

healthy all life long

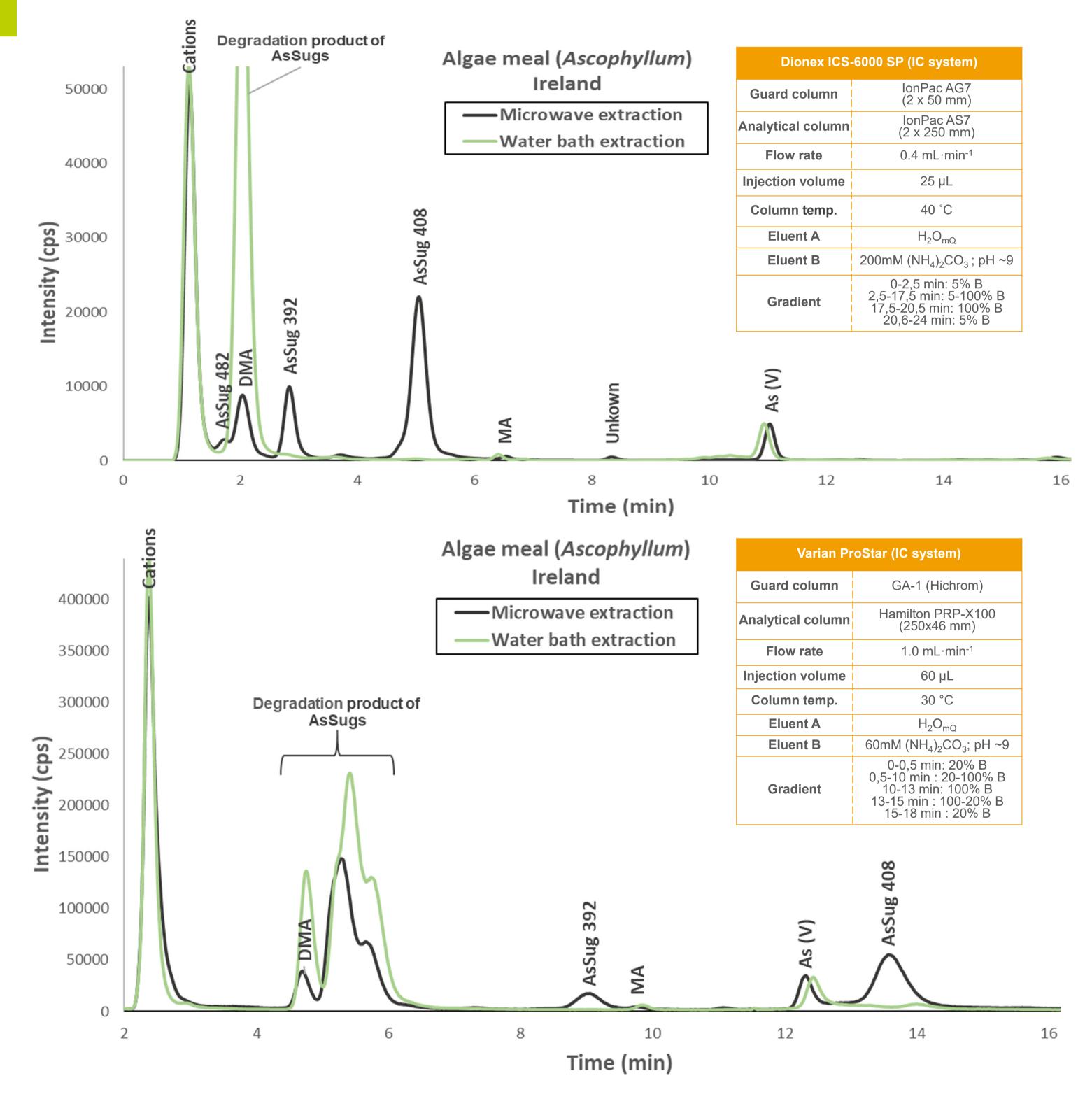
Optimization of an IC-ICP-MS analytical method for determination of inorganic arsenic in algae and algae based-products

Grégoire Rondelet¹ • Kristine Brouwers¹ • Heidi Amlund² • Jens J. Sloth² • Karlien Cheyns¹

1. Trace Elements and Nanomaterials, Sciensano, Brussels, Belgium • 2. National Food Institute, Technical University of Denmark, Lyngby, Denmark

Concentrations of Asi (ppb) in algae based-products

Overview


Purpose : Optimize a robust LC-ICP-MS analytical method for inorganic arsenic (Asi) determination in algae

Methods : Comparison of two extraction methods in acidic oxidizing medium + Two different anion exchange columns / gradient elution conditions

Results : Both extraction and LC-ICP-MS methods result in similar Asi concentrations with sufficient peak resolution

- Algae are known for their nutritional benefits and they are increasingly used as feed and food in EU countries [1]
- They are also known to accumulate arsenic (As) in different chemical forms
- Health effects of inorganic forms (Asi) are considered more toxic [2]
- Precise determination of Asi is needed to assess the potential harmful effects
- Algae matrices contain complex As species, as arsenosugar

	MAE		Water bath	
	IonPac As7	Hamilton PRP-X100	IonPac As7	Hamilton PRP-X100
Algae meal-Ireland_Ascophyllum	1000	975	972	1081
Algae meal-France_Ascophyllum	290	218	363	406
Algae meal-Norway_Ascophyllum	167	130	135	134
Food supplement_Ascophyllum	25	24	35	37
Food supplement_Fucus	94	113	110	147
Note : LOQ (DF10) IonPac As7 = 2ppb ; LOQ (DF10) Hamilton PRP-X100 = 10ppb				

- (AsSug) compounds, which can co-elute with Asi during chromatographic separation
- Current CEN standards (EN16802:2016 & EN17374:2020) may require optimization to improve the resolution and quantification of Asi

Methods

- Samples & reference material
- Algae meal feed (*Ascophyllum*) from Ireland, France and Norway + food supplements containing *Fucus vesiculosum* or *Ascophyllum nodosum* species
- Certified reference materials Hijiki seaweed (NMIJ7405-b), brown rice flour (NMIJ7532-a) and kelp powder (NIST 3232) were used for method validation and identification of common AsSugars
- Extraction (0.1 M HNO₃ in 3% H₂O₂; 0.15-0.25 g of sample)
- Microwave-assisted extraction (MAE) at 90°C during 20 min
- Water bath extraction at 90°C during 1h
- Analytical methods (Anion-exchange chromatography coupled with ICP-MS)

- HPLC (Varian ProStar) - ICP-MS (Varian MS820; m/z 75; KED)
- IC (Dionex ICS-6000 SP) - ICP-MS (iCap RQ 2ch; m/z 75; KED).
Details about the chromatographic separation -> see chromatograms.

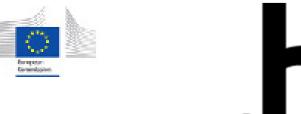
Results

Conclusions

- Both extraction and IC-ICP-MS methods provide similar results for Asi by limiting interference with AsSugs
- An interlaboratory comparison should elucidate if the proposed
- Optimized IC-ICP-MS systems provide sufficient peak resolution of the Asi (AsV) with other adjacent arsenic species (Res > 2) and different methods result in similar Asi concentrations
- MAE has the least impact on the integrity of AsSugs and may within certain limits provide semi-quantitative information

NOTE : the moment of analysis after extraction might influence the amount of AsSugs degradation -> see MAE chromatograms (Dionex ICS-6000 SP : 1 day after extraction vs Varian ProStar system : 1 month after extraction)

methods can serve as a base for an international standard for Asi determination in algae and algae products


REFERENCES

1. Sá Monteiro M, Sloth J, Holdt S, Hansen M. Analysis and risk assessment of seaweed. EFSA Journal. 2019;17:e170915.

2. EFSA. Panel on contaminants in the food chain (CONTAM). Scientific Opinion on Arsenic in Food. EFSA Journal. 2009;7:1351–5.

ACKNOWLEDGEMENTS

This work was partly funded by the European Commission (EC) to perform work in accordance with their Specific Agreement regarding standardization of algae and algae products (EN/2019/ENER/C2/452-2019/SI2.832375)

Sciensano • Grégoire Rondelet • T + 32 2 769 22 29 • gregoire.rondelet@sciensano.be • www.sciensano.be