

WETENSCHAPPELIJK INSTITUUT VOLKSGEZONDHEID INSTITUT SCIENTIFIQUE DE SANTÉ PUBLIQUE

THE BELGIAN CYSTIC FIBROSIS REGISTRY

SUMMARY REPORT 2010

BMR BELGISCH MUCOVISCIDOSE REGISTER RBM REGISTRE BELGE DE LA MUCOVISCIDOSE

© Scientific Institute of Public Health, Brussels 2012. This report may not be reproduced, published or distributed without the consent of the IPH.

WETENSCHAPPELIJK INSTITUUT VOLKSGEZONDHEID INSTITUT SCIENTIFIQUE DE SANTÉ PUBLIQUE

THE BELGIAN CYSTIC FIBROSIS REGISTRY

SUMMARY REPORT 2010

BMR Belgisch Mucoviscidose Register RBM Registre Belge de la Mucoviscidose

Suggested reference: Belgisch Mucoviscidose Register – Registre Belge de la Mucoviscidose, Belgium, Scientific Institute of Public Health, summary report 2010

Public Health and Surveillance | September 2012 - updated October 2012 | Brussels, Belgium Editor: Dr Johan Peeters | General Director | Rue J. Wytsmanstraat 14 | 1050 Brussels Internal reference Nr: PHS report/2012-21 Deposit Nr: D/2012/2505/45

Authors : Muriel THOMAS Simeon Situma WANYAMA François VERMEULEN

Contributors, members of the board of the BMR-RBM:

- D. Baran (Hôpital Erasme, Bruxelles)
- F. De Baets (UZ Gent, Gent)
- K. De Boeck (UZ Leuven, Leuven)
- E. De Wachter (UZ Brussel, Brussel)
- K. Desager (UZ Antwerpen, Antwerpen)
- H. Jansen (WIV-ISP, Brussel)
- C. Knoop (Hôpital Erasme, Bruxelles)
- P. Lebecque (Cliniques Universitaires St-Luc, Bruxelles)
- A. Malfroot (UZ Brussel, Brussel)
- V. Pasquasy (CHR de la Citadelle, Liège)
- J.-P. Sacré (CHR de la Citadelle, Liège)
- M. Thomas (ISP-WIV, Bruxelles)
- V. Van Casteren (WIV-ISP, Brussel)
- F. Vermeulen (UZ Leuven, Leuven)
- S.S. Wanyama (WIV-ISP, Brussel)

Research funded by the National Institute for Health and Disability Insurance (RIZIV-INAMI)

LAY OUT

Yolande Pirson IPH Communication Team

ACCREDITED BELGIAN CF REFERENCE CENTRES

Mucoviscidose referentiecent	t rum UZ Brussel Laarbeeklaan 101	1090 Brussel				
Muco-Referentiecentrum Anty	werpen					
St Vincentiusziekenhuis UZ-Antwerpen	St Vincentiusstraat 20 Wilrijkstraat 10	2018 Antwerpen 2650 Antwerpen				
Referentiecentrum voor Muco	oviscidose UZ Gent					
UZ-Gent	De Pintelaan 185	9000 Gent				
Muco-Referentiecentrum Gas UZ-Gasthuisberg	thuisberg Leuven Herestraat 49	3000 Leuven				
Centre de référence de la Mucoviscidose UCL						
Cliniques Universitaires St-Luc	Avenue Hippocrate 10	1200 Bruxelles				
Centre Liégeois de rééducation	on fonctionnelle pour la Mu	coviscidose				
CHR La Citadelle	Blvd du XXIIème de ligne 1	•				
Clinique de l'Espérance	Rue St-Nicolas 447-449	4420 Montegnée				
Institut de Mucoviscidose UL	—					
Hôpital Universitaire des Enfants Reine Fabiola	Avenue J.J. Crocq 15	1020 Bruxelles				
Hôpital Erasme	Route de Lennik 808	1070 Bruxelles				

Registry Management

Scientific Institute of Public Health OD Public Health and Surveillance Rue J. Wytsman, 14 1050 Brussels

http://www.wiv-isp.be/epidemio/epien/index20.htm

TABLE OF CONTENTS

Summary	8
What is Cystic Fibrosis?	10
CF Patient care in Belgium	11
The Belgian Cystic Fibrosis Registry (BMR-RBM)	11
SUMMARY OF REPORT 2010	13
1. Demographic data	14
2. Diagnosis	18
2.1. Diagnostic signs	18
2.2. Age at diagnosis	19
2.3. Genotyping	19
3. Anthropometry (height, weight and BMI)	21
3.1. Height	21
3.2. Weight	22
3.3. BMI	23
4. Lung function	26
5. Microbiology	28
6. Common complications	31
7. Treatments, visits and hospitalisations	34
8. Lung and other transplantations	37
9. References	38
	_
LIST OF TABLES	
Table 1. Demographic data since the start of the Registry	14
Table 2. Reasons for CF diagnosis	18
Table 3. Genotype: mutation pairs (chromosomes)	19
Table 4. Most frequent mutations (alleles) and number of patients carrying t	those
mutations	20
Table 5. Complications	33
Table 6. Main therapies	35

LIST OF FIGURES

Figure 1:	Age distribution related to gender for patients with CF on	
	December 31, 2010	15
Figure 2 :	Number of patients by genotype in 5 year age categories	16
Figure 3:	Number of patients by age category and registration year	16
Figure 4:	Proportion of children and adults over the years	17
Figure 5 :	Age at diagnosis of CF	19
Figure 6 :	Height in males	21
Figure 7 :	Height in females	21
Figure 8:	Weight in males	22
Figure 9:	Weight in females	22
Figure 10 :	BMI in males	23
Figure 11 :	BMI in females	23
Figure 12:	CDC BMI percentiles of F508del homozygous children aged	
	2-20 years	24
Figure 13:	Proportions of F508del homozygous adult patients in each BMI	
	group	24
Figure 14:	Classification of patients by lung function severity category and	
	age group	26
Figure 15:	Classification of F508del homozygous children by lung function	
	severity category over the years	27
Figure 16:	Classification of F508del homozygous adults by lung function	
	severity category over the years	27
Figure 17:	Annual prevalence of Pseudomonas aeruginosa, Methicillin-sensitive	
	Staphylococcus aureus (MSSA), Methicilin-resistant Staphylococcus	
	aureus (MRSA) related to age groups in the Belgian CF-population	28
Figure 18:	Annual prevalence of Haemophilus influenzae, Burkholderia cepacia	
	complex and Aspergillus related to age groups in the Belgian	
	population with CF	29
Figure 19:	Annual prevalence of isolation and of chronic infection with	
	Pseudomonas aeruginosa and Burkholderia cepacia	
	complex	29
Figure 20.	Proportion of patients with CF related diabetes by age groups	33
Figure 21.	Proportion of patients using IV antibiotics by age	36
Figure 22 :	Number of transplants by year reported in the BMR-RBM	37

This edition of the public report of the Belgian CF Registry (BMR-RBM) includes data that compares to previous years from a selection of parameters of interest. It is the hope that the provision of this information will continue to enlighten the public in general and people with interest in CF about this life threatening hereditary chronic disease.

The number of patients enrolled in the Registry has continued to rise and has doubled since 1998. In 2010, 1138 patients were registered in the BMR-RBM and there were 26 newly diagnosed patients. 45.4% are homozygous for the F508del mutations while 39.0% are heterozygous. The more common clinical presentations of CF are acute or recurrent respiratory problems, failure to thrive, chronic diarrhea/steatorrhea and meconium ileus. About 17% are diagnosed via neonatal screening even though there is no neonatal screening program as yet in Belgium. Within the year, 7 deaths were reported. Thirteen patients received a lung transplant, 2 had a lung-liver transplant and 1 had a liver transplant.

Due to medical progress, the quality of life and the life expectancy has increased. In 2010, 53% of the CF patients were aged 18 years and above. This progress is accompanied with prices. Adults are facing new complications. CF related diabetes has a prevalence of 23% in adults of 21 years and above. Other complications are early osteoporosis, iatrogenic diseases...

Among the F508del homozygous children up to 20 years, the proportion with a BMI below the 10th percentile has declined from 27.7% in 1998 to 20.2% in 2010. Among the adults with the same genotype the proportion of patients with a BMI below 18 kg/m² has also been declining. The mean percentage of FEV1% predicted continues to improve over the years. In the F508del homozygous children, the proportion with a FEV1% predicted > 90% has increased from 37.1% in 1998 to 52.9% in 2010. In the F508del homozygous adults, the proportion with a severe lung function impairment (FEV1 predicted <40%) has declined from 34.5% in 1998 compared to 18.2% in 2010.

The prevalence of *Pseudomonas aeruginosa* has been declining from over the years while the annual prevalence of *Burkholderia cepacia* complex remains low at less than 3%.

Continuous efforts have been made throughout the past years by everyone involved in the Belgian CF Registry (physicians, nurses and staff from the CF reference centres, database managers, scientific collaborators...) to improve the quality of the data and provide a useful database for monitoring the natural evolution of the disease and for use as a research instrument in generating and addressing various research hypotheses.

Based on the data collected each year, a national scientific report dedicated to the CF centres is published annually. Since 2006, centre reports are also provided to the centres. From 2008 onwards, a feedback report is being provided with analyses that compare the results from each centre with data from the other centres in order to improve the quality of care provided to the patients with CF in their respective centres through benchmarking.

A subset of variables is sent each year to the European CF Patient Registry (ECFSPR). The annual reports are available on their website (1).

Physicians from the centres and researchers have continued to submit research questions to the BMR-RBM, and currently a number of research questions are being analyzed. Several abstracts have been presented at international conferences (2-5). We would like to thank the patients and their families or care-givers who agreed to contribute data to this Registry and have made the various research issues including this report possible. Cystic Fibrosis (CF) is a hereditary disease with autosomal recessive transmission: only subjects who have inherited two disease causing mutations – one from each parent are affected. It has a prevalence of 1 in 2850 live births in Belgium (6).

The disease is caused by the alteration (mutation) of the CFTR (Cystic Fibrosis Transmembrane Conductance Regulator) gene which is located on the long arm of chromosome 7. More than 1800 mutations have been identified in the CFTR gene since its discovery in 1989. The CFTR gene codes for the CFTR protein. This is an ion channel involved in the regulation of chloride ion transport across the cell membrane. It is mainly expressed in the cell membranes of the respiratory and digestive tract, the sweat glands and the reproductive tract. The dysfunction of the CFTR protein leads to the production of sweat with a high salt content and mucus secretions with an abnormal viscosity causing dysfunction of many organs such as the lungs, pancreas and liver.

In the respiratory tract, thick mucus production results in chronic infection and inflammation leading to severe bronchial obstruction and finally lung destruction.

In the pancreas, the sticky exocrine pancreatic secretions lead to obstruction and blocking of the ducts with secondary damage to the secretory gland tissue. Diminished secretion of pancreatic enzymes leads to fat and protein malabsorption causing steatorrhea (fatty stools) and failure to thrive. Fat malabsorption also causes deficiency of fat soluble vitamins (A, D, E and K).

Most of the children with CF have a history of recurrent chest infections, steatorrhea

and failure to thrive. Newborns with CF can be affected by meconium ileus: intestinal obstruction with vomiting, abdominal distension and delay in passing the meconium. The spectrum of presenting features is very wide and can vary with the age at time of clinical presentation. The diagnosis is usually made in early childhood but in some patients with late or milder symptoms it can occur later into adulthood.

Although there is no neonatal CF screening program in Belgium yet, infants with CF can be identified in the first weeks of life by assessing their blood immunoreactive trypsin (IRT) combined with the most frequent *CFTR* mutations.

The sweat test remains the gold standard for the diagnosis of CF. In the majority of patients with typical features, the sweat test is diagnostic. It reveals an excessive quantity of chloride (salt) (> 60 mEq/L). In atypical forms, the sweat test chloride levels can fall into the intermediate range (30-60 mEq/L).

It is advised to perform genotyping in all patients with CF, to identify the CF causing mutations. The most common mutation in Belgium is F508del.

Today there is no cure for CF. Treatment is symptomatic and is essentially based on respiratory (e.g. physiotherapy, inhalation therapy, antibiotics), digestive and nutritional management (e.g. pancreatic enzymes and hypercaloric diet). Due to medical progress and intensification of the care for patients with CF, the quality of life and the life expectancy have increased. The first therapy aimed to correct the basic defect has been approved for use in a subset of patients carrying the G551D mutation.

CF PATIENT CARE IN BELGIUM

Since 1999, 7 CF reference centres have been accredited by the National Institute for Health and Disability Insurance (INAMI - RIZIV) and receive financial support. An annual care and revalidation agreement (CF convention) for patients with CF is signed between each of the 7 CF reference centres and the RIZIV-INAMI (7,8). Each centre has specific expertise in CF care and ensures multidisciplinary followup of the patients in order to provide optimal medical, paramedical, psychological and social care to the patient and their relatives. Most of the persons with CF in Belgium are followed in one of the 7 national CF reference centres and are recorded in the national CF Registry.

THE BELGIAN CYSTIC FIBROSIS REGISTRY (BMR-RBM)

The intent of a CF Registry is to include, in a single database, the entire population of patients with CF, within a defined geographical area. In 2010, 1138 persons with CF attending a Belgian CF reference centre were registered in the BMR-RBM.

The BMR-RBM was started in 1999 as a scientific project initiated by the Medical Committee of the CF-patient organisation (BVSM-ABLM¹) and the 7 CF-reference centres in Belgium collecting data of 1998. It was coordinated by the Vrije Universiteit Brussel (VUB). The main sponsor was the CF-Patient organisation, the cosponsor was the Fund Alfonse and Jean Forton of the King Baudouin Foundation. The VUB sponsored the overheads. After 5 years the scientific project came to an end and new sponsors were contacted.

In 2006, the RIZIV-INAMI became the principal sponsor and the Registry was transferred to the section of Public Health and Surveillance of the Scientific Institute of Public Health (IPH). Since then, the IPH ensures the collection and the management of the data under the supervision of the board of the BMR-RBM and the guidance of a scientific steering group.

¹ BVSM-ABLM : Belgische Vereniging voor Strijd tegen Mucoviscidose – Association belge de Lutte contre la Mucoviscidose The board consists of a physician from each CF centre and the scientific collaborators of the IPH. The scientific steering group holds all stakeholders (representatives of the INAMI-RIZIV, patient association, CF Centers and scientific collaborators of the IPH).

The Belgian CF Registry lies since 2006 within the framework of the CF convention described above. Participation in collection of data for the CF Registry is one of the obligatory tasks of the CF reference centres.

The objectives of the Registry are:

- 1 to study epidemiological aspects of CF in Belgium
- 2 to provide an evaluation tool for the assessment of the management and quality of care for patients with CF

3 to provide a database for scientific research to CF researchers

4 to participate to the European CF Patient Registry (ECFSPR) (4) and other international projects.

Prior to the registration, the physicians provide each patient and their parents (or legal representative) information about the objectives of the Registry. The patients are only included in the Registry after signing an informed consent. They are identified by a unique code. Their names are never transferred to the Registry.

The clinical data is collected by the treating physician from medical records and consists of more than 200 variables.

They are divided into 2 sections:

- 1 The core data contains demographic data, age of CF diagnosis and initial symptoms, genotype, sweat test and nasal transepithelial potential difference results. This data is collected when the patient enters the Registry and is updated if necessary during follow-up years.
- 2| Yearly follow-up sheets collect clinical data (height, weight), lung function (forced expiratory volume in one second (FEV1), forced vital capacity (FVC), forced expiratory flow 25-75% (FEF 25-75)), complications that occurred or still active during the registration year, microbiology, treatments as well as social data.

SUMMARY OF REPORT 2010

The data presented in this report relates to the population observed in 2010 and also shows cumulative data since the start of the data registration in 1998 for some selected attributes. The data from the previous years of the Registry is updated each year and we always present the most recent information.

1 DEMOGRAPHIC DATA

Deaths reported
5
12
9
9
10
14
8
3
7
8
5
10
7

Table 1| Demographic data since the start of the Registry.

Table 1 shows that 1138 patients were followed by the multidisciplinary teams of the reference centres in 2010. The number of patients enrolled in the Registry has doubled since 1998. In 2010, the median age was 18.9 years with an age range from 0.2 to 69.4 years and the proportion of males was 51.5 %. The percentage of adults has risen steadily since the start of the Registry and now represents 52.9 % of the total number of patients. In 2010, 13 patients received a lung transplant, 2 a lung-liver transplant and one a liver transplant. There were 26 newly diagnosed patients and 7 deaths reported.

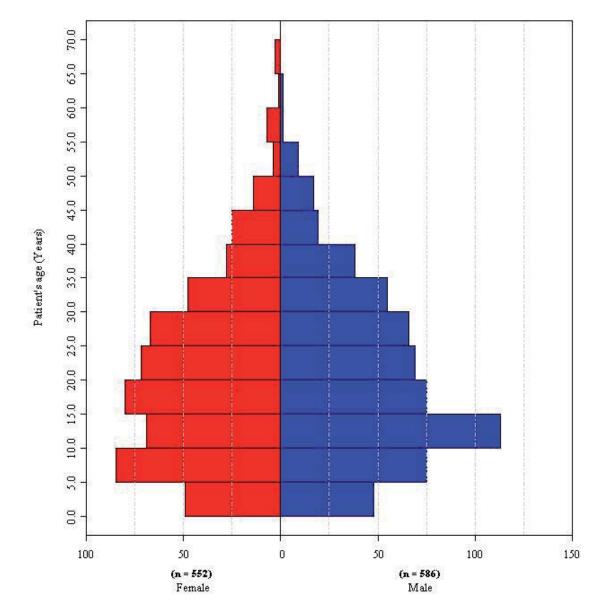


Figure 1| Age distribution related to gender for patients with CF on December 31, 2010

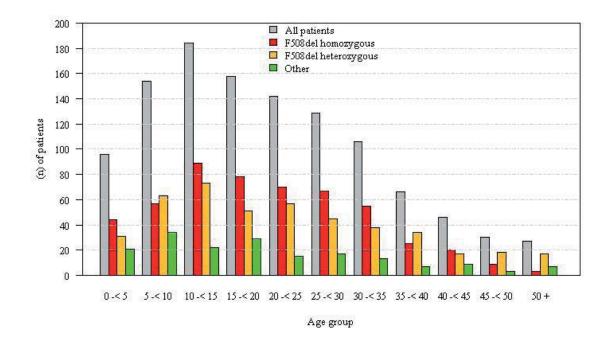


Figure 2| Number of patients by genotype in 5 year age categories

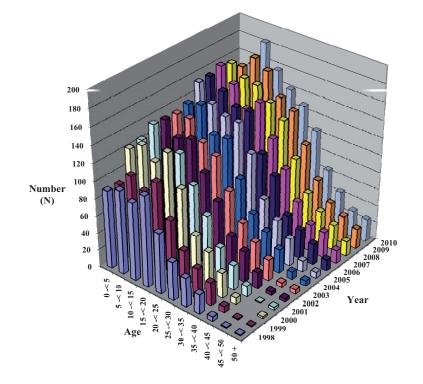


Figure 3| Number of patients by age category and registration year

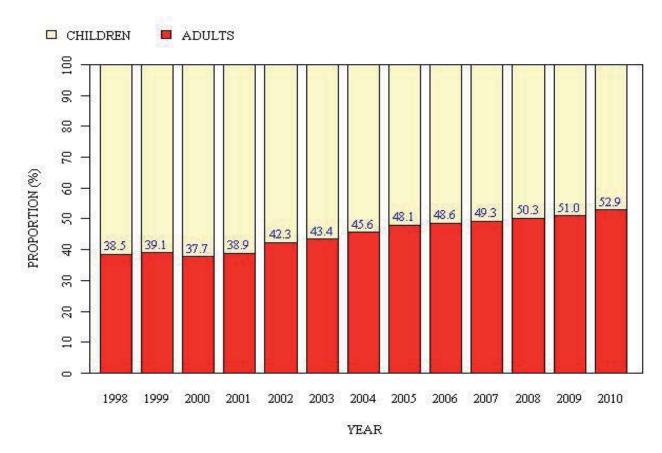


Figure 4| Proportion of children and adults over the years

Figures 1 & 2 show the age distribution of the patients with CF at December 31, 2010 respectively by gender and by genotype. The age distribution over the years is shown in figure 3. It shows an increase in the total number of patients and also in the proportion of patients aged 40 years and above. Whereas 7 (1.2%) patients were older than 40 years in 1998, this number reached 99 (8.7%) in 2010. In 2010, 52.9% of the registered patients were adults (figure 4).

2 DIAGNOSIS

2.1 Diagnostic signs

In a patient with suggestive symptoms, a family history of cystic fibrosis or a positive neonatal screening test, the diagnosis of CF is confirmed by an abnormal sweat test and/ or the identification of two mutations in the CFTR gene. Although no national neonatal screening program was implemented in Belgium, some children were screened for CF.

Most patients present with a combination of respiratory and/or gastrointestinal symptoms. Chronic cough, recurrent chest infections, chronic sinusitis are the most common respiratory signs at presentation. Common gastro-intestinal symptoms include meconium ileus (obstruction of the bowel with sticky secretions in the newborn infant), chronic diarrhea and failure to thrive due to malabsorption. Less frequently, salt loss, jaundice or a rectal prolapse are the first diagnostic signs. In some cases, the diagnosis of cystic fibrosis is delayed until adulthood.

The diagnostic signs or clinical presentation are illustrated in table 2. In the Registry, it is possible to report more than one diagnosis sign or symptom for the same patient. Over the years, the commonest clinical presentation of CF remains acute or recurrent respiratory problems. Other common features at presentation were failure to thrive, chronic diarrhea/steatorrhea and meconium ileus. About 17.0% of the patients were diagnosed via neonatal screening test.

	1998 (%)	2004 (%)	2010 (%)
Acute or recurrent respiratory problems	43.2	43.2	43.5
Failure to thrive	23.5	23.6	24.6
Chronic diarrhea/steatorrhea/malabsorption	27.5	22.8	21.6
Neonatal screening test	15.3	15.9	16.5
Meconium ileus	15.9	14.8	14.0
Family history	8.7	8.3	9.4
Nasal polyposis / chronic sinusitis	2.5	3.2	4.2
Rectal prolapse	3.8	2.7	3.0
Intestinal obstruction (other than meconium ileus)	3.0	3.2	2.8
Prenatal diagnosis	0.8	1.7	2.4
Dehydration / electrolyte imbalance	1.5	1.4	1.8
Neonatal jaundice	0.6	0.9	0.1
Infertility	0.4	1.1	0.9
Diagnosis other		7.8	8.0

Table 2| Reasons for CF diagnosis

The reasons for diagnosis are not mutually exclusive.

2.2 Age at diagnosis

In figure 5, the black bars represent the number of patients diagnosed in each age group. The pink bars show the cumula-tive percentage. From data 2010, the median age at diagnosis was 6.6 months

with 65.2% of the patients diagnosed before their first birthday. In 7.2% of the patients, diagnosis was delayed until adulthood (18 years or older).

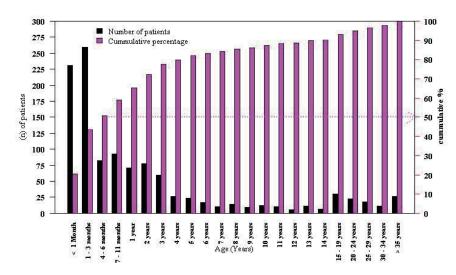


Figure 5| Age at diagnosis of CF

2.3 Genotyping

99.0% of the patients registered in 2010 have undergone a genetic analysis. Almost half (45.4%) were homozygote for F508del and 39.0% were heterozygote for this mutation (table 3). The proportion of patients in which only one or no mutation was identified was 8.6%.

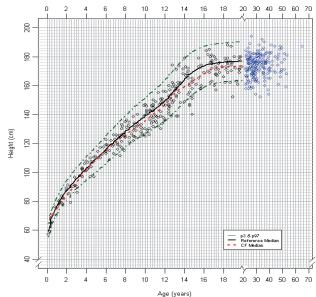
Table 3| Genotype

	n	%
F508del - F508del	517	45.4
F508del - Other	396	34.8
F508del - NI	48	4.2
Other - Other	113	9.9
Other - NI	19	1.7
NI - NI	31	2.7
Subtotal	1124	
Missing	14	1.2
Total	1138	

NI = not identified

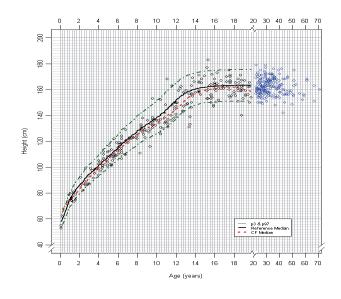
Table 4 shows that the most common genetic mutation, F508del, was identified in 65.8% of the alleles while the G542X and N1303K were identified both in 2.8% of the alleles. The group labeled 'other mutations' are those alleles which were present in less than 3 patients. Respectively 961 (84.4%), 57 (5.0%) and 56 (4.9%) of the patients were carriers of either the F508del, G542X or N1303K mutation on at least one allele.

 Table 4| Most frequent mutations (alleles) and number of patients carrying those mutations


	pati	ients	alle	eles
mutation	Ν	%	n	%
F508del	961	84.4	1478	65.8
G542X	57	5.0	62	2.8
N1303K	56	4.9	62	2.8
1717-1G->A	33	2.9	33	1.5
S1251N	32	2.8	32	1.4
3272-26A->G	31	2.7	31	1.4
R117H	25	2.2	25	1.1
A455E	21	1.8	21	0.9
2789+5G->A	20	1.8	20	0.9
R553X	19	1.7	19	0.9
W1282X	17	1.5	17	0.8
R1162X	12	1.1	15	0.7
L927P	14	1.2	14	0.6
2183AA->G	13	1.1	13	0.6
3849+10kbC->T	13	1.1	13	0.6
1507del	9	0.8	9	0.4
3659delC	8	0.7	8	0.4
394delTT	7	0.6	8	0.4
E60X	7	0.6	7	0.3
W401X	7	0.6	7	0.3
G970R	6	0.5	6	0.3
	-	0.0	-	0.0

Note: L227R has four alleles from two homozygous patients while G551D has three alleles from two patients

3 ANTHROPOMETRY (HEIGHT, WEIGHT AND BMI)


In this section data from 128 patients who have received (a) transplant(s) have been excluded.

Persons with CF are known to be prone to nutritional deficiencies. Because of thick mucus, the pancreas is unable to produce and/or carry digestive enzymes to the intestines. This leads to poor absorption of proteins, fats and fat soluble vitamins resulting in poor weight gain and growth. Nutritional care is of great importance for patients with CF. Maintaining or achieving a better nutritional status has a positive impact on lung function. For this reason, close follow-up of height, weight and BMI is standard practice in all CF centers.

3.1 Height

Figure 6| Height in males

Figures 6 & 7 show the height of 580 children with CF (300 males and 280 females) aged between 0 and 20 years (using the CDC reference curves (9)). Most male and female CF children had a height within the normal range, between the 3rd and 97th percentile (green lines). The median height of children with CF (dotted red line) was below the median height of the reference population (black line), meaning that patients with CF are shorter than their healthy peers. 9.0% of the patients were considered to be too short, with a height below the 3rd percentile. The height of the 412 adults (age ≥ 20 years) (218 males and 194 females) are represented by the blue scatters plots.

Figure 7| Height in females

Summary Report 2010

3.2| Weight

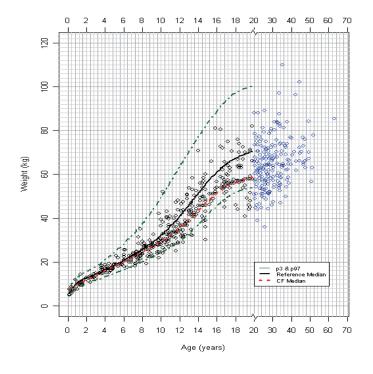


Figure 8| Weight in males

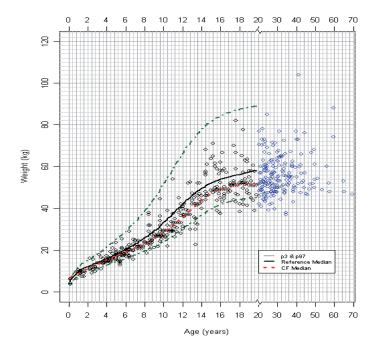


Figure 9| Weight in females

Figures 8 & 9 show the scatter plots of weight of 589 children with CF (310 males and 279 females). The weight of most of the patients was between the 3rd and 97th percentile with a higher proportion below the 50th percentile. 12.2% of the patients (10.0% of the males and 14.7% of the females) were underweight (weight below the 3rd percentile). The median weight for the patients with CF (dotted red line) was below the median weight for the reference population (black line). The blue dots represent the weight of 412 adults (older than 20 years); 218 males and 194 females.

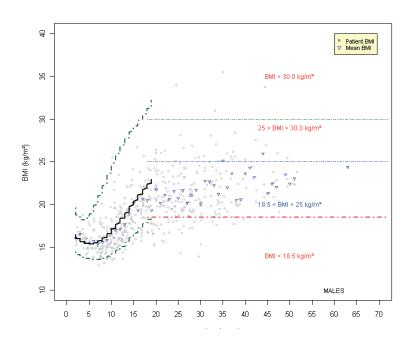
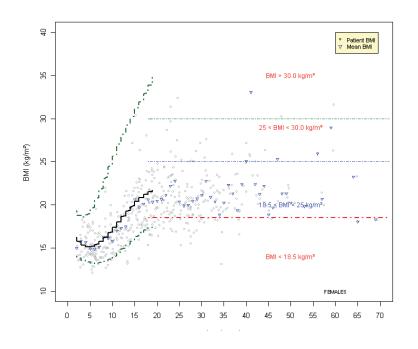



Figure 10| BMI in males

The body mass index (BMI) is obtained by dividing the weight (in kg) by the square of the height (in m). BMI is a 'rough' measure of nutritional status, a higher BMI reflecting better nutrition.

Figures 10 and 11 show a decreasing median BMI percentile with age in the Belgian children with CF aged 2 years and above. Ideally, children with CF should have a median BMI close to that of the non-CF population (black line).

In adults, the patients are classified as underweight (< 18.5 kg/m²), in the normal range (18.5-25 kg/m²) or as overweight (> 25 kg/m²). In 2010, the BMI was in the normal ranges (18.5-25 kg/ m²) in 80.7% of the adult patients (81.9% of the males and 79.5% of the females). The proportion of underweight adult patients was 17.4% (16.5% and 18.4% in males and females respectively).

Figure 11| BMI in females

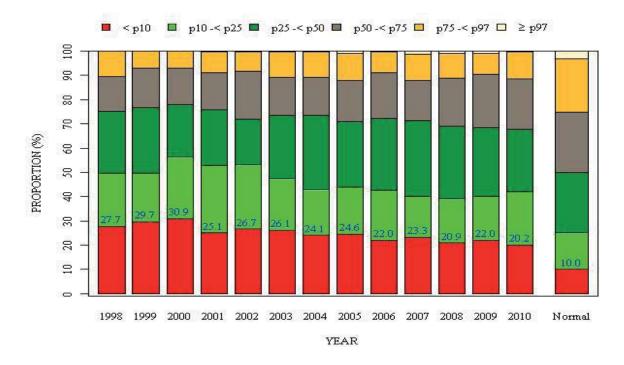


Figure 12 CDC BMI percentiles of F508del homozygous children aged 2-20 years

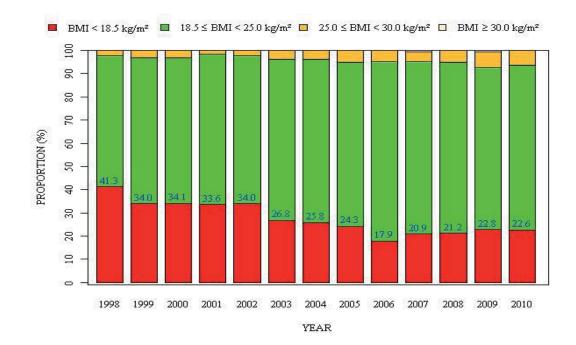


Figure 13| Proportions of F508del homozygous adult patients in each BMI group

Figures 12 and 13 show the evolution of the BMI over the last 13 years of analysis in the Belgian children and adults with CF. Only patients with the most frequent genetic mutation (F508del homozygote) were included in this analysis, to compare a similar population over the years. In the reference population, by definition, 10% of the children have a BMI below the 10th percentile (see

last bar of figure 12, red part). In the children with CF, over the last 13 years, the proportion of patients with a low BMI (below the 10th percentile) has steadily declined from 27.7 in 1998 to 20.2% in 2010. Among the adults, the proportion of underweight individuals decreased from 41.3% to 22.6% over the same period.

4 LUNG FUNCTION

Because most patients with CF develop progressive pulmonary disease, measures such as FEV1 are used.

The forced expiratory volume in 1 second (FEV1) is the amount of air that a person is able to expire forcefully in one second, following full inspiration. It is expressed as a percentage of the predicted value for a reference population with same age, gender and height². The percent predicted FEV1 is a clinical parameter to monitor lung function impairment.

The FEV1 partly determines the prognosis. However, considerable heterogeneity exists in prognosis and severity, even among patients of the same genotype.

The FEV1% predicted values are divided in four classes for the CF population corresponding to different degrees of lung function impairment: normal (\geq 90%), mild (70-89%), moderate (40-69%) and severe (< 40%) impairment.

The data presented excludes patients who have benefited from a lung transplant. Below the age of 6 years lung function measurements are not always reliable and are thus not reported here.

In 2010, the lung function taken at the last outpatient clinic of the year was reported in the Registry and was available for 98.9% of the non transplanted patients aged 6 years and above.

The majority of children below 12 years (92.0%) had a normal FEV1 or mild lung function impairment (\geq 70%) whereas in the adult population aged 30 years and above this was only 28.7%.

No child less than 12 years had severe lung function impairment while this was the case in 23.2% of the adults aged 30 years and above (figure 14).

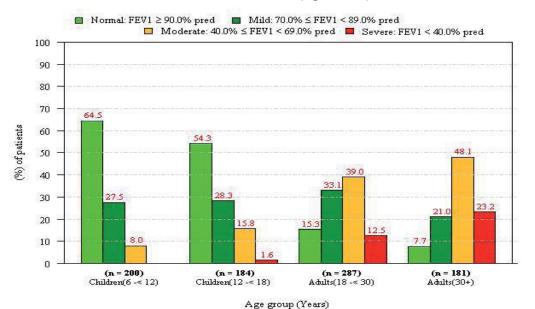


Figure 14| Classification of patients by lung function severity category and age group

²Wang's reference equations (10) were used for males, 6 – 17 years and females 6 – 15 years, while Hankinson's (11) were used for predictions for the males 18 years and above and females from 16 years onwards.

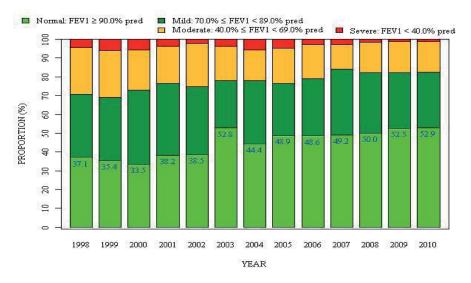


Figure 15| Classification of F508del homozygous children by lung function severity category over the years

Figure 16| Classification of F508del homozygous adults by lung function severity category over the years

Figures 15 and 16 show the proportion of children and adults in the different classes of lung function over the years. Only patients with the most frequent genetic mutation (F508del homozygote) were included in this analysis, to compare a similar population over the years.

The proportion of children with % of predicted

FEV1 higher than 90% (light green) has increased over the years from 37.1% in 1998 to 52.9% in 2010.

Amongst the adults (figure 16), over the years, there is a decline in the proportion of patients with severe lung function impairment (values less than 40% of the predicted, in red on the graph) from 34.5% in 1998 to 18.2% in 2010.

5 MICROBIOLOGY

Decreased mucus clearance and impaired bacterial killing lead to inflammation and infection and are responsible for progressive lung damage. Bacterial colonisation occurs very early in the natural history of the disease. In children, common bacteria such as *Staphylococcus aureus* and *Haemophilus influenzae* infect the lungs. The early colonization by *Pseudomonas aeruginosa* is treated to prevent or delay chronic infection by this pathogen. The airways of patients with CF may also be chronically colonized by other bacteria and fungi like *Aspergillus fumigatus*. In this section, a selection of pathogens are presented, based on their prevalence in the patient population. Data from transplant patients are not included in this chapter.

In 2010, 98.6% of the patients had at least one culture during the year. 38.8% of the patients tested positive to *Pseudomonas aeruginosa*; while *Methicillin-resistant Staphylococcus aureus (MRSA)* was detected in 8.7%. Only 2.4% tested positive for *Burkholderia cepacia* complex.

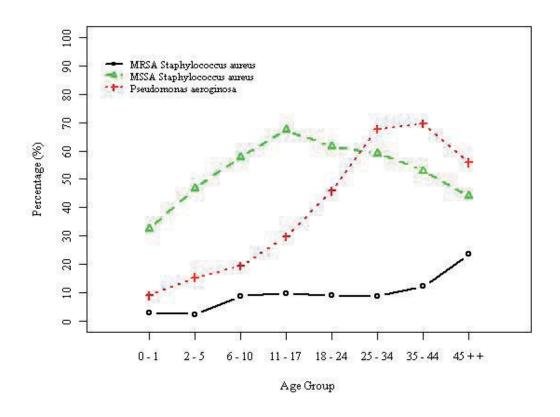
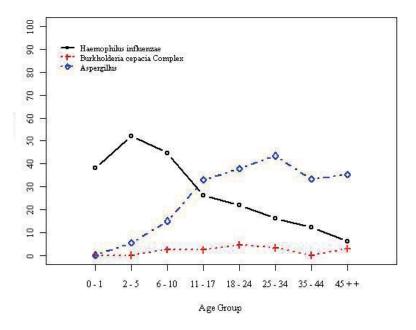



Figure 17 Annual prevalence of *Pseudomonas aeruginosa*, *Methicillin-sensitive Staphylococcus aureus (MSSA)*, *Methicilin-resistant Staphylococcus aureus (MRSA)* related to age groups in the Belgian CF-population

Figure 18 Annual prevalence of *Haemophilus influenzae*, *Burkholderia cepacia* complex and *Aspergillus* related to age groups in the Belgian population with CF

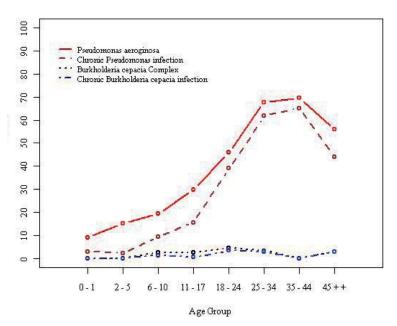


Figure 19 Annual prevalence of isolation and of chronic infection with *Pseudomonas* aeruginosa and Burkholderia cepacia complex related to age groups in the Belgian population with CF

Annual prevalence related to age of typical CF-pathogens found in the airway cultures done during the whole year 2010 is illustrated in figures 17 & 18.

In the Belgian CF population, *Pseudomonas aeruginosa* was found in about 16% of the patients in the first decade of life. This percentage rose in the second decade and reached 70% in the adult life (figure 17). The proportion of patients with chronic infection with *Pseudomonas aeruginosa* also increases with age (figure 19). *Methicillin-sensitive Staphyloccoccus aureus (MSSA)* was present in about 30% of the patients below the age of one year and this percentage increased progressively over the consecutive age groups reaching the highest percentage in the age range of 11-17 years (figure 17).

The prevalence of *Methicillin-resistant Staphylococcus aureus (MRSA)* was low with higher levels found in the older age groups (figure 17). *Burkholderia cepacia* complex was not frequently found in our country (figures 18 and 19).

6 COMMON COMPLICATIONS

The defective chloride channel in CF causes a range of disturbances within the human body. Chloride channels are needed to regulate fluids exchanges at the surface of epithelial cells. Complications in CF are mainly found in organs where mucofilms are needed (airways, intestines) and glands which need fluid to excrete their substances (pancreas, testis...). The most frequent complications are detailed below.

6.1 Respiratory system complications

Allergic bronchial pulmonary aspergillosis

(ABPA) is an allergic reaction to *Aspergillus fumigatus* a fungus that colonizes the airway of some people with CF. Diagnosis is not always obvious as many symptoms of ABPA (cough, wheezing, shortness of breath, decline in lung function) are common symptoms of CF lung disease. Diagnosis relies on a combination of clinical picture, blood tests, lung function and lung imaging.

Nasal polyps

In patients with CF, chronic infections of the upper airways (chronic sinusitis) may cause the formation of nasal polyps which are mucosal overgrowths. They are responsible for nasal obstruction.

Haemoptysis

Haemoptysis is a condition where patients cough up blood. Haemoptysis is mild in most cases, but sometimes the bleeding is so severe that embolisation of the bleeding vessel is needed.

A **pneumothorax** occurs when air reaches the vacuum of the pleural space, mainly caused by destruction of the alveoli causing the leakage of air. This complication is more common in adults who have more advanced lung disease.

6.2 Gastro-Intestinal complications

Pancreatic enzymes are needed to digest fat and proteins. **Pancreatic insufficiency** is the inability of the pancreas to produce and excrete enough enzymes to digest fat and proteins resulting in malabsorption with steatorhea (fatty stools), malnutrition and a deficiency in fat-soluble vitamins (A, D, E and K).

Gastro-oesophageal reflux is a condition in which contents of the stomach or small intestine repeatedly move back up into the esophagus. When repeated it causes oesophagitis and may worsen the respiratory function.

Distal intestinal Obstruction syndrome (DIOS)

The intestinal cells with defective chloride channels produce thick intestinal mucus which in combination with stools can cause obstruction of the bowels. DIOS causes acute abdominal pain and if not treated can progress to complete intestinal obstruction. DIOS usually responds to medical treatment but in a few cases surgery is required.

Liver disease

Only a subgroup of persons with CF develop liver disease leading to cirrhosis (replacement of the liver tissue by fibrosis). Sometimes cirrhosis evolves to portal hypertension and in advanced cases a liver transplant can be proposed.

6.3 Endocrine complications

CF related Diabetes (CFRD)

Insulin is a hormone which maintains the balance of sugar in blood. Dysfunction of the endocrine part of the pancreas leads to insufficient secretion of insulin and to diabetes. Insulin is the treatment of diabetes.

CFRD prevalence increases with age. In 2010 in the Belgian CF Registry, no children under 10 years had CFRD. Twenty eight of the 10 – 20 yr old, 51 of the 21 - 29 yr old and 43 patients aged 30 and above were reported to have CF related diabetes (figure 20).

Since patients with CF are living longer, they are at increasing risk of developing CFRD. In the Belgian CF population, the proportion of patients with CFRD has increased over the years from 7.5% in 1998 to 13.5% in 2010. In 1998, 9 children (3.9%) and 21 adults (12.3) had CFRD compared to 13 children (3.0%) and 109 adults (22.9%) in 2010.

6.4 Reproductive system complications

Most men with cystic fibrosis are infertile because of congenital bilateral absence of the vas deferens (which allows the transport of the spermatozoids). However, as the production of spermatozoids is preserved, techniques of assisted procreation are available.

Although women with cystic fibrosis may be

less fertile, it is possible for them to have successful pregnancies. Those pregnancies require close surveillance.

6.5 Other complications

Osteopenia and osteoporosis

Osteopenia and osteoporosis are the result of a progressive loss of the bone mass. They are more frequent and earlier in cystic fibrosis due to various risk factors like malabsorption of vitamins D, use of glucocorticoids, chronic inflammation, sedentarity...

CF related arthritis/arthropathy

Patients with advanced lung disease sometimes develop painful inflammation of joints. The exact cause is not known and regression of joint symptoms is usually seen when respiratory disease improves.

Psychiatric disease

Difficult to define and quantify, the psychological repercussions of CF are frequent and often involve a poor adherence to the treatment.

In this section we consider the most common complications recorded in non transplanted patients. The percentage of patients presenting these complications in 2010 are reported in table 5.

	Complications*	n patients	% of patients
Respiratory	Allergic bronchopulmonary aspergillosis	64	6.4
	Nasal polyps	120	11.9
	Massive haemoptysis	18	1.8
	Pneumothorax	1	0.1
Gastro-intestinal	Pancreatic insufficiency	847	84.1
	Gastro-oesophageal reflux	190	18.9
	Intestinal obstruction (no surgery)	75	7.4
	Intestinal obstruction (requiring surgery)	5	0.5
	Cirrhosis with portal hypertension	33	3.3
Endocrine	CF related diabetes (CFRD)	122	12.1
Other	Osteopenia / osteoporosis	130	12.9
	CF related arthritis / arthropathy	52	5.2
	Psychiatric disease	18	1.8

Table 5| Complications

*Complications are not mutually exclusive

Percentages are based on 1007 non transplanted patients

Figure 20| Proportion of patients with CF related diabetes by age groups

7 TREATMENTS, VISITS AND HOSPITALISATIONS

Till today no cure for CF exists. Treatment of the disease is therefore based on preventing or reducing symptoms and complications.

7.1 Prevent and treat respiratory infections

Because mucus is stuck within the bronchi, improving mucus clearance is one of the most important interventions. A patient with CF has regular chest physiotherapy sessions.

Different kinds of inhaled medications are used to treat CF symptoms. They include mucolytics that thin the sticky airway secretions such as RhDNase or hypertonic saline. Bronchodilators are given to dilate the bronchi. Inhaled antibiotics are used to treat infection and to prevent or postpone bacterial colonization. In advanced lung disease oxygen is needed.

Every year, half of the patients with CF are hospitalized, mostly for the treatment of pulmonary exacerbations caused by an infection requiring intravenous antibiotics.

Inflammation caused by repeated infections plays an important role in the progression of lung injury. This explains the interest in the use of anti-inflammatory drugs such as azithromycine or inhaled corticosteroids as complementary treatment.

7.2 Optimizing the nutritional status

Because the nutritional status of a patient correlates with disease severity, every person with CF should take a well balanced highcaloric and high-fat diet.

Most individuals with CF are pancreatic insufficient and must take pancreatic enzymes

at every meal to digest food correctly. Also supplements of vitamins A, D, E and K are administered routinely. Some people with CF receive supplemental feedings given overnight by a tube placed into the stomach (enteral feeding) or even intravenous nutrition (parenteral feeding).

7.3 Monitoring the onset of other complications followed by appropriate therapeutic interventions

Complications of the disease are regularly monitored.

When clinical, biological or imaging findings point towards liver disease, ursodeoxycholic acid is started. It is a hydrophilic bile acid normally present in human bile which stimulates the biliary secretion.

Depending on complications, other medications are prescribed such as insulin for CF related diabetes, biphosphonates for osteoporosis, proton-pump inhibitors for gastro-esophageal reflux or maldigestion...

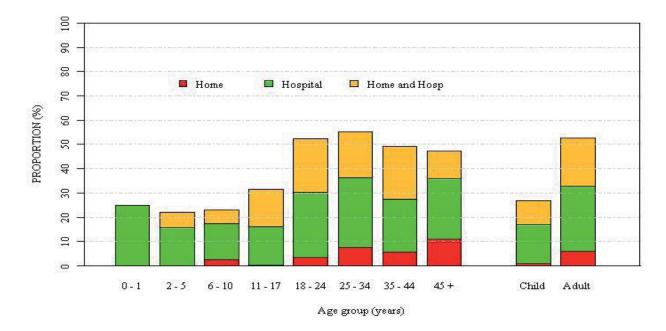
The treatment burden for CF patients is high. Most CF patients spend a lot of time every day performing therapies This imposes also a substantial burden on their family.

In this section, we will present data on treatments given to patients as recorded in 2010 for non transplanted patients.

Table 6| Main therapies

Treatment	% receiving the treatment				
Respiratory therapies					
Regular chest physiotherapy	89.7				
Antibiotics					
Oral or IV antibiotics	87.4				
Oral antibiotics	84.6				
IV antibiotics	39.1				
Inhaled antibiotics	56.1				
Tobramycin (300 mg)	15.8				
Inhalation therapy (antibiotics excluded)					
RhDNase	62.1				
Other mucolytics	47.4				
Hypertonic saline	36.9				
Bronchodilators	72.8				
Corticosteroids	55.0				
Oral anti-inflammatory drugs					
Azithromycin	41.7				
Systemic corticosteroids	5.5				
NSAID	4.1				
Oxygen therapy	2.5				
Digestive and nutritional therapies					
Pancreatic enzymes	85.5				
Fat soluble vitamins (A, D, E and K)	84.7				
Proton pump inhibitor + H2 receptor blocker	40.9				
Ursodeoxycholic acid	26.4				
Enteral feeding	2.2				
Parenteral feeding	2.4				
Other treatments					
Insulin therapy	11.2				
Oral therapy for diabetes	2.0				

7.4 Respiratory therapies


About 90 % of the patients were reported to follow regular chest physiotherapy.

Ninety one percent of the patients took on a daily basis at least one mucolytic (RhDNase, hypertonic saline or another mucolytic). Inhaled bronchodilators were the most frequent additional drug (72.8%). Among

anti-inflammatory drugs, azithromycin was given to 41.7% of the patients while systemic corticosteroids and non steroidal anti-inflammatory drugs (NSAID's) were given to only a small proportion of the patients (5.5% and 4.1% respectively).

7.5 Antibiotics

The proportion of patients using inhaled antibiotics was about 56 %. Over 87% of the patients received oral and/or intravenous antibiotics. 84.6% received oral antibiotics (either alone or together with IV). The need for intravenous antibiotics increases with age with 26.6% of the children and more than half of the adults receiving at least one treatment by intravenous antibiotics during the year 2010 (figure 21). Adolescents and adults received more days of intravenous antibiotics than children. The children had a median (Inter Quartile Range (IQR)) of 15.0 (14.0 – 30.0) days of IV antibiotics while adults had a median of 24.0 (14.0 – 45.0) days.

7.6 Digestive and nutritional therapies

Pancreatic enzymes replacement therapy were taken by 85.5 % of the patients; a supplement of fat-soluble vitamins A, D, E and K by 84.7 % of them. Ursodeoxycholic acid was given in a quarter of the patients.

7.7 Other therapies

11.2 % of all patients, i.e. 2.8 % of the children

and 20.5 % of the adults, were treated with insulin.

7.8 Outpatient visits and hospitalizations

The median (IQR) number of outpatients visits of the patients with CF was 5 (4 - 7). 45.5 % of the patients (35.6% of the children and 56.4% of the adults) were hospitalized in 2010 with a median (IQR) number of 10 (4 - 18) days in children and 13 (5 - 28) in adults.

8 LUNG AND OTHER TRANSPLANTATIONS

When a patient with CF develops severe and progressive lung disease, lung transplantation may become an option.

However, like other major surgeries, lung transplantation involves significant risks. A lung transplant is indicated only for patients who have a severe disease and who have exhausted all other forms of conventional medical treatment. For these patients, lung transplantation may offer prolonged survival and an improved quality of life; in some cases even a 'new' life.

The success rate of lung transplantation for CF patients is steadily improving. At present the actuarial survival rate is > 60 % at 3 years and > 40 % at 10 years after surgery (12). The longest surviving patients had their transplant

operations now more than 20 years ago.

The first (heart-)lung transplant in a Belgian patient with CF was performed in 1988. Since this time more than 180 patients with CF (13) (161 reported in the CF Registry) have received a (heart-)lung transplant in Belgium and approximately 10 lung transplants per year are now performed for CF. Some patients with CF will need other types of transplantations such as liver transplantation for CF related liver cirrhosis or renal transplantation for end-stage renal disease because of diabetes, antibiotic toxicity or the toxicity of immunosuppressive drugs required after lung transplantation.

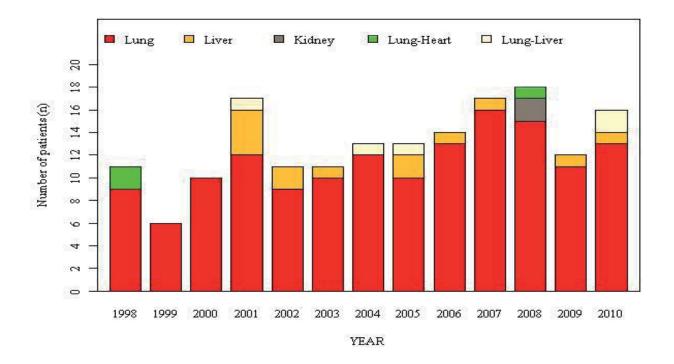


Figure 22 Number of transplants by year reported in the BMR-RBM

9 REFERENCES

- 1. http://www.ecfs.eu/projects/ecfs-patient-registry/intro
- Thomas M, Castellani C, Cuppens H, Gulmans V, Lemonnier L, Norek A, Vermeulen F, De Boeck K. Who is reported in the Belgian, Dutch and French CF registries? J Cyst Fibros 2012; 11 [S1]: S6.
- 3. Wanyama SS, Jansen H, Sevens C, Malfroot A, Knoop C, Depoorter A. Social Challenges facing the Cystic Fibrosis patients in Belgium on their path to adulthood. J Cyst Fibros 2012; 11[S1]:S28.
- 4. Wanyama SS, Jansen H, Sevens C, Malfroot A, Knoop C and Depoorter A. The relationship between socioeconomic status (SES) and clinical outcomes among people with Cystic Fibrosis in Belgium. Health Economics and management policy Abstract book 2012, 11th Annual International conference on Health Economics, Management and policy, June 2012, Page 38.
- 5. De Wachter E, De Schutter I, Thomas M, Wanyama SS, Haentjens P, Malfroot A. Increased proportion of CF patients with normal FEV1 over an 11-years nation-wide study: have patient characteristics changed? J Cyst Fibros 2012; 11[S1]:S143.
- 6. Farrell PM. The prevalence of cystic fibrosis in the European Union. J Cyst Fibros 2008; 7:450-453.
- 7. http://www.inami.be/care/fr/revalidatie/convention/mucoviscidose/pdf/agreement.pdf http://www.inami.be/care/nl/revalidatie/convention/mucoviscidose/pdf/agreement.pdf
- 8. http://www.inami.be/care/fr/revalidatie/convention/mucoviscidose/pdf/avenant.pdf http://www.inami.be/care/nl/revalidatie/convention/mucoviscidose/pdf/avenant.pdf
- Kuczmarski RJ, Ogden CL Guo SS et all. 2000 CDC growth charts for the United States: Methods and development. National Center for Health Statistics, Vital Health Stat 2002; 11(246): 1 – 190.
- 10. Wang X, Dockery D, W Wypij D, Fay ME, and Ferris BG. 1993. Pulmonary function between 6 and 18 years of age. Paediatr. Pulmonol. 15:75–88.
- 11. Hankinson JL, Odencrantz JR and Fedan KB. 1999. Spirometric reference values from a sample of the general U.S. population. Am. J. Respir. Crit. Care. Med. 159:179–187.
- Christie JD, Edwards LB, Kucheryavaya AY, Aurora P, Dobbels F, Kirk R, Rahmel AO, Stehlik J, Hertz MI. The Registry of the International Society for Heart and Lung Transplantation: twenty-seventh official adult lung and heart-lung transplant report--2010. J Heart Lung Transplant. 2010 29:1104-18.
- Van Raemdonck D, on behalf of the Thoracic Committee of the Belgian Transplantation Society. (Heart-)Lung transplantation in Belgium. Annual report 2009. Personal communication.

Scientific Institute of Public Health Direction Public health and surveillance Health Services Research Rue J. Wytsmanstraat 14 1050 Brussels | Belgium

www.wiv-isp.be/epidemio

Editor

Dr Johan Peeters Rue Juliette Wytsmanstraat 14 1050 Brussels | Belgium

Legal depot D/2012/2505/45

Science at the service of Public health, Food chain safety and Environment.