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Adjusting for confounding when
estimating a time trend in
HIV prevalence based on pooled
serum samples

by

Vansteelandt S.*, Goetghebeur E., Verstraeten T.

Abstract

Over the last decade, many epidemiological studies have demon-
strated the successful use of pooled sera for screening purposes or
HIV risk estimation (1-11). The method was originally designed as a cost-
reductive fool, but also appears to Jower the error rates associated with
diagnosis and in low prevalence areas it produces, at most, a slight loss
in the estimation accuracy. In this paper, we use fest results on pooled
sera to estimate a time evolution in HIV prevalence where we need to
account for the presence of important confounders. An adjusted time trend
estimate is proposed, assuming confounding variables are measured for
each subject, but there is only one diagnostic test result per pool.

Experimental design is important if one is to achieve a precise and
cost-efficient estimate of an evolution of risks over time. Specifically, the
distribution of known prognostic factors over the pools is influential and
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can be influenced. Choosing pools to be covariate-homogeneous
increases the amount of information at virtually no additional cost. The
cost-precision balance is further optimized by calculating pool sizes in
function of the distribution of covariates over the pools.

Our study was motivated by the planning of a growing database to
monitor a time trend in HIV prevalence (14). The methods are used to
adjust for age as a confounder in data obtained from Kenyan pregnant
women. Analysis of the Kenyan data shows that age homogeneous
pools of optimal size reduce cost to 44% of the original price, whilst
precision remains close to the one obtained from non-pooled samples.
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1. Introduction

Controlling the HIV epidemic is still one of the major challenges to
public health, particularly in Africa. To monitor progress, the estimate of
a time evolution in HIV prevalence is valuable. To this end, one may col-
lect serum samples from one part of the population at regular time inter-
vals. In developing countries, sera from pregnant women who present
themselves at heaith centers are relatively easy to obtain. Hence, we test
these and estimate HIV prevalence at each time point as the proportion
of positive test results. The observed association between calendar time
and estimated prevalence is then an estimate for the HIV risk evolution.
However, such association need not be evidence of a trend in disease
control. For instance, age is a likely confounder of the HIV risk evolution
in a population of Kenyan pregnant women (see also section 3). indeed,
with a growing development women may tend to have children at an
older age, whilst the probability of being HIV positive is likely to increase
with age. Hence, the need to adjust and ultimately standardize for age
when exploring a time trend (12-13).

Because budget constraints limit the number of available diagnostic
tests, one has sought to increase the amount of information provided by a
single diagnostic test. Subjecting pools of serum samples to the HIV test
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is a commonly used technigue in regions of low HIV prevalence (1-11).
The observations then consist of one indicator per pool: “at least one
HIV positive sample in this pool” or not. Estimation may then proceed by
first estimating the probability of a positive test result for the poot as the
proportion of positive test results and next backtransforming it to a point
estimate of the mean HIV prevalence. As less tests are required for the
same total number of samples, major cost reductions can be achieved.
More surprisingly, in low prevalence settings precision remains high for
the same total sample size — and is enhanced in the presence of substan-
tial measurement error on the diagnostic test — as long as the pool size, i.e.
the number of serum samples per pool, does not grow too large (11).

To adjust the HIV risk evolution for age, we calculate age-standard-
ized risks. They are typically obtained by averaging age-specific risks
over the age distribution in a “frozen” standard population (12). The age-
specific risks can be estimated from generalized linear modefs (15-17),
which assume that a monotonic transformation of the risk relates linearly
to age. However, the new context of pooling implies that outcome values
are only observed for pools of subjects. This prevents straightforward
fitting of generalized linear models and calls for a feasible extension.

In this paper, we introduce methods for estimating age-specific risks
on the basis of pooled testing data. We look at optimizing experimental
design through careful choices for pool composition and pool size. The
obtainable improvement in cost and precision is illustrated using data
from a Kenyan HIV prevalence study in pregnant women.

2. Methods

2.1 Age-specific HIV prevalence estimates

Suppose we have N serum samples on pregnant women and enough
diagnostic tests with sensitivity Se and specificity Sp. The definitions of
Se and Sp are slightly different for tests performed on pools: Se (Sp) is
now the probability of correctly classifying a truly HIV positive (negative)
pool, i.e. a pool in which at least one of the samples is truly HIV positive
(all samples are truly HIV negative). Our development assumes that
both validity measures are pool size independent. The number of sam-
ples diluting an HIV positive sample is thus anticipated not to affect
the probability of detecting the truly positive status of that sample.
Numerous studies provide empirical evidence for this assumption to hold



92 Vansteeiandt S, Goetghebeur E, Verstrasten T.

up to pools of size 16 (3, 5, 8, 9). This is not surprising since single
serum samples are diluted anyway before a diagnostic test is performed.
In pools, the several samples serve as dituents for each cther (11).

To estimate HIV prevalence m(x) in age group X, we assume that
prevalence relates linearly to age on the scale of a monotonic function g(.)

g(m(x)) = o+ px
= x(x) =g (a+ px); (1)

(1) is called a generalized linear model with link function g(.). It encom-
o+fx

the complementary fog-log model

- e
passes the logistic model x(x)= =

a(x)=1-" andthe probit model n(x)=®'(c+ fix) in which o7 ()

denotes the inverse cumulative standard normal distribution function.
Routines for generalized linear model fitting are available in most stan-
dard statistical software packages.

First, we construct pools combining ¢; samples of the same age X,
which are independent, random draws conditional on x, The observa-
tions consist of n independent test results Y, for n pools and, hence,
carry direct information about the probability f(c) of a positive test result
for the pool. More specifically, f(c;)is the probability that the pool is truly HIV
positive and correctly classified, or truly HIV negative and misclassified:

fle,)= [1 —{1-7(x, ))c ]Se +(1-7(x, ))G" {(1- Sp)
= Se +(1- Se - Sp)(1-a(x; ))c . (2)
It follows that a and 8 in (1) can only be estimated from the data via
the pool risk f(c), i.e. by combining (1) and (2) into

Gy

f,-(c,):Se+(1—Sé—5p)(1fg"1(a+ﬁx,)) :

For the complementary log-log model, this equation translates into a
new generalized linear model

log [ﬁlog [L(C')—_—SED = + fBx; +1ogc;.

1-Se-S5p
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The advantage is that little computational effort may suffice to estimate

a-Bx
a and B, provided m{x} = ;-é—ﬂis the “true” model for individual risk.
+
By contrast, a probit or logistic model for individual risk does not yield the
corresponding model for the test result for a pool of common age. Here,
one has to invoke non-linear optimizing routines for maximizing the
loglikelihood /, which measures the agreement between observed values Y,

and expected outcomes f(c)).
=3V logf(c )+ (1- Y log(1-f{c)) (3)
i=1

Secondly, when arbitrary age components are allowed in each pool,
the risk f,(c,) has to account for the observed sources of heterogeneity in
the pool. In particular,

f(c;)=Se+(1-Se - Sp)]"[( g (a+,6x,j)), (4)

with X; the age of the j-th sample in the /th pool. The resulting model is
no Iongerof the generalized linear form. Hence, direct maximization of the
loglikelihood (3) is required; even for the complementary log-log model.

For computational ease (see discussion), further results will be given
for the complementary log-log model.

2.2 Precision

it follows from appendix A that the asymptotic variance on the preva-
lence estimates

—0e% P sla+fix)
Var|#(x zg_L[ +—1— )?—xz} 5
[ ( )] Lwi(c) ( ) ©
is a quadratic function of age x with X and S expressing measures of
location and spread for “pool-specific” ages; they are respectively called
the informative age and pool-age variance. Specifically, when the pool-age
is defined as a well-specified weighted average of age in the considered
pool (appendix A), X and S are the weighted sample mean and variance

of the pool-ages with weights w,(c,). The variance achieves its minimum
72e“‘»5"62[a+ﬁx)

—wi{c)
the sum of weights 7 w,(c,}. S relates to the rate of change of the
variance with age x.

€ at x= X and mainly depends on the study design through
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2.3 Cost

The expected cost of a prevaience study

C=NC,+3.C

4
=

can be summarized as a combination of the constant cost C, for collecting
each sample and the pool-specific cost C,G for constructlng and testing
each pool. A detailed expression for C ;in the Kenyan study is given in
appendix B.

2.4 Optimal pool composition

A random pool composition, conditional on age, is required to yield
consistent prevalence estimates. The age distribution in each pool can
be chosen by the experimenter and influences the amount of information
carried by each pool. Should we make the effort to distribute ages over
pools in a prescribed way, given the fact that generalized linear models
can be used to adjust for age?

The pool-age variance S measures age variability between pools
and, hence, increases with greater age homogeneity within the pools.

The rate of change of Varfr()?) with age is thus minimized for age

homogeneous pools; the central variance, Var ﬁ()? ) , and cost depend
only weakly on the age distribution of the pools.

2.5 Optimal pool size

The pool size influences both cost and precision. General pool size
calculations will therefore try to achieve a determined cost-precision
balance. In this section, an optimal pool size com(x) is obtained by
evaluating how the pool size ideally depends on the age distribution over
the pool and by choosing an optimal average pool size. We give specific
results for pool size calculation in section 3; technical details and related
sample size calculations can be found in (20).

When both the total number of samples N and pools n are kept fixed,
central variance Var%(X) grows drastically (moderately) with increasing
size of a high-risk (low-risk) pool. The constraints thus imply that enlarg-
ing low-risk pools and shrinking high-tisk pools improves precision.
Minimum variance is then achieved for pools of common risk f(c,).
For perfectly homogeneous pools, a common probability f of a positive
test result for the pool, i.e.

f(c,)=Se+(1-Se - Sp)(1-a(x,}} o () = 1, (6)
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implies large pools of low-risk samples and smali pools of high-risk sam-
ples. More precisely, it follows from (6) that the optimal pool size
decreases with individual risk via

Copm (X)

K K

- log{1- 7(x)) - log(1- g(e + fx))’ 7)

o . Se—f
where we will identify x Iog[Se+Sp—1
combining different ages, the average c_(x)-value in the pool is a good
approximation to the “true” optimal pool size (20). Notice that in practice,
one has to round the continuous values for copr(x) so as to find integer

optimal pool sizes greater than 0.

] rather than f. For pools

By construction, poois of optimal size ¢ (x) minimize the central
_ s ) pt :
variance Var#{X) once N and n are given. As seen in (20), they also
further attenuate the change of the variance with xt

A choice for k in (7) follows from a chosen cost-precision tradeoff
once expected cost and central variance are evaluated over a grid of
K-values. This is straightforward for the complementary log-log model;
assuming a value for @ and 8 based on prior information, central variance
Var #(x) and expected cost C are calculated by substituting f(c), wc) and

nin the expressions (5) and (9) for Var 7(x) and C by

. (1-Sp—Se)*x%e
1- Sg -
Se +(1-Se-Sp)e*, A1)

respectively (20) (see also section 3 and figure 3).

=N jog(1-
and n= - . log(1-2(x,))

When precision is ignored, Kk = — = and minimum cost is achieved
from one pool containing all serum samples. When cost is ignored and
measurement error recognized, a single diagnostic test result for one
pool of ¢ sera may contain more information than the ¢ corresponding
individual test results (11). Surprisingly, the optimal pool size may thus
be greater than 1 for some ages and k can still reasonably be
calculated from an equation (see {20)) involving Se and Sp.

2.6 Adjusting the estimated HIV prevalence evolution over time

Standardization (12-13) offers one way to adjust time-dependent
prevalence estimation for age confounding. Age-standardized risks 7,
are estimated by averaging age-specific risks over the age distribution in
a standard population that is *frozen” over time; that is

fig = E [#(x)]= éx[g“(& + ﬁx)] .
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An approximate variance expression is given in (20). When age-stan-
dardized risks are estimated over regular time intervals, the observed
time trend provides a corrected estimate for the time evolution in HIV risk.
The original optimal design stays good for estimating a time evolution,
However, because some extra averaging is involved, results are less
sensitive now to age variations when confounding is weak. A practical
illustration is given in the next section.

Alternatively, one can parameterize the time effect along with age, for
instance through the extended generalized linear model

g(:rr(x,t)) =+ X+, (8)

where t represents time of collection. Details are given in (20). Using
maximum likelihood estimation for mode! (8), the original optimal design
stays good for estimating a precise and cost-efficient time effect, provid-
ed the pools are time homogeneous as well. As short-period effects of
time on HIV risk are small, pools can be constructed homogeneously
w.r.t. time of collection at virtually no expense of age homogeneity.

3. Results
3.1 The Kenyan study

In 1996, as part of the National AIDS Control Programme, 787 serum
samples have been gathered from pregnant women who present them-
selves at health centers in Kenya. Base-line characteristics (age, region,
parity, marrital status and education), as well as diagnostic test results
were recorded, using the following test procedure. All serum samples
were first subject to an Elisa test (Innotest HIV 1/HIV 2, Innogenetics,
Belgium). Samples with a negative test result were HIV negatively
declared:; others were subject to a rapid assay test (Capillus HIV 1/HIV 2,
Cambridge Biotech, Ireland). If this test did not contradict the former, the
sample was declared HIV positive; other serum samples were
subject to a second Elisa test (Viranostika, Organon, Holland), whose
test result was then conclusive. For the Kenyan data, Se and Sp take the
vatues 1 and 0.9997 respectively (18).

On the current data set an exploratory exercise was conducted to
investigate whether the pooling of samples is worth considering in future
studies, when ultimately the goal is to monitor any trend over time.
For expository purposes and since age is expected to be the main con-
founder of a time trend, we adjust for this single covariate.
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Descriptive statistics are given in table 1 and figure 1. Except for
region, all measured variables suffer from some non-response. In
particular, 36 test results, 27 ages, 55 parities, 31 marrital status and
30 educations are missing. We addressed missingness through the use
of imputation methods (19), conditioning on all knowledge that was
available in the base-line characteristics. Since the focus here is on the
comparative value of several pooling strategies, we have restricted the
procedure to just one imputation and treated the imputed data as if they

were observed.

TABLE 1
Some descriptive statistics for the Kenyan study

Covariate| Type Min. | 1st Qu. | Median | Mean | 3rd Qu. | Max. |Missing
Age Continuous| 10 20 24 24.35 28 46 27
Parity Discrete 0 o 1 1.38 3 10 55

Marr. Status Single Poly- Mono- | Divorced | Widowed | Missing

gamous | gamous

Test res. — 81 140 449 5 2 22
Test res. + 9 6 34 1 2 0
Test res. missing 2 2 23 0 it 9
Number obs. 92 148 506 6 4 31

& 4

o AN
8 2 2
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T 2 4
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Fig. 1: Estimated age-specific HIV risk, along with 85% confidence bounds
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3.2 Optimal pool composition in the Kenyan study

Consider the following recombinations of data where pools are con-
structed from the original samples in different compositions:

Chronological: 113 equally-sized (¢ =7) pools constructed by time of
collection. This reflects a practically convenient composition which comes
close to a random composition.

Age ordered covariates: 113 equally-sized (¢ = 7), age homogeneous
pools constructed by order of age.

Age common covariates: 113 variably-sized, age homogeneous pools
combining 1 to 10 serum samples (mean and median size are 6.97 and
8 respectively) of the same age in years.

Diagnostic tests were not performed on the pools. For this comparative
ilustration, we defined the test results for a pool to be positive as soon
as one test result among the contributing samples was positive. Our
choice for 113 pools is explained in section 3.3. Finally, for reference
purposes, results are also shown for the analysis of the non-pooled-
samples and labeled Individual.

TABLE 2
Comparison of pool designs; standard errors are given between brackets;
1- Individual, 2: Chronological, 3: Age Ordered, 4: Age Cormmon,
5: Age Ordered and Optimal-sized

@ B X #(x) #(46) ¢ | 8
—1.85 (0.66)| ~0.034 (0.027)| 23.48 |0.069 (0.0081)| 0.033 (0.021) | $2598 | 24.97
-2.89 (1.67})  0.011 (0.67)] 24.65 | 0.070 (0.012)| 0.088 {0.12) | $1150) 4.35
—1.53 (0.71)|-0.050 {0.030)| 23.36 | 0.066 (0.010)| 0.022 (0.015) | $1139 23.71
—1.33 (0.77)|0.057 (0.032)| 23.28 | 0.067 (0.014), 0.019 (0.014} ) $1121 | 24.34
—1.72 (0.67}|-0.037 {0.028)| 23.27 0.073 (0.0097)| 0.032 (0.014)  $1155 24.36

ok W MN =

Table 2 and figure 2 confirm our previous statement that age-homo-
geneous pools carry the largest amount of information. In particular, the
variance increases 6 times faster with age for chronological than for age
ordered pools. The impact is most strikingly seen when considering ages
towards the tail of the observed age distribution. for a 48-year old
woman, a prevalence estimate of 0.088 (0.12) is found, whereas for age
ordered samples the corresponding estimate 0.019 (0.014) is more
precise. The striking difference between the risk estimates is suggestive
of a possible finite sample size bias in the chronological case, and was



Pooling and Prevalence Estimation 99

confirmed by a preliminary simulation study. We conclude that the extra
effort for constructing age homogeneous pools is more than offset by the
precision of the estimates and a fortiori the cost. As they require less
effort than age common pools, age ordered pools enjoy our preference.

=
-

----- Individual yd

—— —  Chronological
——  Ordered /

-~ - —  GCommon /

N
-

Variation Coefficient
0.6 0.8 1.0
!

0.4

0.2
1

Age

Fig. 2: Comparison of the variation coefficient (g)for four pool compositions.
i

3.3 Optimal pool size in the Kenyan study

We try to further increase the precision which we obtained in section
3.2 for age ordered pools, by optimizing the pool size. Given
(a, B) = (-1.85, —0.034) and the same cost level C = $1139 as for age
ordered, equally-sized pools, figure 3 shows that maximum precision
(se[#(x)] = 0.00985) is achieved when x equals ~0.493; when cost is

ignored, copr(x) remains 1 within the observed age range as k = —0.022.

Using the former resuit, we construct 116 age ordered pools of opti-
mal sizes varying between 5 and 11 over the entire observed age range.
The precision increase in figure 3 is twofold: a global precision increase,
i e the variation coefficient of 7{X} decreases from 0.152 to 0.133, adds
to a further attenuation of the rate of change of the variance with age,
ie. § increases from 23.71 to 24.36 (see table 2). The expected cost

(C =$11 55) hardly differs from the expected cost for age ordered pools

of size 7 (C =$1 146).
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Fig. 3: Left and middle: estimated central standard error and expected cost in function of k;
G
right: variation coefficient (Ej in function of age for age ordered pcols of different

sizes and with the top axis showing the optimal pool sizes.

3.4 Age-standardized risks in the Kenyan study

Currently, data are available for one year so that the estimate of a
time evolution in HIV prevalence is not feasible yet. However, to evaluate
how experimental design affects the precision of an estimated time
trend, we generate an artificial standard population which is thought rep-
resentative for a population of pregnant women in industrialized countries.

Columns 2 and 3 of table 3 show standardized risk estimates and
variation coefficients when the standard and observed population equal
each other. By contrast, the last two columns of table 3 show the resulis
for the reference population. Here, the variation coefficient decreases
by 26% from chronological to optimal pools, implying that an optimal
design allows one to collect approximately 45%, i.e. 100(1— (1 — 0.26)2)%,
less serum samples and still reach the same precision as in the chrono-
logical case. This is not seen from the first two columns of table 3 where
the standard and observed population equal each other, and, hence, the
variance on the standardized prevalence estimates is mainly influenced
by the stable central variance Var [#(X)]. However, when temporal con-
founding is real, the age-standardized estimates will only be similar at
one point in time and the impact of design tends to grow in importance.
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Finally, notice how moving from the observed to the reference
population causes a systematic drop in age-standardized prevalence
estimates except for chronological pools. This once more illustraies how
lack of design quality can yield a distorted view on the time evolution in
HIV prevalence.

TABLE 3 .
Age-standardized prevalence estimates and variation coefficients (i} when
Tst

the standard population equals or differs from the observed popuiation.

Standard = Cbserved Standard # Observed
Composition Ty o T, o
jTst ﬂst
Individual 0.068 0.145 0.063 0.152
Chronological 0.070 0.136 0.072 0.211
Age Ordered 0.065 0.140 0.057 0.163
Age Common 0.066 0.155 0.057 0.176
Optimal 0.072 0.133 0.065 : 0.156

4. Discussion

We have proposed pooling methods for estimating a time evolution in
HIV risk in the presence of individually measured confounders. For the
results to hold, a random pool composition conditional on age is
required, but the size and age distribution of each pool can be chosen
by the investigator. Study design is important for the assessment of a
precise and cost-efficient time evolution estimate. Covariate homoge-
neous pools carry the largest amount of information; pool sizes which
attach the same risk to each pool further improve the cost-precision
balance. In the Kenyan study, cost reduces to 44% of the orginal price
by constructing age homogeneous pools of optimal size, whilst precision
stays close to the precision obtainable from non-pooled samples.
Calculations were carried out in S-Plus and programs are available from
the first author on request.

The models for tests on pooled samples are extended in (20) to jointly
account for several confounders. The proposed design construction
extends and further leads to feasible estimators. The methods offer many
new possibilities of which adjusting for confounding is an important one;
others are testing for the significance of effects, regression imputation
for studies dealing with missing values (14),... in the context of pooled
testing data.
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The complementary log-log link for the individual risk model gener-
ates a level of simplicity and thus arises as a “cancnical” link function in
this pooling context. However, as computations are still feasible for dif-
ferent link functions, one may wish to consider a link function for other
than purely computational reasons. Often, a symmetric link around
a(x) = 0.5, as in probit or logistic models, is the more common approach
in contrast to the complementary log-log model, which is asymmetric
(17). Logistic models further have a meaningful interpretation for their
parameters in terms of odds ratios (17). Nonetheless, logistic and
complementary log-log models yield approximately the same results in
low-prevalence settings, so that the optimal pool size expression (7)
remains approximately valid for the iogistic model.

We conclude that for relatively low prevalence, a well-designed pool-
ing strategy for serum samples is a feasible and useful instrument to
estimate prevalence conditional on individually measured covariates
from imperfect diagnostic tests. We hope that the methods in this paper
will find their way to the practical settings where cost-efficiency is a real
concern.

Appendix A

We derive the asymptotic variance expression (5) for the comple-
mentary log-log model. General results for vectors of covariate values
and arbitrary link functions are found in (20).

Standard calculations yield the following components of the Fisher
information matrix /= (1) for (a, B):

n 1— S - S : & a=BRE o e o+ Bxim
Ik! =2 ?E P _e_)_(zx;}(ﬂee fe ﬁyHle—e B ]

j=1 m=]

By introducing the positive weights

W o i
- -e il -g
(1-8p-8ele e I ks ©

,,\‘I‘f,-(c, W1-#{e)

wylci)=
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—w ?L'.ij (C:')le . . "
and the pool-ages X;” = ——C—(—)— we reduce the Fisher information
W
J=1 i !

matrix to

1 ZLW:' (C, )XI'N (2?:1 Wf( f))_1 W .

37w (Snw(c)) | Shwi(e)xe) (Zlw,e) J

Defining informative age X and pool-age variance S as

I:[gwf(cj)]

)? — ?=1Wi'(cf)ifw
Lw(c;)
_ N2
I
- n
ACH
“% %

3

the asymptotic covariance matrix for (o?, ﬁ) takes the following simplified form:

R 1 1+ %28 "' - %8 _
LW,-(CJ - x5~ S

The variance on the prevalence estimate is found via the delta method:

Var|#(x)] = 42e“*3xez(“*ﬁ”)[Var[&] + 2xCov[6¢, ﬁ] + xWar[ﬁ]]
842“*m e?(a+ﬁx) I: 1

Lw,(c)

Appendix B

The three-step sequential testing procedure in the Kenyan study (14)
yields
C Sz = I(Ci > 1)0.0 + Cen + (f(ci) + f(cﬁ)+__ )Ccap + (]‘[(C{)+—_ + fi (Cf)+_+)ceﬂ2 ! (9)

o

where f(c,> 1) takes the value 1 when the pool size ¢, is larger than 1,
and O otherwise. C_ is the cost for constructing one pool. The costs of
the first and second Elisa, and the cost of the Capillus test are respec-
tively written as C,,, C,, and Ccap. For our problem C = C, = $0.8,

C,y =C,p =521 and C,,, = $4.1 (including material and wages) (19).
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Finally, f(o,)+77(f(c,.)+7+) is the probability that a given pool reacts
positively to the first Elisa, negatively to the Cappillus, and negatively
(positively) to the second Elisa. Assuming independent test results for
the same pool,

Gy

f (C' )+“ = 599:1(1 — S )(1 — 56, )(1 — (X ))

! i

+(1- Spe,1)8pcap8pe,2(1 ~(1-x(x, ))cf) (10)
ff(ci)“* = Seef1(1 - Secap)seeJE(1 - ]T(Xf ))Cf
(1 8P1)8P (1~ Spe,g)(1 ~(1-(x,))" ) - (11)
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