Arch Public Health
1998, 56, 345-361

Investigation of the clustering effect
in the Belgian Health Interview
Survey 1997

by

Renard D. ', Molenberghs G. ', Van Oyen H. ? and
Tafforeau J. 2

Abstract

This paper investigates the effect of clustering in the first Health
Interview Survey (HIS) that took place in Belgium in 1997. In this survey
10,221 individuals were interviewed using a stratified multistage
clustered sampling procedure. Clustering arises at two levels in the HIS,
within municipalities and within households. its effect and magnitude on
some selected continuous and discrete items are studied from a multifevel
modeling perspective. This model-based approach fully acknowledges
and takes advantage of the hierarchical structure of the data, and is to be
contrasted with the more traditional, design-based approach which views
the population structure as a nuisance factor. The effect of weighting in
this context is also investigated following Pfeffermann et al. (1).
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1. Introduction

In 1997 the first Health Interview Survey (HIS) took place in Belgium,
following a stratified muitistage clustered sampling procedure. This
means, in particular, that selection within each stratum was carried out
in several stages, the sampling units at each stage being subsampled
from the larger units (or clusters) chosen at the previous stage. As a
result of this sampling design, the individuals in the population were
included in the sample with differing probabilities. Typically, analyses of
data arising from complex sample surveys are adjusted by methods that
incorporate sampling weights, usually defined as the reciprocals of
the sample inclusion probabilities. These sampling weights effectively
represent the number of individuals in the population that each sampled
individual represents (2).

Another consequence of the multistage selection, which is not
accounted for by the use of weights, is that clusters selected at various
stages constitute relatively homogeneous groups. Clustered data
ordinarily exhibit intra-class correlation because units from the same
cluster tend to be more alike than units from different clusters, thus
violating the usual independence assumption underlying many common
statistical methodologies. Whatever method of analysis is used, it should
address this issue in order to obtain valid statistical inference (e.g., cor-
rect variances of the regression coefficients) and special procedures
have been developed to deal with clustering in a sample survey frame-
work, for example when comparing mean values or fitting classical
regression models (3).

This type of procedure is encompassed in the traditional, design-
based philosophy and typically constitutes an ad hoc correction to
account for the sampling design. In this approach the population struc-
ture, insofar as it is mirrored in the sampling design, is seen as a
nuisance factor (4). On the contrary, the multilevel modeling approach
views the population structure as of potential interest in its own right and
intimately embeds this structure in the model itself. In addition, a model-
based approach enables one to incorporate design-related information
directly into the model, thus obviating the need to carry out special
procedures to adjust for the effects of the sampling design.

On the grounds of these considerations, we shall endorse the latter
viewpoint to investigate the effect and magnitude of clustering in the HIS.
In Section 2 we outline the main design aspects of the HIS. Section 3
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reviews multilevel modeling techniques for both continuous and
discrete response data and discusses weighting in this context, while the
next section is devoted to applying these methods to the HIS. We
address some comments and conclusions in the last section.

2. Overview of the HIS Sampling Design

A detailed account of the HIS sampling design has been given else-
where (5). See Van Oyen et al. (6) for a more concise description. In this
section, we briefly outline the main aspects of the final sampling scheme
for the selection of the households (HHs) and respondents in the HIS.

Rasically, the sampling procedure can be seen as a combination of
different sampling technigues: stratification, multistage sampling and
clustering. Stratification is performed at the regional level (Flemish,
Walloon and Brussels regions) and at the provincial level. A further
refinement concerns the German community which has been consid-
ered a proper entity on its own. This stratification aims at achieving a
geographical spread of the interviews and overall, gives rise to 12 stra-
ta. The quota of interviews were also evenly distributed over quarters of
the study year to obtain reasonable spread over time.

Next, the individuals’ sample is selected in three stages within each
stratum. The first stage, yielding primary sampiing units (PSU), consists of
municipalities and sampling is carried out proportionally to (population)
size. Whenever a municipality is selected (and it can be more than once),
a group of 50 persons is to be interviewed within this municipality. The next
stage of random selection operates on HHs (secondary sampling units or
SSU) according to a clustered systematic sampling procedure upon order-
ing of the HHs by statistical sector, size and age of the reference person.
At this level, matching HHs are provided in case a HH refuses to partici-
pate. Finally, individuals or tertiary sampling units (TSU) are selected with-
in HHs in such a way that 4 persons at most are interviewed in each HH
and the reference person and his/ner partner are automatically setected.

3. Multilevel Models

Many sets of data collected in human and biclogical sciences have a
hierarchical or clustered structure (a hierarchy consists of units grouped
at different levels). Examples of such data structures abound: individu-
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als are grouped into HHs, workers into workplaces, animals into litters,
or subjects can be studied repeatedly over time, thus yielding measure-
ments grouped within individuals. Obviously, one can extend such
elementary structures to any number of levels.

The existence of hierarchies in some data structures is neither acci-
dental nor ignorable and it has long been recognized that the grouping
or clustering induced by such hierarchies presents particuiar problems
due to the lack of independence between observations. In the 1980s a
number of researchers have introduced systematic approaches to the
statistical analysis of hierarchically nested data. This has resuited, in the
early 1990s, in a core set of well-developed, established technigues and
widely available software packages that could be applied to the fitting of
muttilevel models in an efficient manner. This is especially true for
responses that are continuously distributed. In the last decade much
effort has been initiated to cope with discrete response data in models
involving random effects, and this has led to the development of gener-
alized linear mixed models which is stil! a field of active research.

The remainder of this section is intended to give a short overview of
multilevel modeling. We also discuss weighting in this context. For more
comprehensive accounts on the subject, see Bryck and Raudenbush (7),
Longford (8) and Goldstein (4). A more recent introduction is given by
Kreft and de Leeuw (9).

3.1 The Multilevel Linear Mode!

This section focuses on multitevel models for outcome variables that
are continuously distributed. We consider the case of a three-level
model with application to the HIS data in mind. Thus, suppose we have
measurements ijk on a continuous response variable for the ith individ-
ual from the jth HH in the xth municipality.

A muliilevel model contains, in general, variables measured or
defined at different levels of the hierarchy and allows regression coeffi-
cients to be random at any of these levels. As such, it is a special case
of the general linear mixed model (10, 11) and hence can be written as

Y=X3+Zu + &, (3.1)

where Y is the vector of responses, X is a model matrix for the fixed
effects with corresponding parameter vector 8, Z is a model matrix for
the random effects v, and ¢ is a vector of error terms. The vector v of
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random effects and the error term ¢ are assumed to be mutually
independent. The variance matrix of & is ordinarily assumed to be
(a multiple of} &2 /,, with N the total number of observations, but does
not need to be so. When the top level units are independent, it follows
that the variance matrix V = Var (Y) has a patterned (block diagonal)
structure which can be exploited in the calculations (12).

Technical Notfe

With the further distributional assumption of normality for v and &,
parameter estimation can proceed by maximization of the likelihood
function. A diversity of algorithms have been proposed which comprise
iterative generalized least squares (12), Fisher scoring (13) or Expec-
tation-Maximization (14). Alternatively, one may employ the method of
generalized estimating equations (GEE) introduced by Liang and Zeger
(15), which is a generalization of quasi-likelihood estimation (16) and
focuses primarily on modeling the mean structure rather than expioring
the random component of the model. This procedure is, however, most
useful in the generalized linear model framework. Mare recently, the
treatment from a fully Bayesian perspective has become computational-
ly feasible with the development of Markov Chain Monte Carlo (MCMC)
methods, especially Gibbs sampling (17).

3.2 Muiltifevel Models for Discrete Response Data

We shall restrict discussion to the case of binary (or, more generally,
binomial) responses. Following Rodriguez and Goldman (18), the multi-
level logit model is obtained by assuming that, conditional on a vector of
random effects u, the elements of Y are independent Bernoulli random
variables with probabilities ., = P[Y,.jk= 1|u] satistying

n = logit (4) = XB + Zu, (3.2)

where v is assumed to be normally distributed. Note that (3.2) may
equally be derived from a multilevel linear model using a latent variable
formulation.

The conditional likelihood function assumes the usual binomial form,
where conditioning is done on the random effects. The major challenge
with model (3.2) is to obtain the unconditional likelihood since we need
to integrate out the random effects, which unfortunately yields an
intractable expression. Numerical integration can be accomplished for
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relatively simple models but soon becomes computationally intensive as
complexity (dimension of the random effects) grows. Different proce-
dures have been proposed to circumvent the problem and most of them
rely on approximations.

Technical Note
Goldstein (19) for instance writes his model as

Y=pn)+e, (3.3)

where u satisfies (3.2) and the mean-zero error term ¢ represents the
element level variability and is defined so as to conform to the assump-
tion Y, ~ Binomial (1, ,u,.jk). He proposes to linearize the mean function
u(n) using a Taylor expansion around the fixed part predictor (i.e., set-
ting v = 0). Upon regrouping the procedure entails fitting multilevel
linear models repeatedly. This procedure has also been referred to as
marginal quasi-likelihood (MQL) by Breslow and Clayton (20).
Rodriguez and Goldman (18) point out that MQL can be seriously
biased, in response to what Goldstein and Rasbash (21) improve the
procedure by adding estimated residuals to the fixed part predictor in the
Taylor expansion — this amounts fo the penalized quasi-likelihood (PQL})
procedure of Breslow and Clayton (20) — and considering second-order
terms (PQL2). A notable feature of MQL and PQL procedures is that they
can easily be extended to accomodate extra-binomial variation, in which
case they yield results equivalent to the pseudo-likelihood approach of
Wolfinger and O’ Connell (22).

3.3 Weighting in Multilevel Models

The issue of weighting in multilevel models has not been extensively
investigated in the literature until quite recently (see Graubard and Korn
(2) and Goldstein (4) for restricted discussions, and Pfeffermann et al. (1)
for a more thorough treatment in the case of linear models). A reason
might be that sampling schemes are commonly ignored in multilevel
analyses of survey data since multilevel models enable one to incorpo-
rate certain characteristics of the sampling design as covariates, such as
strata indicators or size variables. This argument breaks down when the
relevant information is not made available to the analyst or when it is not
scientifically meaningful to be included in the model.

lt should be emphasized that weighting in multilevel models is not a
trivial extension of conventional methods of weighting (1). One key
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feature of the multilevel approach is that sample inclusion probabilities
can be defined at any stage of the hierarchy, conditionally on the
membership to higher clusters. Thus, municipality x is selected with
inclusion probability m,, HH jis selected with probability 1T, within munic-
ipality «, and individual i is sampled with probability 17, witlfm HH j select-
ed from municipality x. Unconditional selection probabilities can be
derived from appropriate products of conditional probabilities (e.g.. 1T, =
I, denotes the probability that municipality « is sampled and that, with-
in this municipality, HH j is selected). These selection probabilities, in turn,

permit to define corresponding sample weights by taking reciprocals.

Technical Note

The approach Pfeffermann et al. advocate consists of replacing in the
sample estimators each sum over units from a given level by a corre-
spondingly weighted sum, using conditional weights defined at the same
level. They achieve this weighting by considering a two-step procedure
of which the first step merely entails a transformation of the data (more
specifically, of the covariates specifying the random part of the model).
It turns out that this simple step alone almost achieves the sought-after
goal, which consequently makes it very attractive insofar as standard
software packages can be employed for its implementation. Pieffermann
et al. find, on the grounds of limited simulations, the corresponding
estimator to perform fairly well, except when the sampling mechanism is
informative (i.e., when the sample inclusion probabilities are related to
the error terms and hence to the response data) and in some other
special instances. For the sake of simplicity, we consider solely this
restricted form of the weighting procedure in the sequel.

4. Application to the HIS

This section aims at applying the multilevel modeling methodology to
selected items from the HIS. For modeling purposes we need to choose
a set of explanatory variables to be included in each of our models. These
are region, sex, age (eight categories), education (five categories) and
HH income (five categories).

For the computational aspects of this work, we used the stand-aione
software package MLwiN (23). This package has been specifically
designed for the fitting of multilevel models and can deal both with con-
tinuous and discrete response data. For the latter, we also considered
the program MIXOR (24).
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4.1 Continuous Response Data

The following items were considered: body mass index (BMI) and
VOEG score. The VOEG score is derived from a 23-item questionnaire
which produces an inventory of various complaints. The items are 0/1
coded and summed up to obtain the final score (higher scores are indi-
cator of more pronounced morbidity). This score is, strictly speaking, an
ordered categorical variable. However, the number of categories being
large, it was treated as a continuous covariate. Log transformations,
specifically In(BMI) and In(VOEG+1), were applied to these variables to
normalize their distribution. Overall, 9118 out of 10,221 (89%) and 7570
out of 8560 (88%) observations were available on the selected covari-
ates and on BMI and VOEG score, respectively. Notice that the VOEG
questionnaire was addressed solely to people aged above 15 years.

The following model was fitted to these data:

Yﬂ.k: X',-,-;(.B +V U ey, (4.4)

where v, U i and e jk are variance components defined respectively at
the municipality, the HH and the individual level. Unlike the vector nota-
tion in (3.1), we make use of a scalar notation here. Formaly, (4.4) can be
rewritten as (3.1) by stacking the responses Yijk and the row vectors of
fixed-effects x,, to form Y and X respectively. Likewise, the vector v of
random effects can be obtained by stacking the municipality and HH
effects (v, and ij) and the Z matrix by defining indicators of municipali-
ties and HHs to conform with the structure of v.

The interpretation of the above variance components can be done
in terms of intra-class correlations (ICCs). If we suppose that
v, ~NO,62), v, ~ N(O,6%) and g, ~ N(0,0%) and that these three
components are independent of each other, then the intra-municipality
correlation is defined as

2
oy

P = : (4.5)
2 2 2
g°,+ 0, t 0

while the intra-HH correlation is equal to

o2, + 0%,
P~ : (4.6)
2 2 2
g°, + 07 + 07,
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Thus, the intra-class correlation at a given level is the proportion of
total variability in the outcome variable that lies between the units at that
level, and hence is a measure of (within) group homogeneity (the more
homogeneous the groups, the higher the intra-class correlation).

Besides this measure of clustering, there is also some interest in
comparing performance of weighted and unweighted estimators and
assessing to what extent inclusion of the design-related information into
the model might influence their performance. In particular, one can
examine whether the effect of weighting is diminished when variables
determining the sampling rates are included as covariates.

Before presenting the results, we first elaborate on the design informa-
tion we considered for inclusion into the model. As outlined in Section 2,
we can first include strata indicators for provinces (hereby referring to the
usual 10 Belgian provinces plus Brussels and the German community) and
quarters. We can then supplement these indicators with variables which
characterize sampling at each of the levels. Thus, within a province of
P individuals, the population size S, of municipality « along with the num-
ber g of groups of 50 persons to be interviewed determine the selection
probability of that municipality (17, = gS,/P) and can therefore be consid-
ered as potential covariates. Likewise, HH size and status of HH members
(specifically, whether a HH member is the reference person or his/her part-
ner) enable one to calculate selection probabilities at the individual level
and can be included in a model. For simplicity, we have not considered
sampling information at the HH level. 1t should be noticed, however, that
there were no differential selection probabilities at that level.

Tables 1 and 2 summarize the results. In each case, the first part of
the table refers to the model containing the explanatory variables of
interest, but adjusted for the design variables described above (note that
parameter estimates of these variables are not reported for reasons of
readibility), whereas the second part concerns the model with explana-
tory variables of interest only. In each case, weighted and unweighted
estimators were computed, where in the former (conditional and uncon-
ditional) weights at each level were rescaled using the corresponding
weight averages. The empirical or sandwich estimators (4, 15) are
reported for the standard errors of the parameter estimates because the
appropriate covariance matrix cannot be computed directly in MLwiN.
Observe that the regional effects could not be estimated when including
design variables due to the presence of provinces in the model, which
form a finer partition of regions. Instead, we report for each region the
average provincial effect within this region.
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TABLE 1
Parameter estimates for the In (BMI) datat
Including design variables Not including design variables
Unweighted Weighted Unweighted Weighted
Paramater Estimator Estimator Estimator Estimator
8 Intercept 2.8249 (0.0147)| 2.8281 (0.0220)| 2.8515 (0.0125)| 2.8507 (0.0208)
Sex (Male) 0.0359 {0.0033)| 0.0409 (0.0048}| 0.0356 (0.0033)| 0.0397 (.0049)
Age (reference: 0-14}
15-24 0.2245 (0.0068) | 0.2481 (0.0130)| 0.2510 (0.0068)| 0.2528 (0.0140)
25-34 0.3182 (0.0087)| 0.3299 {0.0123)| 0.3458 (0.0073)| 0.3555 {0.0086)
35-44 0.3472 (0.0088) | 0.3648 (0.0141)| 0.3810 (0.0074)| 0.3981 (0.0094)
45-54 0.3829 (0.0096)| 0.3871 {0.0130)| 0.4164 (C.0071)| 0.4176 {0.0110}
55-64 0.4086 (0.0101)| 0.4268 {0.0147)| 0.4391 (C.0072)| 0.4563 {0.0111)
65-74 0.3995 (0.0102) | 0.3990 {0.0149)| 0.4284 (C.0087}| 0.4273 (0.0191)
75+ 0.3404 (0.0118) | 0.3458 (0.0159)| 0.3671 (0.0088); 0.3713 (0.0159)
Income {reference: < 20,000)
20,000-30,000  0.0007 (0.0074) |- 0.0310 (0.0159) |- 0.0018 (0.0073) - 0.0316 (0.0158)
30,000-40,000  0.0079 (0.0066} |- 0.0160 (0.0138)|-0.0040 (0.0065) |- 0.0177 (0.0132)
40,000-60,000  0.0022 (0.0071)|—0.0346 (0.0187) |- 0.0026 (0.0069) -~ 0.0363 (0.0158)
> 60,000 —0.0004 (0.0076) |- 0.0281 (0.0200) |- 0.0077 (0.0075) |- 0.0338 (0.0201)

Education (reference: No diploma)

Primary —0.0303 (0.0101) |- 0.0195 (C.0146) | — 0.0365 {0.0100) |- 0.0251 {0.0148)
Lower secondary — 0.0487 (0.0107) |~ 0.0366 (0.0158) | - 0.0523 {0.0101) |~ 0.0390 (0.0150}
Higher secondary— 0.0630 (0.0150) |- 0.0472 (0.0169) | - 0.0645 (0.0099) | - 0.0454 (0.0157)
Higher ~0.0911 {0.0104) |- 0.078% (0.0160} |- 0.0814 (0.0100) |- 0.0763 (0.0153)
Region (reference: Brussels)
Flanders 0.0075++ 0.01331+ 0.0054 (0.0061) 0.0101 (0.0083)
Walionia 0.0195++ 0.0201+% 0.0224 (0.0059)( 0.0218 {0.0087)
@, 0.0001 (0.0001)| 0.0001 (0.0001)| 0.0001 (0.0001)| 0.0003 {0.0002)
of, 0.0039 (0.0005) | 0.0040 (0.0010)| 0.0038 (C.0005}| 0.0040 (0.0011)
o7, 0.0217 (0.0011)| ©.0211 {0.0042)| 0.0218 (0.0011)) 0.0213 (0.0042}
Pt 0.154 (0.019) 0.165 (0.033) 0.153 (0.019) 0.167 (0.034)

+  Empirical standard errors are given in parentheses,
11 Average over the provincial effects (see main texi).
+++ Standard errors were caiculated using the delta method.

We see that there is generally good agreement (within 95% confi-
dence limits) between weighted and unweighted estimators, but that
standard errors of the weighted estimators are subject to a substantial
(sometimes more than twofold) loss of efficiency. This conclusion can be
drawn whether or not we include some design-related information into
the model. Of course, some loss of efficiency is to be expected, as it can
be in general for any weighted estimator. Korn and Graubard (25) for
instance illustrate the latter point in simple situations and clearly point
out that the variance of the weighted estimator becomes larger as the
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TABLE 2
Parameter estimates for the In (VOEG + 1) datat

Including design variables Nat including design variables

Unweighted Weighted Unweighted Weighted

Paramester Estimator Estimator Estimator Estimator
8 Intercept 1.867 (0.077) 1670 (0.135) 1776 (0.064) | 1.587 (0.117)
Sex {Male) - 0244 (0.018) [—-0.219 (0.029) [-0.246 {0.018) [-0.224 (0.029)

Age (reference: 14-25)

25-34 0.027 (0.042) | 034 {0.054) 0.069 (0.032) | 0.126 (0.047)
35-44 0.473 (0.042) | 0.223 (0.068) 0212 (0.032) | 0.331 (0.058)
45-54 0.185 (0.048) | 0.147 (0.061) | 0.238 (0.038) | 0.268 (0.053)
55-64 0.048 (0.047) | 0.245 (0.062) 0.313 (0.038) | ©.389 (0.051)
65-74 0171 (0.046) | 0192 (0.067}) | 0.245 (0.037) | 0.340 {0.050}
75+ 0.195 {0.050) | 0.248 (0.085) | 0272° (0.043) | 0.396 (0.070)

Income {reference: < 20,000

)
20.000-30.000 0.124 (0.044) | 0.194 (0.106) | 0133 (0.045) ) 0.207 (0.110)
)

)
30,000-40.000 0.051 (0.045) | 0074 (0.114) | 0.064 (0.046) | 0.095 (0.120)
40.000-60,000 0039 (0.043) | 0081 (0.110) | 0049 (0.044) | 0111 (0.118)
> 60,000 —0073 (0.050) | 0.014 (0.115) |-0.089 (0.051) | 0.059 (0.417)

Education (reference: No diploma)
Primary —0.058 (0.060) |-0.001 (0.070} -0.046 (0.060) |-0.006 (0.068)
Lower secondary — 0.014  (0.060) } ©.006 (0.072) 0.002 (0.060) |-0.002 (0.071)

Higher secondary— 0.085 (0.060) |- 0.001 (0.068) |-0.067 (0.061} | 0.002 (0.067)

Higher -0.140 (0.055) |-0.050 (0.075) —0.125 (0.058) {-0.050 (0.077)
Region (reference: Brussels)

Flanders —0.224%1 -0.2343¢ —0280 (0.0061)|-0.302 (0.047)

Wallonia -0.0511t - 0.0601% - 0.016 (0.0059)1-0.026 (0.050)
ot 0013 (0.004) | 0013 (0.005) | 0.019 (0.005) | 0.021 {0.006)
o, 0140 (0.015) | 0.123 (0.041) | 0.142 0.015) | 0.127 (0.040)
Uze 0.446 (0.019) 0.461 (0.093) 0.446 (0.019) 0.462 (0.092) .
Pt 0256 (0.024) | 0228 (0.060) | 0.266 (0.024) | 0242 {0.055)

+  Empirical standard errors are given in parentheses.
t+  Average over the provincial effects (see main text).
+++ Standard errors were calculated using the delta method.

sample weights exhibit more ~variability. In the HIS, (scaled) weights
ranged from about 0.02 to about 10 at each level, thus revealing much
variability. Should we consider the two-level model ignoring municipali-
ties, weights would exhibit a greatly reduced variability (actually, none at
the HH level and very little at the individual level) and would therefore
hardly affect the weighted estimators (results not shown). Interestingly,
the aforementioned increase in standard errors was not so drastic for the
default model-based estimators provided by MLwiN. We have not report-
ed these estimates, however, because their use is misleading.
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The variance components estimates are very similar for the BMI data
and a bit more discrepant for the VOEG score. Both show that there is
little intra-municipality correlation, whereas at the HH level, ICC is mod-
erate (o, is about 0.16 for BMI and 0.24 for VOEG score). Standard
errors associated with the intra-HH correlation parameter were obtained
using the delta method for a ratio of two parameters (26).

4.2 Binary Response Data

In this section, we elaborate on a couple of questions raised by the dis-
creteness of the data and then present the results on two items from the HIS.

In Section 3.3, we have discussed weighting in the multilevel linear
model, assuming implicitly that the response variable were normally
distributed. One might argue that an analogous procedure applies to the
multitevel logit mode! (MQL or PQL estimation procedures entail iterated
fitting of linear models) with the following exception to the weighting rule.
Since the element level defines the binomial variation, a method of
incorporating the weights at this level is to multiply the denominator
{i.e., the “number of trials” in binomial terms) by the element level
weights. Weighting at higher levels remains unchanged. Because this
procedure has not been extensively investigated, we do not consider
weighting further here. As a consequence, it is no longer deemed
necessary to maintain a municipality-level component in our model, for
there is little indication of variability at this level. Accordingly, in the
remainder of this section we restrict attention to a two-level model
wherein individuals are nested within households.

A second difficulty raised by the model formulation (3.2)-(3.3) is to
carry over the concept of ICC. Indeed, the fact that the element level
variance component is on the probability scale, whereas the higher level
components are on the logit scale, precludes direct comparison of vari-
ance components in such models and hence the use of formulae similar
to (4.5) or {4.6). Recall, however, that (3.2) can equivalently be obtained
from a multilevel linear model using a latent variable formulation.
Hedeker and Gibbons (27) consider this scenario and utilize a normal or
logistic distribution for the residual error term. When the logistic model is
assumed, the residual variability is equal to %/3 and gives rise to the
following expression for the intra-HH correlation:

P — 2, (4.7)
o?,+ n%/3
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where o2 is the variance associated with the HH random compo-
nent. Thus, to consider ICC in multilevel binary response models, one
must make reference to the underlying continuous (unobserved)
variable that generates the dichotomous outcome. in some cases, this is
a reasonable assumption, but in others it may not be. Hedeker and
Gibbons’ methodology has been implemented in a program called
MIXOR which, albeit limited to 2-level models, accomplishes numerical
integration to calculate the likelihood.

For comparison purposes, we further consider the GEE approach
of Prentice (28). This method emphasizes the modeling of the mean
structure (e.g., logit (rr,.j) = )(],8 for the ith individual from the fth HH) and
accounts for the intra-HH correlation by means of a working correlation
matrix, unlike the preceding approach which stipulates the covariance
structure through a HH-specific (random) effect. We assume an
exchangeable correlation structure (i.e., observations are assumed to be
equally correlated, with correlation p). The interpretation of this parame-
ter can be done in terms of intra-HH correlation.

We can now concentrate on the application of these modeling strate-
gies to the HIS. We consider two items, namely, whether or not a person
has a steady general practitioner (GP), and the so-called subjective or
perceived health, wich consists of a self-assessment of an individual's
health status. The latter was dichotomized as good to very good versus
other. There were 9328 out of 10,221 (91%) and 7281 out of 8560 (88%)
observations available on both the explanatory variables and steady GP
and subjective health, respectively (notice that solely people above
15 were enquired about their subjective health).

Table 3 displays the results for both items. Columns denoted GEE1.5
refer to the GEE approach of Prentice (28), while. GLMM refers to the
generalized linear mixed model fitted by MIXOR. Two things are appar-
ent in this table: the shrinkage of GEE1.5 regression coefficients towards
zero compared to GLMM, and the somewhat dissimilar estimates of
intra-HH correlation. The former is a well-known phenomenon that
discriminates between marginal and random-effects models (29). These
authors show that the discrepancy increases with the size of ICC, as can
be seen in the first part of the table (steady GP) where ICC is noticeably
larger. The second point is concerned with ICC estimates themselves. In
both cases, the GEE1.5 estimate of p,,. is substantially smaller than its
GLMM counterpart. This observation clearly necessitates further
research and it would be interesting to ascertain whether a link can be
established between these two types of estimates.
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TABLE 3
Parameter estimates for the binary response models
(standard errors are given in parentheses)
Steady GP Subjective health
Parameter GEE1.5 GLMM GEE1.5 GLMM
B Intercept 1,276 (0.292) 3.506 (0.718) 1.135 {0.203) 1347 {0.254)
Sex (Male) -0.308 {0.051) |-0.727 (0.124) 0.33% (0.056) | 0.409 (0.068)
Aget
15-24 0.220 (0.404) | 0534 (0.252) - -
25-34 0.162 (0.083) 0.394 {0.183) {-0.245 (0.139) |-0.271 (0.158)
35-44 0.236 (0.083) 0.576 {(0.184) [-0.981 {0.125) [-1.138 (0.142)
45-54 0447 (0.108) | 0.058 (0.255) |-1.284 (0.128) [-1.485 (0.144)
55-64 0680 (0.137) | 1565 (0.306) -1.617 (0.130) |-1.8%1 {0.154)
65-74 1022 {0.159) | 2.246 (0.338) {-1.865 (0.131) [-2.193 (0.157)
75+ 1319 (0204) | 2966 (0.434) |-2.152 (0.143) |-2.544 (0.173)
Income {reference: < 20,000)
20,000-30,000 —0.081 (0.172) |-0.142 (0.399) |-0.167 (0.128) |-0.220 (0.155)
30,000-40,000 0.544 (0.183) | 1.281 (0.416) | 0076 (0.127) | 0.078 (0.153)
40,000-60,000 0509 (0.173) | 1.210 (0.396) | 0335 (0.127) | 0398 (0.154)
> 60,000 0.328 (0.192) 0.691 (0.446) 0.761 (0.159) 0.895 {0.192)
Education (reference: No diploma}
Primary _p205 (0.295) |-0.985 (0.715) | 0.158 (0.164) | 0.182 (0.206)
Lower secondary— 0.505 (0.285) |- 1465 (0.698) | 0.406 (0.163) | 0.4394 (0.206)
Higher secondary- 0.253 (0.279) |-0.808 {0.689) | 0743 (0.161) | 0903 (C.205)
Higher —0.805 (0.276) |-2.106 (0.689) | 1.060 (0.166) | 1.254 (0.210)
Region (reference: Brussels)
Flanders 1.561 (0.126) 3.598 (0.316) 0.434 (0.082) 0.507 (0.097)
Wallonia 1.338 (0.113) 3.060 (0.283) |-0.094 {(0.076) |-C.115 (0.092)
o2, - 15.09  (1.779) - 1.160 (0.202)
P It 0.596 (0.027) 0.821 (0.062) 0.136 (0.018) 0.261 (0.022)

Reference category is 0-14 for steady GP and 14-25 for subjective heaith.

"
++  Intra-class correlation.

5. Discussion

In this paper we have considered multilevel modeling techniques to
investigate the effect of clustering in the HIS. This was motivated by the
fact that these methods fully acknowledge and take advantage of the
underlying hierarchical structure present in the data, thereby dealing with
the clustering aspects of the HIS in an efficient manner. In addition, from
a model-based perspective we are able to incorporate design-related
information directly into the model to adjust for the effects of the sampling

design.



Clustering effect in the Belgian Health interview Survey 359

While sampling schemes are commonly ignored in multilevel analy-
ses of survey data since it is conceivable, at least theoretically, to include
the whole design-related information in the model, this may not always
he feasible. It is therefore useful to examine weighting in multilevel
models to adjust for the effects of sampling in such cases. In this paper
we have utilized a simple and easy-to-implement procedure which was
recently proposed by Pfeffermann et al. (1) as an alternative to their
fully-integrated weighting procedure, although they recommend to use it
with caution as it can give biased results in some circumstances.

Due to software limitations, we failed to calculate accurate standard
errors for the weighted estimator and this was reflected in greatly
inflated estimates compared to the unweighted scenario. Whether or not
this is due to the empirical estimator itself, this calls for better, appropri-
ate software which would enable one to perform this kind of analyses
routinely. It should be noticed that the full weighting procedure proposed
in the aforementioned paper will be implemented in the next MLwiN
release, thereby eliminating the above concerns and alleviating consid-
erably the computational burden.

Assuming we have a fully-integrated weighting procedure at our
disposal, we can wonder whether “to weight or not to weight”. On the
one hand, if one is willing to include the whole information related to the
sampling design, the resulting analysis will be safe. On the other hand,
it will doubtlessly be difficult, if not impossible, to do so in practice and
one shouid then consider weighting as an alternative. Note that screen-
ing design information for possible inclusion in the model is certainly a
good statistical practice and should be examined whenever it is feasible.
Moreover, a comparison between weighted and unweighted estimators
would be most relevant, with large discrepancies calling for caution.

Another point related to weighting concerns model misspecification.
Indisputably, we can be quite confident that the models we contemplat-
ed in Section 4 were actually misspecified. It has been argued that
weighting can protect against model misspecification (30), and one can
therefore wonder whether such a property carries over to multilevel
modeling. Pfeffermann et al. (1), however, assume their model to be cor-
rectly specified and do not explore the issue of model misspecification in
their paper. This topic would benefit from further research. 1t should also
be emphasized that weights have not been adjusted for non-response
nor poststratified in the present paper. The effect of non-response in the
HIS is addressed in a second paper (31). Itis planned to investigate the
combined influence of clustering and non-response in the near future.
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From a practitioner’s point of view one may ask how does a multilevel
analysis, whether weighted or unweighted, compare with the more
traditional, design-based approach. The following may serve as a rough
guideline. While an unweighted multilevel analysis may seem slightly
more efficient and produces consistent parameter estimates, there might .
be problems with the adequacy of the precision measures. Both a design-
based analysis (as typically carried out in STATA or SUDAAN) as well as
a weighted multilevel analysis are adequate. The former is fine if we are
merely interested in obtaining correct inference about main effects (such
as age, sex, or country effects), whereas the second one is necessary if
there is at least some interest in the clustering effects themselves. Finally,
if a multilevel analysis is unavailable, e.g., due to software unavailability,
then a classical design-based analysis may be the only option.

Finally, the above discussion deals with the multilevel linear model
assuming response data to be normally distributed. It is by far less
straightforward to treat the case of generalized linear models (GLIM) in
general, and binary response models in particular, from a multilevel
perspective. Besides genuine estimation problems typically encountered
when random effects are being introduced in a GLIM framework, there
still lacks a thorough investigation of weighting in this setting. This issue
definitely merits further exploration. Furthermore, a better understanding
of the marginal and random-effects approaches to estimating intra-class
correlation would be useful.
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