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A B S T R A C T   

Background: Wastewater-based epidemiology (WBE) has been implemented to monitor surges of COVID-19. Yet, 
multiple factors impede the usefulness of WBE and quantitative adjustment may be required. 
Aim: We aimed to model the relationship between WBE data and incident COVID-19 cases, while adjusting for 
confounders and autocorrelation. 
Methods: This nationwide WBE study includes data from 40 wastewater treatment plants (WWTPs) in Belgium 
(02/2021–06/2022). We applied ARIMA-based modelling to assess the effect of daily flow rate, pepper mild 
mottle virus (PMMoV) concentration, a measure of human faeces in wastewater, and variants (alpha, delta, and 
omicron strains) on SARS-CoV-2 RNA levels in wastewater. Secondly, adjusted WBE metrics at different lag times 
were used to predict incident COVID-19 cases. Model selection was based on AICc minimization. 
Results: In 33/40 WWTPs, RNA levels were best explained by incident cases, flow rate, and PMMoV. Flow rate 
and PMMoV were associated with − 13.0 % (95 % prediction interval: − 26.1 to +0.2 %) and +13.0 % (95 % 
prediction interval: +5.1 to +21.0 %) change in RNA levels per SD increase, respectively. In 38/40 WWTPs, 
variants did not explain variability in RNA levels independent of cases. Furthermore, our study shows that RNA 
levels can lead incident cases by at least one week in 15/40 WWTPs. The median population size of leading 
WWTPs was 85.1 % larger than that of non‑leading WWTPs. In 17/40 WWTPs, however, RNA levels did not lead 
or explain incident cases in addition to autocorrelation. 
Conclusion: This study provides quantitative insights into key determinants of WBE, including the effects of 
wastewater flow rate, PMMoV, and variants. Substantial inter-WWTP variability was observed in terms of 
explaining incident cases. These findings are of practical importance to WBE practitioners and show that the 
early-warning potential of WBE is WWTP-specific and needs validation.  

Abbreviations: AICc, corrected Akaike Information Criterion; IE, inhabitant equivalent; IQR, interquartile range; LOQ, limit of quantification; NSD, normalised 
standard deviation; PMMoV, pepper mild mottle virus; RMSE, root-mean-square error; RNA, ribonucleic acid; SD, standard deviation; WBE, wastewater-based 
epidemiology; WWTPs, wastewater-treatment plants. 
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1. Introduction 

Accurate monitoring of community-wide severe acute respiratory 
syndrome coronavirus 2 (SARS-CoV-2) spread is vital to estimate and 
reduce the societal impact of coronavirus disease (COVID-19). To this 
end, individual clinical testing has been used extensively to diagnose 
COVID-19 infections and impose quarantine measures (Vandenberg 
et al., 2021). Yet it is costly and has a tendency to be biased towards 
symptomatic infections due to ineffective detection of asymptomatic 
cases (Girum et al., 2020). Hence, for epidemiological monitoring, 
wastewater-based epidemiology (WBE) of SARS-CoV-2 has been 
implemented as a complementary surveillance tool (Agrawal et al., 
2021; Janssens et al., 2022; Rainey et al., 2022; Rector et al., 2023). 
WBE is a method that enables detection of faecally and urinary excreted 
SARS-CoV-2 genes in influent wastewater to monitor viral surges 
(Anand et al., 2021; Anand et al., 2022; Cevik et al., 2021; Park et al., 
2021) and has an early-warning potential (Mao et al., 2020; Shah et al., 
2022). Additional advantages of WBE to clinical testing are its capability 
to detect both symptomatic and asymptomatic infections (Parasa et al., 
2020), to provide more inclusive, privacy-friendly, and population-wide 
estimates, and allow more targeted clinical testing (Amman et al., 2022). 

Nonetheless, the potential of WBE remains limited due to important 
variability in WBE estimates caused by the complexity of influent 
wastewater samples, external factors such rainfall and chlorination, and 
heterogeneity of wastewater treatment plants (WWTPs) and sewer net-
works. Hence, a myriad of factors affect the measured viral gene con-
centrations, including wastewater dilution, wastewater composition, 
and population factors such as variability in viral shedding and uncer-
tainty in the size of the underlying population represented in a given 
wastewater sample (Bertels et al., 2022; Li et al., 2023). Therefore, the 
true number of viral RNA copies per resident remains unknown. 

Adjusting for those key determinants, including flow rate, waste-
water faecal strength, and population size, have been proposed to 
improve the utility of WBE estimates (Bertels et al., 2022). Yet, there is 

little research assessing the quantitative effects of these phenomena on 
viral concentrations in wastewater (Vallejo et al., 2022), which is critical 
to decide how to adjust for these factors. Although WBE estimates can be 
highly correlated to clinical cases of COVID-19 (D’Aoust et al., 2021; 
Vallejo et al., 2022; Westhaus et al., 2021), to the best of our knowledge 
there has been no study to date which optimizes the wastewater metric 
by adjusting for those factors to quantitatively model COVID-19 cases. 

In this nationwide WBE study, wastewater was sampled twice weekly 
over more than one year (02/2021–06/2022) at 40 WWTPs in Belgium 
covering more than five million inhabitants. We aimed (i) to model the 
effect of flow rate, human faecal loads, and variants (alpha, delta, and 
omicron strains) on wastewater SARS-CoV-2 RNA levels and (ii) to 
optimize wastewater metrics to explain incident COVID-19 cases. Our 
study shows that wastewater flow rate and population dynamics, but not 
variants, consistently explain RNA levels independent of cases. We 
provide meta-analysed effect sizes and prediction intervals, allowing 
other researchers to adjust RNA levels independent from incident cases. 
Furthermore, we show that WBE can lead clinical epidemiology by one 
week, but only in a minority of WWTPs due to substantial inter-WWTP 
variability. Lastly, we found that in some WWTPs RNA levels were not 
informative for incident cases in addition to autocorrelation of cases. 

2. Material and methods 

2.1. Data description 

2.1.1. Wastewater data 
Influent wastewater samples were collected at 40 Belgian waste-

water treatment plants (WWTPs) covering approximately 5 million in-
habitants, which represents 43 % of the Belgian population (Fig. 1 and 
Table S1). In the context of national wastewater surveillance, 24 h 
samples are collected twice a week on Monday and Wednesday. Results 
from 15 February 2021 to 8 June 2022 were used in this study. During 
this period, quantitative SARS-CoV-2 RNA concentrations were obtained 

Fig. 1. Map of Belgium with the location 
and coverage of 44 WWTPs used in the 
national wastewater surveillance program 
(Janssens et al., 2022) and municipality 
population density. Catchment areas are 
indicated by yellow surface colour. Four 
WWTPs were excluded from this analysis 
due to no available data (WWTP of Boom 
(nr. 9)) or shorter data coverage (WWTP 
of Liège Grosses Battes (nr. 25), Sou-
magne (nr. 39), and Wegnez (nr. 44)) due 
to flooding events in July 2021. The nu-
merical population size coverage of each 
WWTP is shown in Table S1.   
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using a consistent protocol. Nucleocapsid 1 (N1), nucleocapsid 2 (N2) 
and envelope (E) RNA copies of SARS-CoV-2 were used as markers of 
viral presence in wastewater. Wastewater analyses were performed by 
Sciensano (Belgian public health institution), by the University of Ant-
werp and by E-BIOM (spin-off from the University of Namur) (Table S1), 
using the methods from Boogaerts et al. (2021) and Coupeau et al. 
(2020). A detailed overview of the sample collection, concentration, 
extraction, and PCR-based quantification is presented in the Supple-
mentary File. 

In each of the WWTPs, the covered population size was defined as the 
census-based domestic inhabitant equivalent, normalised by the 
geographical catchment area (Table S1) and the flow rate was measured 
by flowmeter as the daily incoming flow rate divided by 24 h (m3/h). 
Pepper mild mottle virus (PMMoV) RNA copy concentration, as indi-
cator of human faeces in wastewater, was measured during the same 
period and used as a proxy for the number of people present in a 
catchment area. PMMoV is an extremely stable plant virus that infects 
plants from the Capsicum genus (pepper-containing food products) and 
shows widespread abundance in human stool and wastewater, without 
strong seasonal fluctuation (Rosario et al., 2009; Zhang et al., 2006). 

2.1.2. Epidemiological data 
The number of incident COVID-19 cases for a given WWTP was 

defined as the total daily number of positive COVID-19 PCR tests at the 
corresponding municipality normalised by the fraction of the covered 
municipality inhabitant equivalent by the WWTP catchment area. 

The spread of SARS-CoV-2 has been characterised by several vari-
ants. As these variants could have an impact on the link between the 
epidemiological situation and the evolution of the viral concentrations 
in wastewater, they need to be accounted for. Data on variants circu-
lating in the Belgian population were provided by the COVID-19 Ge-
nomics Belgium Consortium (Cuypers et al., 2022). During the period 
considered in this study, a variant was defined as dominant when its 
proportion was equal to or higher than 50 %. Hence, the period under 
study has been divided into three subcategories depending on which 
variant was dominant: from 15 February 2021 to 14 June 2021, Alpha 
was dominant; from 21 June 2021 to 12 December 2021, Delta was 
dominant and from 27 December 2021 to 8 June 2022, Omicron was 
dominant. 

2.1.3. Data sources, missing data and data transformation 
All data sources are reported in the Supplementary File. For both the 

SARS-CoV-2 and the PMMoV RNA concentrations, concentration repli-
cates below the limit of quantification (LOQ) of 20 copies/mL were 
coded as half of the LOQ (10 copies/mL) and negative replicates were 
coded as 1 copy/mL to allow for logarithmic transformation (Ma, 2020). 
To explore the link between the epidemiological situation and the viral 
concentrations in wastewater, additional wastewater metrics have been 
defined: (i) the PMMoV mass load (copies/day) is defined as the PMMoV 
concentration (copies/mL) x flow rate (mL/day); (ii) the viral mass load 
(copies/day) is defined as the SARS-CoV-2 RNA concentration (copies/ 
mL) x flow rate (mL/day) and the viral to PMMoV ratio (− ) is defined as 
the SARS-CoV-2 RNA concentration (copies/mL)/PMMoV concentration 
(copies/mL). Finally, both the viral concentration and the viral mass 
load were logged as +1. Missing wastewater data (1.3 %) was replaced 
by an estimate obtained through time-dependent linear interpolation. 
Missing data and negative results for each treatment plant were listed in 
Table S2. 

2.2. Statistical analysis 

2.2.1. Modelling wastewater SARS-CoV-2 RNA levels 
Non-seasonal autoregressive integrated moving average (ARIMA) 

models and dynamic regression were applied to model SARS-CoV-2 RNA 
concentrations (Hyndman and Athanasopoulos, 2021). Briefly, ARIMA 
models are a type of time series models which describe autocorrelation. 

Dynamic regression models are (multiple) regression models extended 
with ARIMA. Dynamic regression models used in this study have a 
similar coefficient interpretation as standard regression but allow inte-
grating the autocorrelation structure of the data. A comprehensive dis-
cussion of these model types is presented in the Supplementary File. 

The logarithm (log10) of wastewater SARS-CoV-2 RNA concentra-
tion, defined as the average concentration of N1-, N2-, and E-gene RNA 
copies, was modelled. For every WWTP, an ARIMA model and 8 dy-
namic regression models were fitted. Dynamic regression models were 
adjusted for log10(COVID-19 cases) and with combinations of the 
following predictors (Table S3): (i) daily flow rate (m3/h), (ii) PMMoV 
concentration (copies/L) or PMMoV mass load (copies/day), and (iii) 
dichotomous predictors of SARS-CoV-2 variants (alpha, delta, and om-
icron strains), based on 50 % or higher prevalence of sequenced clinical 
samples. 

2.2.2. Modelling incident COVID-19 cases 
Incident log10(cases) were modelled by an ARIMA model and dy-

namic regression models, which included one of the following waste-
water metric combinations: viral concentrations (copies/mL), viral mass 
load (copies/day), viral to PMMoV ratio (− ), or viral mass load and viral 
to PMMoV ratio. Each of the four combinations was tested with the 
wastewater metrics lagged up to 2 weeks (i.e., up to 4 distinct sampling 
dates). This resulted in 16 dynamic regression models. All the dynamic 
regression models used the dichotomous predictors of the variants as a 
covariate. An exhaustive list of the considered models is presented in 
Table S4. 

2.2.3. Model selection and meta-analysis 
The optimal ARIMA specification of the models was set in a data- 

driven way by non-stepwise corrected Akaike Information Criterion 
(AICc) minimization, and with a first order of differencing (d = 1) to 
account for non-stationarity (Hyndman and Athanasopoulos, 2021; 
Kwiatkowski et al., 1992). Once the optimal ARIMA specification was 
obtained for each of the proposed model structures, the best model for a 
given WWTP was selected based on AICc scores, as a measure of pre-
dictive accuracy. The most selected RNA model was fitted on all WWTPs, 
and effect sizes were meta-analysed by a random-effects model using 
inverse-variance weighting. The root-mean-square error (RMSE), a 
goodness-of-fit indicator, of the selected model was compared to a 
standard multiple regression model based on backward stepwise selec-
tion. All analyses were performed in R 4.0.5 (Vienna, Austria) using the 
forecast package for the ARIMA models and all data visualization was 
done with the ggplot2 package (Hyndman et al., 2022; Hyndman and 
Khandakar, 2008; R Core Team, 2022; Wickham, 2016). 

3. Results 

3.1. Determinants of SARS-CoV-2 RNA levels in wastewater 

In 33/40 WWTPs a dynamic regression model of log10(cases), 
wastewater flow rate and PMMoV concentration was selected as the 
most accurate model to explain wastewater SARS-CoV-2 RNA levels 
(Table S5). This model was applied on all WWTPs and effect sizes were 
meta-analysed. One standard deviation (SD) increase in flow rate was 
associated with 13.0 % (95 % prediction interval (95%PI): − 26.2 to 
+0.2 %) decrease in RNA levels, independent of cases and PMMoV 
(Fig. 2). Reversely, one SD increase in PMMoV levels was associated 
with 13.0 % (95%PI: +5.1 to +21.0 %) increase in RNA levels, inde-
pendent of cases and flow rate (Fig. 2). The removal of flow rate, 
PMMoV, or both variables from this model significantly reduces the 
predictive accuracy (median ΔAICc: +10.9, +12.8, and +27.5, respec-
tively, Table S6). Independent of flow rate and PMMoV, a 10.0 % in-
crease in incident cases was associated with 4.5 % (95%PI: +1.0 to 8.0 
%) increase in RNA levels. Overall, the best models explained on average 
64.7 % (R2, SD = 10.4 %) of the variation in RNA levels. Detailed meta- 
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analyses for flow rate and PMMoV are presented in the Supplementary 
File (Figs. S1–2). 

In 35/40 WWTPs, increasing flow rate was associated with a statis-
tically significant drop in wastewater RNA levels, independent of cases 
and PMMoV. Exceptions were the WWTPs of Houthalen Centrum, 
Marchienne-au-Pont, Vallée du Hain (l’Orchis), Montignies-sur-Sambre 
and Wasmuel (Fig. S1). In the latter WWTP, a nominal positive trend was 
observed (+4.7 % (95%CI: − 2.2 to +11.5 %)). The optimal model for 
this WWTP did not include additive flow rate adjustment, although 
implicitly included through correction for PMMoV mass load (copies/ 
day). The WWTP of Wasmuel was the 8th largest catchment area in 
terms of covered population size in this study and showed the lowest 
normalised standard deviation (NSD) of flow rate (0.21) and the second 
smallest NSD of PMMoV (0.55). 

In 36/40 WWTPs, increasing PMMoV was associated with a statis-
tically significant increase in RNA levels, adjusted for cases and flow. 
Exceptions were the WWTPs of Tessenderlo, Turnhout, Hasselt, and 
Mouscron-versant-Espierres (Fig. S2). In the former three WWTPs, no 
SARS-CoV-2 RNA was detected (i.e., RNA concentration below the limit 
of detection) for a substantial number of dates (Table S2). In the latter 
WWTP (Mouscron-versant-Espierres), wastewater was collected from 
both the Belgian (~21,200 IE) and France (~120,000 IE) population. 
Collection of French wastewater represented a substantial flow which 
was not covered in the clinical testing surveillance. Three out of five of 
the most impacted treatment plants included large student campuses 
(UC Louvain (Basse-Wavre), University of Liège (Liège Oupeye), and KU 
Leuven (Leuven)). 

Lastly, an intercept for dominant variants improved the model ac-
curacy only in 2/40 WWTPs (Destelbergen and Marchienne-au-Pont). In 
those two WWTPs, RNA levels of SARS-CoV-2 were 71 % lower during 
the delta wave (B.1.617.2 strain) and 69 % lower during the omicron 
waves (BA.1, BA.2, BA.2.75, BA.2 + L452X, and BA.4 strains) compared 
to the period when the alpha variant (B.1.1.7) was dominant for a given 
number of cases, and adjusted for flow rate and PMMoV levels. 

In 38/40 WWTPs, the selected dynamic regression model showed a 
lower RMSE value than the optimal standard multiple regression model. 
Overall, the average RMSE difference of dynamic regression models was 
3.9 times lower than those of standard multiple regression models 
(Table S9). 

3.2. Wastewater-based surveillance data to model incident COVID-19 
cases 

3.2.1. Optimal wastewater metric to link incident COVID-19 cases 
In 28/40 WWTPs, the optimal model for incident COVID-19 cases 

included wastewater-based surveillance data. In the remaining 12/40 
WWTPs, a standard ARIMA model, which does not include wastewater 
information, outperformed dynamic regression models in terms of 

predictive accuracy (Table 1a). 
Of the 28 models that included a WBE metric, a flow-adjusted viral 

mass load was included in 15/28 WWTPs (Table 1a), while a viral-to- 
PMMoV gene ratio was included in 8/28 WWTPs. Overall, the flow- 
adjusted mass load was selected in larger WWTPs (87,633 (IQR =
102,225) vs 78,290 (IQR = 68,030) IE) while viral-to-PMMoV gene ratio 
was selected in smaller WWTPs (67,077 (IQR = 63,443) vs 82,082 (IQR 
= 92,296) IE) in terms of population coverage. 

An unadjusted and unlagged viral concentration was selected in 2 of 
the 28 WWTPs (WWTPs of Aartselaar and Tessenderlo). These WWTPs 
were modestly sized WWTPs (68,031 and 55,546 vs 82,156 (IQR =
85,479) IE) and showed large variability in log(RNA) levels (0.46 and 
0.82 vs 0.29 (IQR = 0.12) NSD) and in PMMoV mass load (1.31 and 1.10 
vs 0.76 (IQR = 0.29) NSD). 

3.2.2. Early-warning potential of wastewater metric 
Among the 28 catchment areas, a leading wastewater indicator of at 

least one week showed the best predictive accuracy in 15/28 WWTPs, 
with the one-week leading indicator being selected in most (10/28) 
treatment plants (Table 1b, Table S7). The median covered population 
size in leading WWTPs was 85.1 % larger than in those where a 
non‑leading wastewater indicator was selected (102,800 (IQR 66,735) 

Flow rate

PMMoV    

Pooled effect [95%CI]

Pooled effect [95%CI]

[95% prediction interval]

[95% prediction interval]

Heterogeneity: I2 = 73.4%, �39
2  = 146.8 (p < 0.001)

Heterogeneity: I2 = 55.6%, �39
2  = 87.8 (p < 0.001)

−13.0

13.0

[−15.3; −10.7]

[ 11.4;  14.6]

[−26.1;   0.2]

[  5.1;  21.0]

−30 −20 −10 0 10 20 30

IV, random

% change in RNA level

Fig. 2. Meta-analysis of the independent effect of flow rate and pepper mild mottle virus (PMMoV) on SARS-CoV-2 RNA levels in wastewater, adjusted for incident 
cases. Effect sizes are expressed as percentage change in RNA level per one standard deviation increase in flow rate and PMMoV, respectively. 

Table 1 
Optimal models to link wastewater data with incident COVID-19 cases.  

A) Optimal wastewater metric (n = 40) 

WWTPs (n) Metric 

12/40 No wastewater metric* 
7/40 Unadjusted viral concentration 
13/40 Viral mass load 
6/40 Viral-to-PMMoV ratio 
2/40 Viral mass load + viral-to-PMMoV ratio   

B) Optimal lag time of wastewater metric (n = 28) 

WWTPs (n) Lag time 

5/28 Unlagged wastewater metric 
8/28 1-sample leading wastewater metric 
10/28 2-sample leading wastewater metric (1 week) 
3/28 3-sample leading wastewater metric 
2/28 4-sample leading wastewater metric (2 weeks) 

Viral concentration = SARS-CoV-2 RNA copies/mL; viral mass load = flow- 
adjusted SARS-CoV-2 RNA copies per day; viral-to-PMMoV ratio = SARS-CoV-2 
gene copies per PMMoV gene copy. *Dynamic regression models with ARIMA- 
modelled errors were applied, except when no wastewater metric was 
included (standard ARIMA). Dynamic regression models adjusted for dominance 
of alpha, delta, or omicron variants (dichotomously coded (0/1) depending on 
dominant prevalence (≥50 % of samples)). 
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vs 55,546 (IQR = 33,891) IE). The coefficients of all 28 models are 
presented in Table S8. A sensitivity analysis using correlation co-
efficients (Table S7) showed similar results in 12/28 WWTPs, a more 
pronounced lead time in 8/28 WWTPs, and a less pronounced lead time 
in 8/28 WWTPs. Fig. 3 illustrates the optimal model (1-week leading 
viral mass load) at the largest WWTP (Brussels-North, 1,045,900 IE) to 
explain incident cases of COVID-19. 

4. Discussion 

This nationwide study modelled the relationship between 
wastewater-based SARS-CoV-2 RNA levels and incident COVID-19 cases, 
covering approximately 5 million Belgian inhabitants for more than one 
year. This is the first study to show the relative effect size of wastewater 
flow rate and PMMoV concentrations on SARS-CoV-2 RNA levels in 
wastewater, while accounting for autocorrelation. Secondly, SARS-CoV- 
2 variants did not explain variability of RNA levels for a given number of 
cases in the large majority of WWTPs (38/40). Furthermore, different 
WBE metrics were tested at different lag times for subsequent use in 
monitoring COVID-19 epidemiology. This study confirms that WBE data 
can lead incident cases by at least one week but only in a minority of 
WWTPs (15/40). In 17/40 WWTPs, different wastewater metrics did not 
lead or explain incident cases in addition to autocorrelation. Future 
studies should therefore validate the early-warning potential of WWTPs 
and investigate whether WBE adds beyond autocorrelation to support 
the additional efforts/costs of determining RNA levels at these areas/ 
WWTPs for predicting incident cases. 

This analysis showed that increasing daily flow rate reduces RNA 
levels by on average − 13.0 % per SD increase, independent of incident 
cases and PMMoV (e.g., dilution by rainfall and other sources including 
industrial water and drain water). Flow-adjusted viral mass loads 
approach viral dynamics more accurately, which was demonstrated 
through its empirical support in our incident case models. Viral mass 

loads were mainly selected in WWTPs serving larger populations. 
Secondly, our results validate that PMMoV is a key contributor to 

RNA variability, independent of cases and flow. Higher PMMoV levels 
were associated with increasing viral RNA levels and may serve as a 
proxy for the number of persons contributing to a wastewater sample. 
This is reinforced by the observation that the PMMoV was not selected in 
the station of Mouscron-versant-Espierres, where the cases are not truly 
linked with the represented population. Also, PMMoV may be used as a 
normalization standard for additional variability which is not explicitly 
defined in the models. Unmeasured phenomena such as RNA adsorption, 
aqueous-solid phase distribution and degradation may be implicitly 
modelled, partly, by normalizing for PMMoV. RNA of SARS-CoV-2 will 
likely be affected in similar ways as PMMoV RNA due to their common 
physicochemical properties of RNA including molecule size and stabil-
ity, overall negative charge, and as substrates of RNases. The ratio of 
viral-to-PMMoV gene copies improved case models in about one in five 
WWTPs. A lower number of inhabitants was covered in these WWTPs, 
presumably increasing the relevance of relative changes in population 
size. In contrast, PMMoV levels did not associate with viral RNA levels in 
five smaller WWTPs in which the dynamic of the viral evolution was not 
connected with the true underlying population due to for example zero- 
inflation of the viral concentrations. To allow more model flexibility, 
one may need a normalization marker for in-sewage factors and a 
different marker to account for the underlying population size and dy-
namics of a catchment area (e.g., mobility data from telecom providers). 

In 38/40 WWTPs, additively correcting for the dominant SARS-CoV- 
2 strain did not improve model predictive accuracy for RNA levels. 
Hence, faecal shedding kinetics of SARS-CoV-2 variants were likely 
stable over time. This suggests that increasing infectiousness of variants 
may be caused by increased infectiousness of viral particles and/or se-
lective respiratory shedding but was not associated with increased faecal 
shedding. In the two WWTPs with an informative variant term, less RNA 
was detected for a given number cases in the delta and omicron waves 

COVID−19 cases in Brussels−North

Fig. 3. Logarithm of incident COVID-19 cases (blue) at the largest WWTP (Brussels-North, covering approximately one million inhabitants) and predicted incident 
cases based on a model including the one-week leading viral mass load (RNA copies/day) (red). Model diagnostics are presented in Fig. S3. 
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compared to the alpha wave. Importantly, shedding kinetics may be 
affected by increasing immunity among the population over time 
(Puhach et al., 2022). 

Finally, this study demonstrates that, although different WWTPs 
share common dynamical characteristics, every WWTP has its particular 
dynamic in time as demonstrated by the amplitude of the measured 
effect sizes within the same model structure, this for both the flow rate 
and the PMMoV concentrations. The diversity of dynamics unravelled in 
this study thus shows that care must be taken when comparing RNA 
levels measured at different WWTP and that aggregation of quantitative 
data in a fixed effect model should be avoided. Aggregation and com-
parison are still possible but should be paired with a normalization 
process and/or using indicators (3). Also, additional factors which were 
not accounted for in this study, including the organic load and the 
number of solid particles in sewage, wastewater pH, and water chlori-
nation will contribute to the remaining unexplained variability (~35 %) 
(Bertels et al., 2022; Li et al., 2021). 

The main strengths of this study were the nationwide population 
scale, the large number and heterogeneity of WWTPs, the long duration 
(>1 year), and the high resolution of the data (twice-weekly sampling). 
Secondly, this study was performed during a period with the highest 
frequency of diagnostic COVID-19 tests in Belgium (Sciensano, 2023). 
Lastly, through ARIMA-based modelling, we accounted for autocorre-
lation enabling in-depth inferences of effect sizes. The added value of 
dynamic regression models was corroborated by its superior accuracy 
compared to standard multiple regression models in this context. 

4.1. Limitations 

A main limitation is the potential of model misspecification due to 
additional factors influencing RNA levels in wastewater and the true 
number of incident cases. Some of these factors are challenging to 
quantify (RNA degradation and testing strategy bias during the study 
period). Another main limitation is the uncertainty of the underlying 
population size. Capturing population dynamics may require other more 
accurate ways, for example through mobile data records or other big 
data sources (Deville et al., 2014). However, PMMoV showed to be of 
added value to tackle both the issue of standardization and population 
dynamics. Thirdly, vaccination coverage was not included in this anal-
ysis, which may have a profound effect on viral shedding (Puhach et al., 
2022). As the effect of vaccination is time-dependent, we assume that it 
is implicitly accounted for through ARIMA-modelling of the residuals. 
However, its effects cannot be quantitatively deduced from this study. 
Fourthly, variant strains were based on clinical samples and not on 
wastewater detection of variants. Finally, we used unevenly spaced time 
series which complicates the interpretation of lag times. 

Future work should adjust for population dynamics, consider inter- 
WWTP variability, and may overcome some of the limitations of this 
research by using additional quantitative data sources such as vaccina-
tion coverage and mobility data, and by considering other epidemio-
logical outcomes such as hospitalizations. Additionally, future studies 
should investigate spatiotemporal variation in the lead time, including 
the effect of seasonality, variant strains, and changes in shedding 
kinetics. 

5. Conclusions 

This study provides quantitative insights into the effect of key de-
terminants to reduce unexplained variability of wastewater-based 
epidemiology (WBE). Adjusting for daily flow rate and PMMoV (popu-
lation dynamics), but not variants, substantially improves COVID-19 
modelling by WBE. Secondly, our findings show that WBE can lead in-
dividual clinical testing by one week, yet important heterogeneity be-
tween catchment areas was observed. This shows that the early-warning 
potential of WBE needs to be validated on a WWTP-specific level. 
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