 82.61(62.9-93.0%) 100.0(98.4-100.0%)

Kanamycin 11 1 528 6 35.29(17.3-58.7%) 0.19(0.0-1.1%) 91.67(64.6-98.5%) 98.88(97.6-99.5%)

Moxifloxacin 17 5 549 4 19.05(7.7-40.0%) 0.9(0.4-2.1%) 77.27(56.6-89.9%) 99.28(98.2-99.7%)

Ofloxacin 19 4 763 6 24.0(11.5-43.4%) 0.52(0.2-1.3%) 82.61(62.9-93.0%) 99.22(98.3-99.6%)

Streptomycin 344 18 1355 39 10.18(7.5-13.6%) 1.31(0.8-2.1%) 95.03(92.3-96.8%) 97.2(96.2-97.9%)

(b) Candidate panel 2, Global dataset

Drug TP FP TN FN VME (95% CI) ME (95% CI) PPV (95% CI) NPV (95% CI)

Ethambutol 1338 434 3499 230 14.67(13.0-16.5%) 11.03(10.1-12.1%) 75.51(73.5-77.5%) 93.83(93.0-94.6%)

Isoniazid 2781 54 2704 184 6.21(5.4-7.1%) 1.96(1.5-2.5%) 98.1(97.5-98.5%) 93.63(92.7-94.5%)

Pyrazinamide 750 177 2408 264 26.04(23.4-28.8%) 6.85(5.9-7.9%) 80.91(78.3-83.3%) 90.12(88.9-91.2%)

Rifampicin 2634 60 2990 136 4.91(4.2-5.8%) 1.97(1.5-2.5%) 97.77(97.1-98.3%) 95.65(94.9-96.3%)

Amikacin 100 5 1495 21 17.36(11.6-25.1%) 0.33(0.1-0.8%) 95.24(89.3-97.9%) 98.61(97.9-99.1%)

Capreomycin 97 26 1600 42 30.22(23.2-38.3%) 1.6(1.1-2.3%) 78.86(70.8-85.1%) 97.44(96.6-98.1%)

Ciprofloxacin 1 4 33 4 80.0(37.6-96.4%) 10.81(4.3-24.7%) 20.0(3.6-62.4%) 89.19(75.3-95.7%)

Kanamycin 88 3 1410 47 34.81(27.3-43.2%) 0.21(0.1-0.6%) 96.7(90.8-98.9%) 96.77(95.7-97.6%)

Moxifloxacin 14 1 85 3 17.65(6.2-41.0%) 1.16(0.2-6.3%) 93.33(70.2-98.8%) 96.59(90.5-98.8%)

Ofloxacin 329 19 1348 59 15.21(12.0-19.1%) 1.39(0.9-2.2%) 94.54(91.6-96.5%) 95.81(94.6-96.7%)

Streptomycin 462 32 2276 217 31.96(28.6-35.6%) 1.39(1.0-2.0%) 93.52(91.0-95.4%) 91.3(90.1-92.3%)

(c) Candidate panel 3, prospective dataset

Drug TP FP TN FN VME (95% CI) ME (95% CI) PPV (95% CI) NPV (95% CI)

Ethambutol 71 48 4171 1 1.39(0.2-7.5%) 1.14(0.9-1.5%) 59.66(50.7-68.0%) 99.98(99.9-100.0%)

Isoniazid 312 19 3931 17 5.17(3.3-8.1%) 0.48(0.3-0.7%) 94.26(91.2-96.3%) 99.57(99.3-99.7%)

Pyrazinamide 102 23 4047 23 18.4(12.6-26.1%) 0.57(0.4-0.8%) 81.6(73.9-87.4%) 99.43(99.2-99.6%)

Rifampicin 133 35 4140 0 0.0(0.0-2.8%) 0.84(0.6-1.2%) 79.17(72.4-84.6%) 100.0(99.9-100.0%)

Amikacin 3 0 59 1 25.0(4.6-69.9%) 0.0(0.0-6.1%) 100.0(43.9-100.0%) 98.33(91.2-99.7%)

Capreomycin 3 0 59 0 0.0(0.0-56.1%) 0.0(0.0-6.1%) 100.0(43.9-100.0%) 100.0(93.9-100.0%)

Ciprofloxacin 30 3 199 19 38.78(26.4-52.7%) 1.49(0.5-4.3%) 90.91(76.4-96.9%) 91.28(86.8-94.3%)

Kanamycin 4 0 54 0 0.0(0.0-49.0%) 0.0(0.0-6.6%) 100.0(51.0-100.0%) 100.0(93.4-100.0%)

Moxifloxacin 19 3 41 1 5.0(0.9-23.6%) 6.82(2.3-18.2%) 86.36(66.7-95.2%) 97.62(87.7-99.6%)

Ofloxacin 21 3 42 1 4.55(0.8-21.8%) 6.67(2.3-17.8%) 87.5(69.0-95.7%) 97.67(87.9-99.6%)

Streptomycin 36 16 685 21 36.84(25.5-49.8%) 2.28(1.4-3.7%) 69.23(55.7-80.1%) 97.03(95.5-98.0%)
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Sensitivity, specificity, and error rates are shown in Table 1c. Very Major Error rate (missed resistance) for 
the first-line drugs was 0.0%, 5.2%, 1.4%, 18.4% for rifampicin, isoniazid, ethambutol, pyrazinamide respec-
tively, with corresponding negative predictive values of 100.0%, 99.6%, 100.0%, 99.4%. Thus, in this preva-
lence setting, Mykrobe predicting susceptibility to the four first-line drugs would meet clinical requirements.  
The Major Error rate (false resistance prediction) was also low: 0.8%/0.5%/1.1%/0.6% respectively.

We noted that ciprofloxacin sensitivity was lower for CP3, compared to Walker-2015. This was caused by 
the (standard line probe assay) variant D94A in the gyrA gene having been removed from CP2 to make CP3, 
because it caused one false-positive and no true-positive calls on the Global data set. However, on the Prospective  
data set its inclusion causes four true-positives and no false-positives.

Based on the above results, the three variants embB M306L and Q497K, and gyrA D94A were added to 
CP3, to make the final variant panel. These final variants are given in Source data panel.final.tsv35, 
panel.final.json36, which are the same as those used by default in the new Mykrobe release version 
0.7.0. The accuracy statistics of candidate panels 1, 2, and 3 on the Training, Global and Prospective data-
sets are given in Table 1 (a), (b), and (c) respectively. The results of the final release panel on each of the datasets  
are in Table 2.

Performance evaluation on Oxford Nanopore Technologies data
We evaluated Mykrobe performance on five samples where we had both Oxford Nanopore Technologies (ONT) 
and Illumina sequence data. The resistance calls made by Mykrobe on the Illumina and ONT data were in com-
plete agreement, with the same variant calls made on each sample and therefore the same resistance profiles. 
Three of the samples were susceptible to all drugs (ERS3036287, ERS3036289, and ERS3036290), one sample 
(ERS3036288) was resistant to isoniazid, and the fifth sample (ERS3036286) was resistant to seven of  
the 11 drugs called by Mykrobe (Source data ont.tsv)37.

Figure 4. Comparison of NEJM-2018, Walker-2015 and candidate panel 3 (CP3) on the Prospective dataset for  
(a) first-line drugs and (b) second-line drugs. Counts of susceptible samples are shown on the left, broken down for 
each tool/panel into those correctly identified as susceptible (in the colour of the tool/panel), those falsely identified 
as resistant coloured red and no-calls coloured grey. Similarly, resistant samples are shown on the right, with those 
correctly identified as resistant coloured by the tool/panel, those falsely identified as susceptible in red, and no-calls 
in grey. Note that second-line drugs were not considered in NEJM-2018. E, ethambutol; H, isoniazid; Z, pyrazinamide; 
R, rifampicin; Am, amikacin; Cm, capreomycin; Cfx, ciprofloxacin; Km, kanamycin; Mfx, moxifloxacin; Ofx, ofloxacin; S, 
streptomycin.
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Table 2. Accuracy statistics of Mykrobe using the final panel on (a) Training, (b) Global, and (c) Prospective 
datasets. TP, true-positive; FP, false-positive; TN, true-negative; FN, false-negative; VME, very major error rate (false-
negative rate); ME, major error rate (false-positive rate); PPV, positive predictive value; NPV, negative predictive value. 
95% binomial confidence intervals calculated using the Wilson score interval.

(a) Training dataset

Drug TP FP TN FN VME (95% CI) ME (95% CI) PPV (95% CI) NPV (95% CI)

Ethambutol 209 125 2803 22 9.52(6.4-14.0%) 4.27(3.6-5.1%) 62.57(57.3-67.6%) 99.22(98.8-99.5%)

Isoniazid 564 32 2538 38 6.31(4.6-8.5%) 1.25(0.9-1.8%) 94.63(92.5-96.2%) 98.52(98.0-98.9%)

Rifampicin 373 40 2714 11 2.86(1.6-5.1%) 1.45(1.1-2.0%) 90.31(87.1-92.8%) 99.6(99.3-99.8%)

Amikacin 55 1 704 9 14.06(7.6-24.6%) 0.14(0.0-0.8%) 98.21(90.6-99.7%) 98.74(97.6-99.3%)

Capreomycin 49 10 695 12 19.67(11.6-31.3%) 1.42(0.8-2.6%) 83.05(71.5-90.5%) 98.3(97.1-99.0%)

Ciprofloxacin 19 4 243 0 0.0(0.0-16.8%) 1.62(0.6-4.1%) 82.61(62.9-93.0%) 100.0(98.4-100.0%)

Kanamycin 11 0 529 6 35.29(17.3-58.7%) 0.0(0.0-0.7%) 100.0(74.1-100.0%) 98.88(97.6-99.5%)

Moxifloxacin 17 4 550 4 19.05(7.7-40.0%) 0.72(0.3-1.8%) 80.95(60.0-92.3%) 99.28(98.2-99.7%)

Ofloxacin 19 3 764 6 24.0(11.5-43.4%) 0.39(0.1-1.1%) 86.36(66.7-95.2%) 99.22(98.3-99.6%)

Streptomycin 340 16 1357 43 11.23(8.4-14.8%) 1.17(0.7-1.9%) 95.51(92.8-97.2%) 96.93(95.9-97.7%)

(b) Global dataset

Drug TP FP TN FN VME (95% CI) ME (95% CI) PPV (95% CI) NPV (95% CI)

Ethambutol 1381 449 3484 187 11.93(10.4-13.6%) 11.42(10.5-12.4%) 75.46(73.4-77.4%) 94.91(94.1-95.6%)

Isoniazid 2781 54 2704 184 6.21(5.4-7.1%) 1.96(1.5-2.5%) 98.1(97.5-98.5%) 93.63(92.7-94.5%)

Pyrazinamide 750 148 2437 264 26.04(23.4-28.8%) 5.73(4.9-6.7%) 83.52(81.0-85.8%) 90.23(89.0-91.3%)

Rifampicin 2634 60 2990 136 4.91(4.2-5.8%) 1.97(1.5-2.5%) 97.77(97.1-98.3%) 95.65(94.9-96.3%)

Amikacin 100 4 1496 21 17.36(11.6-25.1%) 0.27(0.1-0.7%) 96.15(90.5-98.5%) 98.62(97.9-99.1%)

Capreomycin 97 25 1601 42 30.22(23.2-38.3%) 1.54(1.0-2.3%) 79.51(71.5-85.7%) 97.44(96.6-98.1%)

Ciprofloxacin 1 4 33 4 80.0(37.6-96.4%) 10.81(4.3-24.7%) 20.0(3.6-62.4%) 89.19(75.3-95.7%)

Kanamycin 88 3 1410 47 34.81(27.3-43.2%) 0.21(0.1-0.6%) 96.7(90.8-98.9%) 96.77(95.7-97.6%)

Moxifloxacin 14 1 85 3 17.65(6.2-41.0%) 1.16(0.2-6.3%) 93.33(70.2-98.8%) 96.59(90.5-98.8%)

Ofloxacin 329 19 1348 59 15.21(12.0-19.1%) 1.39(0.9-2.2%) 94.54(91.6-96.5%) 95.81(94.6-96.7%)

Streptomycin 462 27 2281 217 31.96(28.6-35.6%) 1.17(0.8-1.7%) 94.48(92.1-96.2%) 91.31(90.1-92.4%)

(c) Prospective dataset

Drug TP FP TN FN VME (95% CI) ME (95% CI) PPV (95% CI) NPV (95% CI)

Ethambutol 71 49 4170 1 1.39(0.2-7.5%) 1.16(0.9-1.5%) 59.17(50.2-67.5%) 99.98(99.9-100.0%)

Isoniazid 312 19 3931 17 5.17(3.3-8.1%) 0.48(0.3-0.7%) 94.26(91.2-96.3%) 99.57(99.3-99.7%)

Pyrazinamide 102 22 4048 23 18.4(12.6-26.1%) 0.54(0.4-0.8%) 82.26(74.6-88.0%) 99.44(99.2-99.6%)

Rifampicin 133 32 4143 0 0.0(0.0-2.8%) 0.77(0.5-1.1%) 80.61(73.9-85.9%) 100.0(99.9-100.0%)

Amikacin 3 0 59 1 25.0(4.6-69.9%) 0.0(0.0-6.1%) 100.0(43.9-100.0%) 98.33(91.2-99.7%)

Capreomycin 3 0 59 0 0.0(0.0-56.1%) 0.0(0.0-6.1%) 100.0(43.9-100.0%) 100.0(93.9-100.0%)

Ciprofloxacin 34 3 199 15 30.61(19.5-44.5%) 1.49(0.5-4.3%) 91.89(78.7-97.2%) 92.99(88.8-95.7%)

Kanamycin 4 0 54 0 0.0(0.0-49.0%) 0.0(0.0-6.6%) 100.0(51.0-100.0%) 100.0(93.4-100.0%)

Moxifloxacin 19 3 41 1 5.0(0.9-23.6%) 6.82(2.3-18.2%) 86.36(66.7-95.2%) 97.62(87.7-99.6%)

Ofloxacin 21 3 42 1 4.55(0.8-21.8%) 6.67(2.3-17.8%) 87.5(69.0-95.7%) 97.67(87.9-99.6%)

Streptomycin 36 16 685 21 36.84(25.5-49.8%) 2.28(1.4-3.7%) 69.23(55.7-80.1%) 97.03(95.5-98.0%)
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Minor alleles improve prediction
Phenotypic tests by the indirect proportion method are defined in such a way as to call an isolate resistant if 
more than some proportion P of bacilli are resistant38 - typically P = 0.01. Whole genome sequencing to a depth 
of 30-50x after several weeks of culture is by comparison relatively insensitive to minor populations. If we 
exclude for a moment the issues of clonal interference between resistant alleles, and selection due to culture, any  
single minor resistant allele detectable by sequencing should easily be detectable by phenotyping. This is essen-
tially the motivation for Mykrobe using minor alleles to predict resistance. To do this, instead of specifying  
a minimum frequency threshold to detect minor alleles, Mykrobe performs a likelihood comparison between 
two statistical models: first, coverage on minor allele due to sequencing error (at rate around 0.01) and  
second, coverage on minor allele due to a minor population at frequency 0.2. In practise, with coverage  
around 30-50x, this results in a minor population being detected when has frequency above around 8-10%.

Having made minor changes to the catalogue from CP1 to CP2, we measured performance on the Global data-
set, to finalise catalog and parameters (described below) before evaluating on the (final) Prospective data-
set. The one remaining parameter that could be changed was the frequency of minor allele in the second model 
above, set to 0.2. We measured the impact of resistance calls driven by minor alleles using CP2 on the Global 
set - results are shown in Table 3. These results are broadly in concordance with those reported in 1 on the Train-
ing set. For second line drugs, the use of minor variants increases sensitivity without impacting false positive 
rate. In fact for amikacin, kanamycin, ofloxacin and streptomycin there were no false positive calls at all, and 
the proportion of resistance which was explained by minor alleles varied from around 1%-10%. For rifampicin  
and isoniazid, although the net contribution was positive, the error rate was slightly higher (8.3% and 6.7% 
of minor-allele-driven resistance calls were false). For ethambutol and pyrazinamide, however, although there 
were 29 and 45 true resistant calls made due to minor alleles, the proportion of false positive minor-driven resist-
ant calls was even higher: 38% and 15%, respectively. If we compare the error rates in minor-allele-driven 
resistance calls for first-line drugs (6.7%, 8.3%, 38.3, 15.0% for rifampicin, isoniazid, ethambutol, pyrazi-
namide, see Table 3) with the overall rates driven primarily by major-allele calls (2.0%, 2.0%, 11.0%, 6.9%,  
see Table 1b) we see the relative differences between drugs are preserved - indeed the minor-allele-driven  
rates are all 3-4x the overall rates. Thus, the catalogue drives some or much of the between-drug  
differences. There are several potential explanations for the higher error rates for minor-allele calls. First,  
mutations that cause a low-level increase in MIC (minimum inhibitory concentration) may not cause a resistant  
phenotype if in a minor population - this is particularly likely for ethambutol where most mutations only increase 
the MIC slightly. Second, for pyrazinamide the phenotypic test is defined differently to most other drugs - the  
critical proportion P at which resistance is detected is 0.1 rather than 0.01 as for other drugs38. In other words,  
the pyrazinamide phenotypic test is less sensitive to low frequency populations than those for other drugs.

Table 3. Minority variant calls made by Mykrobe using CP2 on the 
Global dataset. The second column shows the number of samples 
where the resistance phenotype is known for the given drug. Column 4, 
headed “Minor R calls” shows the number of resistant calls due to a 
minor population resistance allele. Column 5, headed “Error rate of 
minor R calls”, shows the percentage of minor-allele-driven resistant 
calls that were incorrect versus phenotype.

Drug Samples Resistant 
samples

Minor R 
calls

Error rate of 
minor R calls (%)

Ethambutol 5501 1568 47 38.3

Isoniazid 5723 2965 24 8.33

Pyrazinamide 3599 1014 53 15.09

Rifampicin 5820 2770 45 6.67

Amikacin 1621 121 9 0.0

Capreomycin 1765 139 10 10.0

Kanamycin 1548 135 9 0.0

Ofloxacin 1755 388 37 0.0

Streptomycin 2987 679 10 0.0
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In contrast to the above, for second-line drugs the pattern is different, with lower error rates for minor-
driven calls. The number of samples with second-line phenotypes is too low to draw strong conclusions. We  
would like to see these results replicated with comprehensive phenotyping and deep sequencing.

In theory the Mykrobe statistical test described above could have been modified to use a second model with 
higher minor-allele frequency than the current value of 0.2 - essentially demanding a higher frequency to 
reduce false positives. Indeed, it might be possible to fit different thresholds per drug, improving results on 
our dataset. However, we had concerns about generalisability. A recent publication39 showed how sequencing  
the same isolate with Illumina HiSeq, MiSeq and NextSeq could give different pictures of minor allele  
variation, including very different minor allele frequencies. We therefore elected to leave the model unchanged.

Evaluating policy of ignoring unknown mutations in resistance genes
A key component of the approach taken by the CRyPTIC consortium in 20 was to refuse to make predictions if 
an unknown mutation was detected in a resistance-associated gene, and divert such samples to phenotyping. 
By contrast, Mykrobe genotypes known SNPs and indels, but does not detect novel mutations, and makes  
predictions of phenotypes based on these data only. In particular, if no resistance mutation from its catalogue 
is detected, Mykrobe makes a Susceptible prediction. Our prior expectation was that this would come at the cost 
of a higher false susceptible rate for Mykrobe. This was indeed the case - see the red components of the bars on 
the right hand side of Figure 3. However, in addition, on both the Global and Prospective datasets, we find that 
Mykrobe calls more true positives and negatives (i.e. correct resistant and susceptible calls) - see the grey seg-
ments of bars on Figure 3 (in particular on the left) where the CRyPTIC approach avoids making a call. The results  
(see Table 4) are consistent across the four first-line drugs: on the Global set Mykrobe misses around 60-170 
resistant samples that the CRyPTIC process theoretically detects by reverting to phenotyping (with the caveat 
that phenotypic assays are themselves not 100% reliable). Although this is accompanied by more rapid detec-
tion of 100-300 more susceptible samples (which CRyPTIC detects later, by phenotyping), this provides strong 
motivation to add the ability to detect novel variants to Mykrobe in future releases. We note that this functional-
ity is also missing from the other tools we benchmarked against, and that all of them could add this. Finally, we 
recall again that the global set is a heterogeneous combination of datasets sampled in different ways. The pro-
spective set is prospectively sampled, though from low-burden countries in Europe. On that dataset we find  

Table 4. Comparing the impact of no-calls when 
an unknown mutation is detected (process used 
in 20) versus that of Mykrobe.

Global dataset

Tool Drug TN TP FN

Mykrobe Rifampicin 2990 2634 136

NEJM-2018 Rifampicin 2833 2614 72

Mykrobe Isoniazid 2704 2781 187

NEJM-2018 Isoniazid 2564 2747 86

Mykrobe Ethambutol 3484 1381 187

NEJM-2018 Ethambutol 3149 1339 82

Mykrobe Pyrazinamide 2437 750 264

NEJM-2018 Pyrazinamide 2176 732 90

Prospective dataset

Mykrobe Rifampicin 4143 133 0

NEJM-2018 Rifampicin 3928 124 0

Mykrobe Isoniazid 3931 312 17

NEJM-2018 Isoniazid 3747 311 8

Mykrobe Ethambutol 4170 71 49

NEJM-2018 Ethambutol 3684 71 47

Mykrobe Pyrazinamide 4048 102 23

NEJM-2018 Pyrazinamide 3972 109 6
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the Mykrobe approach pays far less penalty, missing 0, 9, 2 and 17 samples resistant to rifampicin, isoni-
azid, ethambutol and pyrazinamide, respectively, while detecting 215, 184, 486, 76 susceptible samples earlier  
(without phenotyping).

Benchmarking against other tools
In order to separate the effect of mutation catalogue and genotyping method, we gave ARIBA the same cata-
logue (namely the final release panel described above) as Mykrobe (with small differences, see Methods for 
details). For the other tools, we simply used their default catalogues in their latest versions at the time of  
benchmarking. The sensitivity, specificity, and error rates for Mykrobe, ARIBA, KvarQ, MTBseq, and TB-Profiler 
when applied to the Prospective dataset, summarised across all drugs, is given in Table 5 (full data are in  
the Extended data file accuracy_stats.tsv33).

On each of the three datasets, Mykrobe is the most sensitive, has the lowest very major error rate (false sus-
ceptible error rate), and the highest negative predictive value. Mykrobe has the best specificity, major error 
rate (false resistant rate) and positive predictive value on the Training dataset, and the best or second-best results  
for those statistics on the Global and Prospective datasets.

A breakdown of the results on the Prospective dataset, showing each drug separately, is given in Figure 5. 
Mykrobe and ARIBA, as expected, are very similar except for the high false-positive rate for isoniazid for 
ARIBA, resulting in a PPV of 82% for ARIBA compared to 94% for Mykrobe. Manual inspection revealed 
that the extra incorrect calls were caused by assembly errors in the katG gene, resulting in false-positive calls  
because the gene appeared to be incomplete.

Table 5. Accuracy statistics of each tool and each dataset, using all 
available drugs. All values are percentages. The best value for each statistic is 
shown in bold. Drugs used for each dataset are as follows. Training: Amikacin, 
Capreomycin, Ciprofloxacin, Ethambutol, Isoniazid, Kanamycin, Moxifloxacin, 
Ofloxacin, Rifampicin, Streptomycin; Global and Prospective: Amikacin, 
Capreomycin, Ciprofloxacin, Ethambutol, Isoniazid, Kanamycin, Moxifloxacin, 
Ofloxacin, Pyrazinamide, Rifampicin, Streptomycin. VME, very major error rate 
(false-negative rate); ME, major error rate (false-positive rate); PPV, positive 
predictive value; NPV, negative predictive value.

(a) Training dataset

Tool Sensitivity Specificity VME ME PPV NPV

ARIBA 90.04 97.91 9.96 2.09 85.59 98.62

KvarQ 80.81 98.03 19.19 1.97 84.96 97.38

MTBseq 82.68 97.65 17.32 2.35 82.91 97.62

Mykrobe 91.64 98.21 8.36 1.79 87.57 98.84

TB-Profiler 89.71 95.02 10.29 4.98 71.25 98.53

(b) global dataset

Tool Sensitivity Specificity VME ME PPV NPV

ARIBA 87.30 96.22 12.70 3.78 91.64 94.11

KvarQ 79.99 95.81 20.01 4.19 90.05 90.99

MTBseq 81.34 96.03 18.66 3.97 90.67 91.56

Mykrobe 88.12 96.16 11.88 3.84 91.58 94.47

TB-Profiler 87.39 92.89 12.61 7.11 85.36 93.95

(c) prospective dataset

Tool Sensitivity Specificity VME ME PPV NPV

ARIBA 90.10 98.87 9.90 1.13 78.74 99.54

KvarQ 84.11 99.21 15.89 0.79 83.19 99.26

MTBseq 85.82 99.00 14.18 1.00 80.05 99.34

Mykrobe 90.22 99.16 9.78 0.84 83.39 99.54

TB-Profiler 83.01 97.24 16.99 2.76 58.33 99.19
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The memory usage and run time averaged across all runs of each tool is given in Table 6, and in Extended data 
files we have: summary boxplots in run_time_boxplots.pdf40 and memory_boxplots.pdf41, and the complete 
data in run_time_memory.tsv42. ARIBA, KvarQ, Mykrobe and TB-Profiler all have low RAM usage (less than 
1.1 GB), whereas MTBseq requires 12GB of RAM. KvarQ and MTBseq had the longest running time, taking 
on average 22 and 42 minutes respectively per sample. ARIBA, Mykrobe and TB-Profiler are fast, typically  
running in less than 5 minutes, with Mykrobe having the shortest median run time (3.2 minutes).

Impact of Mykrobe on initial choice of WHO-recommended regimen
The World Health Organisation (WHO) now recommends systematic access to drug susceptibility testing and 
specific TB treatment regimens based on individual drug resistance profiles. We therefore ask, if we were to base 
the choice of a patient’s initial multi-drug therapy purely on the genotyping results from Mykrobe, how accurate 

Figure 5.  Comparison of ARIBA, KvarQ, MTBseq, Mykrobe (with final release panel) and TB-Profiler on the prospective 
dataset for (a) first-line drugs and (b) second-line drugs. Counts of susceptible samples are shown on the left, with 
true-negatives coloured by the tool/panel and false-positives coloured red. Similarly, resistant samples are shown 
on the right, with true-positives coloured by the tool/panel and false-negatives in red. E, ethambutol; H, isoniazid; Z, 
pyrazinamide; R, rifampicin; Am, amikacin; Cm, capreomycin; Cfx, ciprofloxacin; Km, kanamycin; Mfx, moxifloxacin; 
Ofx, ofloxacin; S, streptomycin.
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would this choice of treatment regimen be? We encoded the most recently published WHO TB treatment recom-
mendations (https://github.com/iqbal-lab-org/tb-amr-benchmarking/blob/master/
python/evalrescallers/who_treatment.py), and used this to infer both the recommended drug regi-
men implied by the known phenotype of each sample, and that implied by Mykrobe’s resistance prediction (on the 
combined global and prospective datasets). The most recent WHO recommended regimens for MDR-TB involve 
a number of drugs for which phenotyping is rarely performed and for which the genetic basis of drug resistance  
is only partially understood (e.g. bedaquiline, linezolid). In these cases, drug administration and implementa-
tion of WHO recommendations in clinical contexts most often relies on the assumption of drug susceptibil-
ity. Given that, and the scarcity of available genotypic to phenotypic correlation data for those drugs, all isolates 
were treated as susceptible to bedaquiline and linezolid in this analysis. Also, given the absence of recent 
updated (2018) WHO recommendations for pre-XDR and XDR TB, this analysis model relies on previous  
recommendations24,25 which therefore limits the clinical significance of the analysis for the limited number of 
extensively resistant TB isolates. It also highlights the need for data, new guidance and subsequent update of the  
Mykrobe performance analysis for those most resistant isolates.

Figure 6 presents comprehensive resistance profiles, associated WHO-recommended regimen and a com-
parison of phenotype- and Mykrobe-driven therapies for all isolates. We immediately observe that for  
98.6% (= 4842/(4842 + 69)) of phenotypically pan-susceptible isolates, Mykrobe would correctly imply 
first-line treatment (regimen 1 in the figure). We excluded those pan-susceptible isolates from the figure for  
increased clarity. Full results are available in Extended data file who_regimen_counts.tsv43.

Key error modes for Regimens 2–9 The most frequent clinically significant error mode was wrongly rec-
ommending a pan-susceptible TB regimen for mono-isoniazid resistant isolates, which occurred in 53 (12%) 
of the 451 mono-resistant (regimen 2) isolates. We describe below how all other benchmarked tools shared 
this error mode. Figure 6 also illustrates other, rarer, cases of non-MDR-TB and non-XDR-TB resistant iso-
lates (regimens 3 to 9) for which a disagreement between phenotype-driven and Mykrobe-driven regimens results 
from undetected resistance (lines moving upwards as we go from left to right) or false-resistant genotyping  
results (line moving downwards as we go from left to right). Of the 187 isolates assigned to regimens 3–9 using 
phenotype data, Mykrobe suggested a pan-susceptible regimen (regimen 1) in 45 cases, and a RR-, MDR- or  
XDR-TB regimens (10, 11 or 12, respectively) in 3, 16 or 7 cases, respectively.

RR-TB, MDR-TB and pre-XDR-TB regimens. A significant number of discrepancies between phenotype-
driven and Mykrobe-driven regimens revolve around regimen 10 (RR-TB), regimen 11 (the most recent WHO- 
recommended MDR-TB regimen), and regimen 12 (pre-XDR-TB) (see Figure 6 for regimen details). Regimens 
10 and 11 only differ in that regimen 10 includes isoniazid, and is recommended if the isolate is known to be  
susceptible to that drug, or if the phenotype is unknown. Conversely, when comprehensive DST results are avail-
able, if they confirm a resistance profile including resistance to isoniazid, rifampicin a fluoroquinolone and/or an 
injectable aminoglycoside, a customized regimen including as many drugs to which the isolate is confirmed to be  
susceptible as possible is recommended. Given the limited number of XDR-TB isolates in our data, 
this analysis focused on quinolone resistant pre-XDR samples (regimen 12) for which we had suffi-
cient data to recognise appropriate or erroneous treatment patterns. There were 2903 rifampicin resistant  
M. tuberculosis isolates for which first-line drug phenotyping justified initiation of RR-TB (N = 253),  
MDR-TB (N = 2619), or pre-XDR-TB (N = 31) treatment regimen.

Table 6. Run time and peak RAM 
usage. Values for each tool are the 
median across all runs.

Tool RAM (MB) Time (m)

ARIBA 124 3.6

KvarQ 38 22.2

MTBseq 12201 41.6

Mykrobe 1057 3.2

TB-Profiler 863 4.5
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Mykrobe assigned 96 of the 253 phenotype-inferred RR-TB (regimen 10) isolates to that same regimen (8 
of these had an unknown isoniazid phenotype). False-negative rifampicin calls by Mykrobe in 33 of the 253 
(=13.0%) isolates resulted in a predicted pan-susceptible treatment (regimen 1). 54 of the 253 isolates were  
classified as MDR-TB (regimen 11) by Mykrobe, comprising 35 isolates with unknown isoniazid phenotype 
and 19 false-positive isoniazid calls. The remaining 70 isolates all had unknown phenotypes for isoniazid and  
moxifloxacin, whereas Mykrobe predicted resistance to these drugs and assigned them to XDR-TB regimen 12.

There were 2619 isolates classified as MDR-TB (regimen 11) from the phenotype data. The majority of iso-
lates (1727/2619=65.9%) are appropriately assigned by Mykrobe to the MDR-TB regimen. A minor-
ity of isolates (103/2619=3.9%) are falsely identified as being less resistant and consequently directed 
(upwards in the figure) towards regimens 1–9. False-negative isoniazid calls resulted in 92 of the 2619  

Figure 6. Comparison of drug regimen calls inferred from phenotype information and Mykrobe results, on the 
global and prospective datasets combined. See supplementary files regimen_plot.global.pdf, regimen_
plot.prospective.pdf for the same plot for each of the global and prospective sets separately. On the left, “R” 
and “S” show the drug phenotypes used to identify the regimen. For example, resistance to isoniazid and moxifloxacin,  
and susceptibility to rifampicin, pyrazinamide and ethambutol implies drug regimen 3. Coloured dots show the drugs that 
are included in the regimen, where a line joining drugs represents interchangeability. The ribbons on the right show the 
mapping of phenotype-inferred regimens (left) to Mykrobe-inferred regimens (right), with numbers showing the number 
of samples allocated to each regimen. 4,842 samples called as regimen 1 by both methods are not shown. H, isoniazid; 
R, rifampicin; Z, pyrazinamide; E, ethambutol; Lfx, levofloxacin; Mfx, moxifloxacin; Gfx, gatifloxacin; S, streptomycin; Am, 
amikacin; Km, kanamycin; Cm, capreomycin; Eto, ethionamide; Cs, cycloserine; Trd, terizidone; Cfz, clofazimine; Lzd, 
linezolid; Bdq, bedaquiline; X, other WHO second-line drugs to which isolate is shown to be susceptible.
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isolates (=3.5%) to be wrongly allocated to regimen 10 (RR-TB). The remaining 692 of the 2619 isolates 
(=26.4%) were identified as resistant to moxifloxacin, classifying them as regimen 12. Moxifloxacin phenotypic  
susceptibility testing results for 689 of these isolates was unknown, whereas Mykrobe determined them to be 
resistant and so directed the samples to a pre-XDR-TB regimen instead of an MDR-TB regimen. We can esti-
mate what proportion of these 692 samples were correctly assigned to an XDR-TB regimen instead of to 
MDR-TB using the positive predictive value estimated from those samples with phenotypes (see Table 2). 
We estimate that for 644/692 (=93%) samples, the Mykrobe-driven regimen choice was accurate. We empha-
sise that this model relies on WHO recommendations which are expected to be updated in the specific case of  
pre-XDR-TB and XDR-TB.

Comparison with other tools. We find Mykrobe resulted in the correct regimen choice for 93.9% of sam-
ples using the latest panel, a 1.2% improvement over Mykrobe with the 2015 panel, and a 1% improvement over 
ARIBA using the same 2019 panel. We counted a tool as correct for RR-TB and MDR-TB isolates where phe-
notype data for isoniazid and/or moxifloxacin resistance was unknown, but the tool assigned MDR-TB or 
XDR-TB because of resistance calls for one or both of those drugs. All benchmarked tools performed reason-
ably similarly, with the worst performance by TB-profiler (89% correct). Per-tool accuracy of regimen choice is  
shown in Table 7, and Table 8, with the best-performing tool for each regimen highlighted. For 4 of the 11  
regimens (numbers 1 (pan-susceptible), 2 (INH mono-resistant), 8 (pyrazinamide-mono resistant) and 10 
(rifampicin-mono resistant)), Mykrobe achieves the highest success rate. In particular, the INH-mono-resistant  
case, highlighted above as a concern for Mykrobe, is also an issue for other tools.

Discussion
Although sequencing-based diagnostic information for M. tuberculosis has been available for some years1,9,11,17,44, 
the results have not been sufficiently good to justify replacing (or partially replacing) phenotyping. However, 
very recently the CRyPTIC consortium showed that for first-line drugs, a prediction of susceptibility was now  

Table 7. Benchmarking regimen success 
rates for different callers, on the global and 
prospective datasets combined.

Tool Correct 
regimen

Incorrect 
regimen

Percent 
correct

Mykrobe-2019 7939 513 93.9

ARIBA 7853 599 92.9

Mykrobe-2015 7839 613 92.7

MTBseq 7770 682 91.9

KvarQ 7710 742 91.2

TB-Profiler 7519 933 89.0

Table 8. Regimen success rate broken down by regimen, on the global and 
prospective datasets combined. The regimens are: 1, DS-TB; 2, Mono-H DR-TB; 3, 
Mono-H DR-TB; 4, H-Z DR-TB; 5, H-E DR-TB; 6, H-Z-E DR-TB; 7, H-Z-E DR-TB; 8, Mono-
Z DR-TB; 9, Mono-E DR-TB; 10, RR-TB; 11, MDR-TB; 12, pre/XDR-TB.

Regimen

Tool 1 2 3 4 5 6 7 8 9 10 11 12

Mykrobe-2019 98.6 77.4 0 21.4 55.2 6.7 0 72.1 9.1 79.4 92.4 87.1

Mykrobe-2015 98.6 68.3 0 10.7 55.2 0.0 0 71.2 9.1 78.7 90.5 87.1

ARIBA 97.5 69.2 0 21.4 55.2 6.7 0 71.2 9.1 78.7 92.7 87.1

KvarQ 98.5 69.2 0 21.4 27.6 6.7 0 65.4 9.1 77.9 86.1 83.9

MTBseq 98.0 67.2 0 28.6 41.4 0.0 0 68.3 9.1 77.1 89.3 83.9

TB-Profiler 92.9 66.1 0 21.4 58.6 6.7 0 11.5 9.1 77.5 91.6 90.3
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sufficiently accurate to support therapeutic management in routine clinical settings20. Indeed this has been imple-
mented now in Public Health England, RIVM (Netherlands) and the Wadsworth Centre (New York). In this 
study we introduce our reimplemented resistance prediction tool, Mykrobe, with initial mutation catalogue  
taken from that study20 for first-line drugs, and 3 for second-line drugs. We evaluate Mykrobe in a number of 
ways. We show that the new catalogue does indeed give improved results over that from 3 used in our old imple-
mentation Mykrobe predictor, in particular increasing power to detect pyrazinamide resistance from 25% to 
74% (global set, containing 1014 resistant samples) and 72% to 82% (prospective set, containing 125 resist-
ant samples). This is achieved by considering all frameshifts of length 1 or 2 in pncA as causing pyrazinamide  
resistance, and comes at the cost of a increased major error rate (rising from 2.2% on the global set for the pre-
vious catalogue based on 3 to 5.7% for current Mykrobe (although there was no increase in major error rate in 
the prospective set, changing from 0.7% to 0.5%)). Given the poor performance of pyrazinamide phenotypic  
testing, some proportion of the discrepancies are probably due to phenotypic error45,46.

A key component in the approach of 20 was to flag novel mutations in resistance-associated genes, and refuse 
to make a prediction in those cases. In a putative clinical setting this would delay getting (conservative,  
correct) results until phenotypic DST was completed. By contrast Mykrobe does not do this, and predicts sus-
ceptibility when there is no mutation from the catalogue. We are able to compare and contrast these approaches, 
as we are using the same data, and conclude that the novel-mutation-aware approach is preferable to that used 
by Mykrobe (and, as far as we can tell, all other benchmarked tools). Essentially, novel (off-catalogue) mutations  
are an effective flag for very major errors (missed resistance). Our feeling is that the cost (delays for sus-
ceptible samples containing novel mutations) is outweighed by the benefit (avoiding some false suscepti-
ble calls). Modifying Mykrobe to follow that policy is therefore something we would like to do in the future. 
Of the other tools we tested, MTBSeq and TB-profiler would most easily be able to adopt this approach,  
as they both already do full SNP discovery for every sample.

In general Mykrobe outperforms all the other benchmarked tools, having the best sensitivity and best or  
second-best specificity on each of the three datasets. Mykrobe supports error-prone ONT reads, and we show 
that ONT and Illumina data produce identical results, although we would wish to have tested on more than five  
samples. Motivated by the fact that low frequency resistant populations will sweep to fixation under drug pres-
sure, and by the results in the Mykrobe predictor paper1, Mykrobe predicts resistance if it detects known resist-
ance alleles at low frequencies (in practise above 10%, for illumina data only). For isoniazid, rifampicin and the  
second line drugs, this results in detection of more resistant isolates, at limited cost in false positives (see 
Table 3). However for ethambutol and pyrazinamide the proportion of these extra calls that are false is  
unacceptably high (38% and 15%, respectively). Possible reasons for different performance for these drugs  
are given above; future versions of Mykrobe are likely to exclude minor alleles for these drugs.

We introduce the idea of measuring how sequencing-based diagnostic for TB drug resistance impact potential 
regimen choice, and include a powerful way to visualise it. The idea is explicitly not to suggest this could directly 
advise physicians, but instead to provide a different metric for clinically important errors. Our analysis has limi-
tations. First, we have only partial phenotyping data for second line TB drugs, and in fact none for the new and 
repurposed TB drugs. Second, WHO guidelines are ever evolving and may differ from clinical expert opin-
ions when it comes to the choice of personalized therapeutic regimens. Nevertheless, we can clearly see that the  
richer resistance profile from WGS data leads to more differentiated choices of regimen. We look forward to 
impending large and fully phenotyped datasets, for example from the CRyPTIC consortium, where tens of  
thousands of global samples will have quantitative phenotype data for 14 drugs. In addition, CRyPTIC is set  
up to deliver improved resistance catalogues, which we intend to incorporate into Mykrobe.

The pipelines for running the analyses in this paper are fully automated, all the way to generating figures, tables 
of results and Extended data, and we intend to update the paper as results improve (and as competitor tools are 
updated; a future update will benchmark the latest TB-profiler release, which appeared during the preparation of 
this paper). Our recommendations for in silico DST tools such as Mykrobe reflect our own learnings: use minor 
populations to improve predictions, flag novel mutations in resistance genes, and allow user-defined catalogues  
to facilitate comparisons and testing.

Conclusions
Antibiotic resistance prediction is of critical importance for the roll-out of sequencing-based diagnostics for TB. 
We have demonstrated here our new tool Mykrobe, supporting both nanopore and Illumina data. Mykrobe pro-
vides simple, automated and lightweight results which we evaluate thoroughly on over 10,000 isolates. We find 
that Mykrobe outperforms other tools, and (by implementing our catalogue in a second tool, ARIBA) confirm that 
the primary determinant of success is the resistance catalogue. We find that considering minor populations, and  
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flagging novel (off catalogue) mutations in resistance genes improve results. Finally, we introduce a new metric  
to highlight errors which impact initial choice of therapeutic regimen, achieving an accuracy of 95%.

The field has further to go before we can say we are fully fit for purpose, especially for the second-line, novel 
and repurposed drugs. A genomic resistance predictor must by necessity be a living and growing project, 
and our intention is that this document should also be updated in parallel, providing evidence and also open 
underlying data. We will be updating it to include benchmarking of future panels of Mykrobe, and updated  
versions of other tools.

Methods
Implementation
Species identification. A hierarchy of sequence probes are used to identify species and “phylogroup” (in this case 
Non Tuberculous Mycobacteria (NTM)) or Mycobacterium tuberculosis Complex (MTBC)). This is done by 
building a de Bruijn graph of a training set of samples of known species, identifying which species each unitig 
(maximal non-branching path) is seen in, and then selecting probes (unitigs) which are highly differentiated  
between species, and between phylogroups. The method was previously described in Bradley et al.1.

Lineage identification with MTBC. Mykrobe currently uses the lineage-informative SNPs from 47 to assign  
lineage within the MTBC.

New statistical model for genotyping. In order to use a de Bruijn graph to genotype a catalogue of vari-
ants (SNPs and indels) we first convert the list of variant sites into a set of sequence ‘probes’ of length 2k − 1. 
If the resistance mutations are defined in amino acid space, we first convert these into a set of possible codon 
changes in DNA space. In the simple case, we then represent these alleles as two short sequences (of length 2k 
− 1) - one “reference” or “susceptible” allele, and the other “alternate” or “resistant” allele. However, if there is 
another SNP or indel within k bases, any sample with this variant would have different susceptible or resistant  
allele k-mers. We therefore build equivalent susceptible or resistant alleles for each variant within k bases 
of our SNP of interest. These lead to at least two alleles for each SNP, and several more if there is background 
variation within k bases. To construct a catalogue of these background variants, we used all SNPs and indels  
called in 200 samples selected at random from the Training set.

From this set of probes, we construct our reference de Bruijn graph. Given an input FASTQ file, the de Bruijn 
graph is created, and intersected with this reference graph. For each probe allele we calculate the propor-
tion of k-mers with non-zero k-mer coverage, and the median k-mer depth on each probe. For all mutations 
in the panel we iterate through all possible nucleotide changes that would generate the specified amino acid 
change (if appropriate), and find the resistant allele and susceptible allele with the highest coverage. We then  
compare three competing k-mer producing Poisson models: homozygous reference (‘0/0’), heterozygous (‘0/1’)  
(frequency=50%), and homozygous alternate (‘1/1’) specified as follows

0/0:

                                                              KmerCount(ref ) Pois( (1– )),ε∼ D

                                                              KmerCount(alt) Pois ;
ε
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where KmerCount() is a function returning the number of k-mers observed from a given allele (i.e., the sum of 
the k-mer coverages along an allele), L is the number of k-mers in that allele, D is the genome-wide average 
depth of coverage, which corresponds to an expected k-mer coverage of D′ = D(R − k + 1)/R, D is the expected 
k-mer count along the allele (D = LD′ ), and ε is the expected error rate. The log-likelihood of each allele is 
summed, and the maximum likelihood model is chosen. The confidence is given by the difference between  
the log-likelihoods of the two most likely models.

The following filters are applied to the resulting genotype calls resulting in a NULL call for the variant:
•    LOW_GT_CONF: If the confidence of the call is below a certain value (default 150 for Illumina, dynamically 

assigned for nanopore)

•    LOW_PERCENT_COVERAGE: If proportion of k-mers on the allele with non-zero coverage is not 100%

•    LOW_TOTAL_DEPTH: If the total depth on a variant (reference + alternate) is less than min_proportion_
expected_depth (default 0.30) of expected depth.

Oxford Nanopore evaluation. For Oxford nanopore data, which has a much higher per-base error rate than Illu-
mina, the LOW_GT_CONF filter default value is determined empirically from the input data, as follows. 
First, the SNPs/indels are genotyped as described above using a default error rate of 15%. Restricting to  
variants called as homozygous (and assuming these calls are correct), the rate of error k-mers appearing on 
the wrong allele is estimated by dividing the total k-mer depth on all the non-called alleles by the total k-mer 
depth seen across both alleles in all calls. Next, the coverages on 10,000 SNPs are simulated as follows: for 
each SNP sample the depth on the “true” allele from a Poisson distribution with mean equal to the mean depth, 
and the depth on the “false” allele by sampling from a binomial distribution, with the number of trials equal 
to the mean depth, and probability equal to the estimated incorrect k-mer error rate. The genotype confidence of  
each SNP is calculated, and together these 10,000 simulated SNPs give us a modelled genotype confidence  
distribution. We then choose the genotype confidence cutoff to be the value that would retain 90% of the simulated 
SNP calls (this is the default - the precise value can be changed by the user). Genotyping is then re-run with the  
estimated k-mer error rate and this GT_CONF threshold.

Operation
Mykrobe is available for Linux (command-line only), Mac (command-line or graphical user-interface (GUI) 
application) and Windows (GUI only). For Linux, Python 2 or 3 (minimum versions 2.7 or 3.4+) is required to  
install and run the software.

Command-line version. Installation of the command line version is via cloning the git repository and running  
some install commands (documented here: https://github.com/Mykrobe-tools/mykrobe), or by using bioconda:

      conda install -c bioconda mykrobe

Drug resistance predictions can be obtained from a sample using the single command of the form:

mykrobe predict --format json --seq reads.fastq --output out.json sample_name 
species

where "sample_name" can be replaced with the name of the sample being run (any text will do). The  
"species" parameter can be "tb" or "staph" to use the built-in panels, or "custom" for a user-
generated panel (an example is shown later). The output file "out.json" contains variant and drug  
resistance calls, and details of the run, such as the version number of Mykrobe and input parameters. It is in the 
standard JSON format, which can be easily parsed by standard libraries in most programming languages. Below  
is an example excerpt of the “susceptibility” section of the output, which contains resistance calls.

"susceptibility": {
    "Isoniazid": {"predict": "S"},
    "Rifampicin": {
        "predict": "R",
        "called_by": {
            "rpoB_I491F-ATC761277TTC": {
                "genotype": [1,1],
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                "genotype_likelihoods": [
                    -18289.715541997128,
                    -99999999,
                    -120.40490302280631
                ],
                "info": {
                    "coverage": {
                        "reference": {
                            "percent_coverage": 0.0,
                            "median_depth": 0,
                            "min_non_zero_depth": 0,
                            "kmer_count": 0,
                            "klen": 21
                        },
                        "alternate": {
                            "percent_coverage": 100.0,
                            "median_depth": 150,
                            "min_non_zero_depth": 148,
                            "kmer_count": 3010,
                            "klen": 21
                        }
                    },
                    "expected_depths": [
                        145.0
                    ],
                    "conf": 18169
                }
            }
        }
    }
}

In the above example, the sample has been called as susceptible to Isoniazid ("predict": "S") and 
resistant to rifampicin ("predict": "R") because it has the variant I491F in the rpoB gene. The 
string ATC761277TTC tells us that this is a change from ATC to TTC at position 761277 of the reference  
genome H37Rv3. The various tag meanings are given in Table 9.

Results can optionally be exported to a CSV file.

mykrobe predict --format csv --seq reads.fastq --output out.csv sample_name 
species

The above example would export as follows

sample     drug          susceptibility  called_by
1234       Isoniazid     S
1234       Rifampicin    R               rpoB_I491F-ATC761277TTC:0:3010:18619

where the format of the called_by column is variant_name:reference_kmer_count:alt_kmer_
count:conf.

Table 9. JSON file tags.

Tag Meaning

genotype values 0/0, 0/1 or 1/1

genotype_likelihood log likelihood of genotype. The closer to zero, the more likely it is.

percent_coverage proportion of k-mers in allele present with k-mer coverage>0
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Using Mykrobe with user-defined panels for M. tuberculosis. As described above, Mykrobe requires a set 
of sequence probes, which are generated from the list of variant sites. The panel of variant sites need to be in a  
tab-delimited file that has the gene name, variant, and whether the variant is a change in protein or DNA  
sequence. For example:
pncA     G12GC    DNA
gyrA     D94G     PROT
fabG1    T-8X     DNA

There are three variants in this example. The first is a change from G to GC at position 12 in the DNA sequence 
of the pncA gene. The second variant is an amino acid change from D to G at position 94 in the embB gene. The 
final variant is eight nucleotides upstream of the fabG1 gene, where the T in the reference genome is changed 
to A, C, or G (i.e. X is a wildcard). Note that all positions are relative to the gene, not the complete genome  
sequence. The following command produces a FASTA file of probe sequences

mykrobe variants make-probes reference.fasta -g reference.gb -t panel.tsv > 
probes.fasta

where reference.fasta and reference.gb are FASTA and GenBank format files of the reference 
sequence and annotation respectively. Note that background variants can also be included in the probe set, which 
requires the variants in one or more VCF files, and MongoDB to be installed. The following BASH commands  
will add variants to a new database.

db=$PWD/mongo-db/
mkdir $db
mongod --quiet --dbpath $db &
sleep 10
for f in ‘cat vcfs.txt‘
do
    mykrobe variants add --db_name mtb $f reference.fasta
done

In the above commands, the file vcfs.txt contains a list of the VCF file names (one file name per line), 
and the variants from each VCF file are added in turn to the database. Then the same command as above can  
be run to make the probe sequences, but with the extra option --db_name mtb.

In addition to the probes FASTA file, a JSON file that maps each variant to a list of drugs is required to run 
the “predict” subcommand of Mykrobe. For example, the JSON file corresponding to the above example  
three variants is as follows.

{"pncA_G12GC": ["Pyrazinamide"],
 "gyrA_D94G": ["Ciprofloxacin", "Ofloxacin", "Moxifloxacin"],
 "fabG1_T-8X": ["Isoniazid"]}

The probes FASTA file probes.fasta and JSON file of variant to drug(s) variants.json can be used  
with Mykrobe with the command

mykrobe predict --seq reads.fastq --output out.json --panel custom \
  --custom_probe_set_path probes.fasta --custom_variant_to_resistance_json variants.json 
\
  <any sample name> tb

Graphical user-interface app for Mac and Windows. The interface for Mykrobe graphical app is shown in  
Figure 7.

Containerised releases. A Docker container can be obtained using the command

docker pull quay.io/biocontainers/mykrobe:0.7.0--py37h2666aa9_0
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Variant panel development. The new Mykrobe variant catalogue was developed using the Training and Global 
datasets as follows (see also Figure 2). We started with the catalogue of variants from 20 for the first line drugs,  
which we call NEJM-2018. This was used together with the remaining drugs from the existing Mykrobe pre-
dictor release panel (Walker-2015), and the fluoroquinolones separated into ciprofloxacin, moxifloxacin and 
ofloxacin. This combined set of variant sites was called candidate panel 1 (CP1). Note that this includes all 
frameshifts of length 1 and 2 in pncA and katG, implying resistance to pyrazinamide and isoniazid respectively. 
Mykrobe was run on the Training dataset using CP1 and the results were compared against the known pheno-
types for those samples. All variants that had positive predictive value less than 5% were removed from CP1, to 
make candidate panel 2 (CP2). Next, the process was repeated, removing variants from CP2 to make candidate  
panel 3 (CP3), based on the results of running Mykrobe with CP2 on the Global data set. All removed variants 
are provided in the Source data file removed_variants.tsv32. Finally, three removed variants were reinstated 
into the panel because they were found to have positive predictive value greater than 5% on later datasets 
(these were identified using the results from the Walker-2015 panel). The final panel is included as the default  
set of variants in release 0.7.0 of Mykrobe.

Comparison with other tools. Since our combined Training, Global, and prospective datasets consist of more 
than ten thousand samples, we only benchmarked Mykrobe against tools which could be run on the command-
line (not web or user-interface applications). Specifically, we tested ARIBA (version 2.13.2), KvarQ (commit 

Figure 7. (a) Start page of the Mykrobe application. Users can drag-and-drop or select their sequence files. Once 
selected, Mykrobe starts the analysis process. (b) Once the analysis is complete, the user is shown the resistance 
profile - which drugs is the isolate predicted to be resistant to, and susceptible to. (c) Resistance profile can be broken 
down into first and second line drugs. (d) The identified genetic substrate for resistance prediction can be seen in the 
“Evidence” tab. Here, evidence for isoniazid and rifampicin resistance is observed in variants KatG position 315 and 
rpoB position 450, respectively. (e) The species and lineage prediction can be seen in the “Species” tab. Here the 
sample is Mycobacterium tuberculosis of European/American lineage.
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d693f561d205c9a3f9b9c705e2fefecdeb715cc8), MTBseq (version 1.0.3) and TB-Profiler (commit 327e431c3e
9de2897a885fabe6bfede1421b2470). In order to separate the impact of catalogue from the different genotyping 
processes applied by different methods, we modified ARIBA to use the same catalogue as Mykrobe, but for the  
other tools we used their in-built catalogues.

ARIBA was modified by adding an option to use the same variant panel as the final Mykrobe release panel, 
but with the following differences. First, since ARIBA performs local assembly, it was modified to call resist-
ance to pyrazinamide or isoniazid if the pncA or katG genes respectively were not completely assembled without  
internal stop codons. This is different from the Mykrobe variant panel, which instead includes all nonsense  
mutations and indels of length 1 and 2 in those genes. Second, unlike Mykrobe, ARIBA was not set to report 
resistance-conferring synonymous changes in gene sequences. We note that ARIBA code version 2.13.2 was 
run for this study, but using the built-in panel from version 2.13.3, which corresponds to the final Mykrobe  
release panel. These versions only differ in that 2.13.2 has a variant panel corresponding to CP3.

Mykrobe and ARIBA explicitly have the fluoroquinolones ciprofloxacin, moxifloxacin, and ofloxacin in their 
variant catalogues. However, KvarQ, MTBseq and TB-Profiler simply call fluoroquinolone resistance without  
distinguishing between the three drugs. Therefore when reporting results, a fluoroquinolone call was taken to  
imply resistance to all three of ciprofloxacin, moxifloxacin, and ofloxacin.

The benchmarking pipeline was implemented using Nextflow48, Singularity49 and Python scripts, and is freely  
available under the MIT licence (code available here: https://github.com/iqbal-lab-org/tb-amr-benchmarking ; commit  
version used was 3e768c025ee54f154116dc6b2f7100a844081609). Running time and peak RAM usage of the 
tools was gathered using the output of the UNIX command time -v, using the fields “Elapsed (wall clock) time” and  
“Maximum resident set size”. The benchmarking pipeline outputs all data in a single JSON file (included as Extended 
data file pipeline.json.gz50), which was then used to generate the results of this study, including all tables and fig-
ures, with the separate code repository (code here: https://github.com/iqbal-lab-org/tb-amr-benchmarking-paper/ ;  
the version/commit used to generate this paper was 59e1b442dd04ec8e16656334ab9ea7d5cefaa871). Singularity 
containers of the two repositories are available at https://doi.org/10.6084/m9.figshare.10623410.v1 and https://doi.
org/10.6084/m9.figshare.10650515.v1.

Oxford nanopore samples. Mykrobe was evaluated on five samples sequenced using both Illumina and Oxford 
Nanopore Technologies (ONT) MinION (ENA project ERP113349; sample and run accessions are in additional  
file ont.tsv). Raw nanopore fast5 files were basecalled with ONT Albacore (version 2.1.7) using the command

read_fast5_basecaller.py --flowcell FLO-MIN106 --kit SQK-LSK108 --recursive --barcoding \
 --input data_in --output data_out --output_format fastq

Porechop (version 0.2.3) was then used to trim adapters from the reads and to do additional basecalling. When 
demultiplexing is done by Porechop on the Albacore demultiplexed folders, Porechop will assign reads to a bar-
code where both Albacore and it agree. All reads where there is disagreement between the two are placed in 
the “unclassified” category. The resulting FASTQ files for each barcode were aligned to the M. tuberculosis  
H37Rv reference (NC_000962.351) using minimap252 with the map-ont option. The resulting SAM file  
was sorted, indexed, and converted to FASTQ using SAMtools53. When converting the SAM file to FASTQ, 
all unmapped reads (SAM flag 0x4) were filtered out. The final Mykrobe panel from release 0.7.0 was run on 
the samples, separately on each of the Illumina and ONT reads. For ONT reads, the option --ont was used to  
trigger the use of the dynamic genotype confidence cutoff, as described above.

WHO regimen analysis
Using previously published WHO guidelines for treatment of drug susceptible and drug resistant M. tuber-
culosis, we established a set of rules to associate any given drug resistance profile to a recommended drug 
regimen (Extended data file who_regimens.tsv54 presents treatment rules)24,25. Regimens including multi-
ple new drugs (such as bedaquiline and delamanid, where the basis of drug resistance is poorly understood and  
phenotyping is rare), were included in this model, but isolates were assumed to be susceptible, since phenotype  
data for these drugs was unavailable, and is not assumed to be available for the WHO protocols.26.

Data availability
Source data
Figshare: sample_data.tsv. https://doi.org/10.6084/m9.figshare.7556789.v129.
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This project contains European Nucleotide Archive accession numbers for Illumina sequence data and associated 
metatdata.

Figshare: ont.tsv. https://doi.org/10.6084/m9.figshare.7605443.v137.

This project contains European Nucleotide Archive accession numbers for ONT data, and matched illumina  
data, along with phenotypes and known resistance alleles.

Figshare: panel.CP1.tsv. https://doi.org/10.6084/m9.figshare.7605383.v130

Figshare: panel.CP1.json. https://doi.org/10.6084/m9.figshare.7605416.v131.

Figshare: panel.CP2.tsv. https://doi.org/10.6084/m9.figshare.7605386.v155.

Figshare: panel.CP2.json. https://doi.org/10.6084/m9.figshare.7605422.v156.

Figshare: panel.CP3.tsv. https://doi.org/10.6084/m9.figshare.7605389.v157.

Figshare: panel.CP3.json. https://doi.org/10.6084/m9.figshare.7605425.v158.

Figshare: panel.final.tsv. https://doi.org/10.6084/m9.figshare.7605395.v135.

Figshare: panel.final.json. https://doi.org/10.6084/m9.figshare.7605428.v136.

These files contain candidate panels 1, 2 and 3, and the final panel, in TSV and JSON file formats.

Figshare: removed_variants.tsv. https://doi.org/10.6084/m9.figshare7605380.v132

This file contains the variants removed from candidate panels 1 and 2 during development of the final variant  
panel.

Figshare: run_time_memory.tsv. https://doi.org/10.6084/m9.figshare.7605437.v142.

This file contains the run time and peak memory usage of each tool on each sample.

Extended data
Figshare: accuracy_stats.tsv. https://doi.org/10.6084/m9.figshare.7605398.v133.

This file contains the summary statistics for each tool and drug.

Figshare: variant_counts.tsv. https://doi.org/10.6084/m9.figshare.7605407.v134.

This file contains the number of true- and false-positive calls for each tool and each reported variant.

Figshare: run_time_boxplots.pdf. https://doi.org/10.6084/m9.figshare.7605431.v140.

Figshare: memory_boxplots.pdf. https://doi.org/10.6084/m9.figshare.7605434.v141.

These files contain boxplots summarising the run time of each tool, generated from the file run_time_and_ 
memory.tsv.

Figshare: who_regimen_counts.tsv. https://doi.org/10.6084/m9.figshare.7851689.v143.

This file contains WHO regimen counts for each tool and dataset.

Figshare: pipeline.json.gz. https://doi.org/10.6084/m9.figshare.7605509.v150.
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This file contains the otuput of the benchmarking pipeline.

Figshare: who_regimens.tsv. https://doi.org/10.6084/m9.figshare.7605476.v254.

This file contains drug regimens defined by the WHO.

Data are available under the terms of the Creative Commons Zero “No rights reserved” data waiver (CC0 1.0  
Public domain dedication).

Software availability
Mykrobe is available at: http://mykrobe.com.

Source code available from: https://github.com/Mykrobe-tools/mykrobe.

Archived source code at time of publication: https://doi.org/10.5281/zenodo.354992623.

License: MIT License.
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Hunt and co-authors describe the improvements and testing of an antibiotic resistance prediction tool for 
 using NGS data. The authors clearly describe the improvements on theMycobacterium tuberculosis

original   software resulting in this new version,   Improvements being: mutationMykrobe predictor Mykrobe.
catalog update, ability to use other mutation catalogs, improved identification of non-tuberculosis
Mycobacterial species, and ability to use tool with Oxford Nanopore data. The software is freely available
at mykrobe.com and has source code and documentation on Github. Additionally the data presented in
the paper can be found on figshare. The development of the mutation panels and data interpretation is
demonstrated on three datasets: training, prospective, and global set. The benchmarking against four
other prediction tools is useful to show improvements and performance. Although only five Oxford
Nanopore samples were used, they did show agreement in drug resistant variant calls. The case study of
using   predictions to guide personalized regimens is an extremely useful comparison andMykrobe
illustrates valuable clinical application of this type of tool.

The manuscript is scientifically sound without further changes. However, the following minor comments
should be considered to increase the readability of the manuscript.

The paper is very lengthy and full of information, however it is hard to read and digest all the information
contained within the manuscript. The abstract is concise and clear it would be beneficial for structure and
format to be mirrored throughout the manuscript. For example, the introduction contains a lot of text
dedicated to explaining the first version,   and does not put the tool in context ofMykrobe predictor,
tuberculosis until the fourth paragraph. Perhaps clearly outlining the need for this tool and then summarize
how the original version has been improved will streamline the introduction and increase the impact of the
work, as right now some of the benefits of the software are buried in a large amount of text.  

Throughout the results section, there are portions that make more sense in the methods section, and then
present on the results for only this study in the results section. For example, in the results species
identification section, it is unclear which are the results for this manuscript versus previous findings.
Additionally in the minor alleles prediction section, the rationale behind the work should be moved to the
methods.
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methods.

In the results section, the table 1 does not include sensitivity/specificity as stated in the body. The data is
there to calculate these values but the specific sensitivity and specificity values are not included.
Additionally, the sensitivity and specificity stated in the abstract are not found elsewhere in the paper –
they can be calculated with data given, but would be beneficial to have in results.
The methods section should be organized to mirror the order of the results section as this would enable
readers to quickly reference methods when reading the results section. In the methods variant panel
development section, it is unclear what data sets CP2 and CP3 are run on to generate the next panels.
This is clear in the figure 2, but text was unclear.

Is the rationale for developing the new software tool clearly explained?
Yes

Is the description of the software tool technically sound?
Yes

Are sufficient details of the code, methods and analysis (if applicable) provided to allow
replication of the software development and its use by others?
Yes

Is sufficient information provided to allow interpretation of the expected output datasets and
any results generated using the tool?
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Are the conclusions about the tool and its performance adequately supported by the findings
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