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Oxford Nanopore Technologies R10 sequencing enables 
accurate cgMLST-based bacterial outbreak investigation of 
Neisseria meningitidis and Salmonella enterica when accounting 
for methylation-related errors
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ABSTRACT Core-genome multi-locus sequence typing (cgMLST) is a well-established 
and standardized method for genomics-based cluster detection and phylogenomic 
analysis of bacteria. The reduced error rate of Oxford Nanopore Technologies (ONT) R10 
sequencing has prompted many laboratories to explore incorporating this technology 
into their activities. However, conflicting reports exist on the performance of ONT R10 
sequencing for cgMLST analysis. This study evaluates the suitability of ONT R10 data for 
cgMLST allele calling and cluster detection for bacterial outbreak investigation. ONT and 
Illumina sequencing data were generated for 24 Neisseria meningitidis and 24 Salmo­
nella enterica isolates. For ONT, both the rapid barcoding kit (RBK) and the rapid PCR 
barcoding kit (RPB) were used. The percentage of loci called in the ONT-only assemblies 
was very high for both species. However, the proportion of mismatched alleles to 
the hybrid assemblies was substantially higher for the Neisseria ONT-only assemblies 
with the RBK kit, resulting in incorrect cluster assignments. The large majority of these 
mismatched alleles were due to incorrect base calls at methylated positions, which did 
not affect the ONT data generated using the RPB kit or any of the Salmonella ONT-only 
assemblies. In conclusion, ONT R10 sequencing shows great potential as a viable method 
for cgMLST analysis, but methylation-related errors can affect performance for certain 
species and strains. When properly corrected for, ONT R10 had the same performance 
for cgMLST analysis as Illumina, and both could be used interchangeably. These results 
support the integration of ONT R10 sequencing into routine public health and clinical 
workflows.

IMPORTANCE This study evaluates the suitability of Oxford Nanopore Technologies 
R10 sequencing for core-genome multi-locus sequence typing (cgMLST), a widely 
used method in (clinical) outbreak investigation and bacterial strain tracking. We 
have sequenced 24 Neisseria meningitidis and 24 Salmonella enterica strains, including 
confirmed outbreak cases, using Illumina and ONT R10 sequencing to evaluate the 
performance for cgMLST analysis. We used a PCR-based and native barcoding protocol 
for the ONT sequencing, which enabled us to demonstrate a substantial species-depend­
ent impact of methylation-related errors on the performance. However, we demonstrate 
that when these errors are properly addressed, ONT R10 can be used for accurate 
cgMLST-based clustering, including integration with strains sequenced using Illumina. 
Our findings support the use of ONT R10 as an alternative to Illumina sequencing for 
cgMLST analysis in routine public health practice.
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G enomic surveillance and outbreak investigation of microbial pathogens is an 
essential task for many public health and clinical laboratories. Historically, multi-

locus sequence typing (MLST) has been widely used as a typing method for bacteria. 
In MLST, a small set of housekeeping genes is sequenced with Sanger sequencing to 
type bacterial isolates based on their allelic profiles, by comparing against a harmon­
ized reference database where each different sequence receives a different identifier, 
providing a standardized way to study genetic diversity and epidemiology (1). Allele 
sequences and MLST profiles are maintained in public repositories such as PubMLST, 
which hosts databases for over 130 species and genera (2). Historically, the lower 
throughput of Sanger sequencing has limited MLST to a few loci. The onset of whole-
genome sequencing (WGS) has rendered it possible to scale MLST to hundreds or 
thousands of loci across the genome, greatly increasing the resolution. Consequently, 
core-genome MLST (cgMLST) and whole-genome MLST (wgMLST) schemes were 
developed for many species (3, 4). In cgMLST, the scheme is restricted to core loci shared 
by the majority of strains within a species or genus (typically found in ≥95% of strains). 
By contrast, wgMLST includes all annotated loci in the genome, including both core and 
accessory genes (i.e., genes that are not universally present in all members of a species). 
cgMLST or wgMLST allele calls can be used to build phylogenetic trees by generating 
matrices of allelic differences, which can then be analyzed using algorithms such as 
Minimum Spanning Tree (MST) construction to infer phylogenomic relationships (5). 
Due to its high resolution and ease of standardization, cgMLST has become a standard 
method for bacterial outbreak investigation with several case studies demonstrating its 
added value (6–8).

Recently, long-read Oxford Nanopore Technologies (ONT) sequencing has gained 
prominence as an alternative to short-read Illumina sequencing for WGS-based 
characterization of microbes (9, 10). ONT sequencing measures the electric current 
flowing through nanopores as DNA or RNA molecules pass through them. These 
raw electrical signals can then be translated into sequences using machine-learning-
based methods. This process, known as basecalling, relies on specially trained models, 
which are made available by ONT and regularly updated. ONT sequencing has several 
characteristics that could render it particularly suitable for analyses such as outbreak 
investigation. Turnaround time can be minimized by live basecalling, speeding up data 
availability. In addition, the longer reads can resolve complex repeat regions, resulting in 
(nearly) complete assemblies, providing valuable insight into genomic organization (11). 
Less fragmented assemblies could also potentially result in more typed loci, as there is 
less chance of assembly fragmentation within loci (12). However, the relatively high error 
rate compared to short-read sequencing has made it challenging to apply it to cgMLST, 
as a single error in a cgMLST locus will result in a different allele call (13). In addition, ONT 
sequencing can require substantial data storage and computing resources, especially 
when using the most accurate basecalling models.

The error rate of ONT sequencing has been reduced substantially with the release of 
the R10 chemistry in 2022, also referred to as “Q20 sequencing” (14). Recent studies have 
shown that ONT R10 sequencing enables the reconstruction of near-perfect genome 
assemblies for various bacterial species, without the need for additional short-read 
sequencing (13–15). In theory, this makes ONT R10 sequencing well-suited for cgMLST 
analysis. However, several recent studies have reported errors related to methylation, 
which affects the electrical signal and basecalling accuracy, potentially leading to 
inaccuracies in the resulting consensus sequence (16–20) and, consequently, impacting 
cgMLST allele calling. One potential solution is to use the rapid PCR barcoding (RPB) kit 
to remove epigenetic modifications prior to sequencing, thereby preventing methyla­
tion-related errors (16). However, this approach is more labor-intensive compared to 
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the rapid barcoding kit (RBK) and inherently limits the resulting read lengths to the 
size of the amplification range. Alternative strategies have been proposed to mask the 
methylated positions, but these approaches are unsuitable for allele calling because 
calling cgMLST loci requires complete allele sequences (16, 19). In May 2024, ONT 
released updated basecalling models (v5), specifically designed to improve the accuracy 
of base calls at methylated positions in bacteria. In addition, the “bacteria” preset 
has recently been added to the medaka long-read polishing software (available at 
https://github.com/nanoporetech/medaka), which also aims to correct errors caused by 
methylation in bacterial genomes. However, the impact of methylation is still unclear, 
as some studies comparing Illumina and ONT sequencing have found no discernible
differences (13, 21), while others have reported problems with methylated positions 
affecting basecalling accuracy and subsequent (cg)MLST allele calling in various species 
(16, 17, 19, 22). In addition, ONT has been reported to suffer from lower accuracy in 
homopolymer regions compared to Illumina, resulting in indels which could further 
affect downstream analysis (23). The effects of these errors on the subsequent outbreak 
investigation based on observed clusters in the phylogenomic analysis remain poorly 
understood.

In this study, we evaluated the feasibility of using ONT R10 sequencing as an 
alternative to Illumina sequencing for cgMLST-based phylogenomic investigation and 
cluster detection for Neisseria meningitidis and Salmonella enterica, two species that 
have been extensively studied using cgMLST (4, 24). Hybrid assemblies were used as 
reference data to assess the performance of allele calling and clustering using ONT data 
base-called with the latest super high accuracy (SUP) model (v5). The potential effect 
of methylation on the accuracy of cgMLST was assessed by (i) sequencing strains using 
both the RBK and RPB kits and (ii) performing methylation calling at the discrepant sites 
within the cgMLST loci. In addition, the effect of long-read polishing was evaluated. This 
study demonstrates that when methylation effects are properly accounted for, ONT R10 
can be used interchangeably with Illumina sequencing for accurate cgMLST calling and 
cluster detection.

MATERIALS AND METHODS

Data set

Selection of bacterial isolates and DNA extraction

The performance evaluation was performed on 24 Neisseria meningitidis and 24 
Salmonella enterica isolates, of which an overview is provided in Table 1. The majority 
of Neisseria samples (n = 18) were collected between 2016 and 2023 by the Belgian 
National Reference Center (NRC) for Neisseria meningitidis (Sciensano, Brussels) in the 
context of their routine surveillance activities. This collection was supplemented with six 
isolates from the global collection maintained by the University of Oxford (24), originally 
sequenced for the validation of a bioinformatics workflow for the characterization of 
Neisseria meningitidis (25). These 24 isolates covered 12 different sequence types (STs), 
including ST11 (n = 5) and ST269 (n = 5), which are among the most common STs in 
Belgium (26). Two of the ST269 isolates were collected from a confirmed outbreak cluster. 
The data set also contained three additional ST269 isolates from lineages circulating 
in the same region around the time of the outbreak, but not part of the outbreak. In 
addition, clinical duplicates from two patients were included.

For Salmonella, the isolates were collected by the Belgian NRC for Salmonella and 
Shigella spp. between 2022 and 2024, complemented by several isolates from external 
quality assessments (EQAs). This data set included five STs, the most common being 
monophasic Salmonella ser. Typhimurium ST34 (n = 9) and Salmonella ser. Enteritidis 
ST11 (n = 8). The data set contained isolates from various outbreaks: (i) a cluster 
of three related ST11 isolates from an EQA; (ii) two sub-clusters of an international 
foodborne outbreak, as well as outliers for both sub-groups; (iii) an isolate from 
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TABLE 1 Overview of the isolates in the studya

Genus Isolate Serogroup/serovar ST cgMLST cluster Additional information

Neisseria S18BD02235 MenB ST269 2 Local outbreak—part of cluster
Neisseria S19BD00002 MenB ST269 2 Local outbreak—part of cluster
Neisseria S18BD01608 MenB ST269 Local outbreak—unrelated regional circulating lineage
Neisseria S18BD08604b MenB ST269 Local outbreak—unrelated regional circulating lineage
Neisseria S16BD06814 MenB ST269 Local outbreak—unrelated regional circulating lineage
Neisseria Z1269 MenA ST4 Global Reference Collection
Neisseria Z1534 MenA ST21 Global Reference Collection
Neisseria Z4678 MenB ST19 Global Reference Collection
Neisseria Z5037 MenC ST2 Global Reference Collection
Neisseria Z6431 MenB ST28 Global Reference Collection
Neisseria Z6422 MenW ST45 Global Reference Collection
Neisseria S18BD08034 MenA ST7 EQAc reference strain
Neisseria S19BD00230 MenB ST457 4 Clinical duplicate—Patient A
Neisseria S19BD00371 MenB ST457 4 Clinical duplicate—Patient A
Neisseria S18BD00375 MenY ST11846 1 Clinical duplicate—Patient B
Neisseria S18BD00609 MenY ST11846 1 Clinical duplicate—Patient B
Neisseria S23BD02713 MenW ST9316 Routine surveillance—MenW Walloon lineage
Neisseria S23BD06477 MenW ST9316 Routine surveillance—MenW Walloon lineage
Neisseria S22BD09725 MenW ST9316 Routine surveillance—MenW Walloon lineage
Neisseria S20BD05309 MenW ST11 Routine surveillance—MenW UK lineage
Neisseria S18BD02673 MenW ST11 Routine surveillance—MenW UK lineage
Neisseria S23BD04233 MenW ST11 Routine surveillance—MenW UK lineage
Neisseria S19BD08966 MenW ST11 3 Routine surveillance—MenW Hajj lineage
Neisseria S18BD07975 MenW ST11 3 Routine surveillance—MenW Hajj lineage
Salmonella S23BD05331 Dublin ST10 5 EQA reference strain—Part of cluster A
Salmonella S23BD05333 Dublin ST10 5 EQA reference strain—Part of cluster A
Salmonella S23BD05337 Dublin ST10 5 EQA reference strain—Part of cluster A
Salmonella S23BD05340 Dublin ST10 5 EQA reference strain—Part of cluster A
Salmonella S23BD05338 Dublin ST10 EQA reference strain
Salmonella S23BD08066 Monophasic Typhimurium ST34 6 Clinical duplicate—Patient A
Salmonella S23BD09059 Monophasic Typhimurium ST34 6 Clinical duplicate—Patient A
Salmonella S22BD04539 Monophasic Typhimurium ST34 EQA reference strain
Salmonella S22BD04543 Senftenberg ST14 EQA reference strain
Salmonella S22BD05218 Enteritidis ST11 3 EQA reference strain—Part of cluster B
Salmonella S22BD05221 Enteritidis ST11 3 EQA reference strain—Part of cluster B
Salmonella S22BD05226 Enteritidis ST11 3 EQA reference strain—Part of cluster B
Salmonella S22BD05220 Enteritidis ST11 EQA reference strain
Salmonella S22BD01093 Monophasic Typhimurium ST34 1 International outbreak cluster C—sub-cluster 1
Salmonella S22BD01190 Monophasic Typhimurium ST34 1 International outbreak cluster C—sub-cluster 1
Salmonella S23BD06998b Monophasic Typhimurium ST34 International outbreak C—Outlier
Salmonella S22BD01330 Monophasic Typhimurium ST34 2 International outbreak cluster C—sub-cluster 2
Salmonella S22BD01427 Monophasic Typhimurium ST34 2 International outbreak cluster C—sub-cluster 2
Salmonella S24BD02659 Monophasic Typhimurium ST34 International outbreak C—Outlier
Salmonella S23BD05085 Enteritidis ST11 4 International outbreak D—Cluster
Salmonella S22BD04657 Enteritidis ST11 International outbreak D—Outlier
Salmonella S24BD01743 Enteritidis ST11 4 International outbreak D—Cluster
Salmonella S24BD01974 Enteritidis ST11 International outbreak D—Outlier

(Continued on next page)
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another international foodborne outbreak, as well as three outliers; and (iv) two clinical 
duplicates collected from routine surveillance.

For both bacterial species, isolates were cultured overnight in brain heart infusion 
broth at 37°C, and 1 mL was used for semi-automated DNA extraction using the MagCore 
Genomic DNA Bacterial kit (#502, Atrida, Amersfoort, The Netherlands) with a 100 µL 
elution volume, according to the manufacturer’s instructions.

Whole-genome sequencing

The ONT long-read libraries were prepared using the RBK v14 kit (SQK-RBK114-96) 
for sequencing native DNA and the ONT RPB v14 kit (SQK-RPB114-24) for sequencing 
amplified DNA, that is, DNA without epigenetic markers, according to the manufacturer’s 
instructions. Libraries were loaded onto R10.4.1 flow cells (FLO-MIN114) and sequenced 
for 72 h on a GridION instrument. A single flow cell was used per barcoding kit and 
species, totaling four flow cells for the ONT data. The Illumina sequencing is documented 
in the Supplementary Material.

Data preprocessing, filtering, and de novo assembly

Basecalling for the ONT data was performed with Dorado v0.7.0 using the super accurate 
(SUP) model v5.0.0 (dna_r10.4.1_e8.2_400bps_sup@v5.0.0) and the “--no-trim” option 
enabled. The base called reads were then de-multiplexed using the “dorado demux” 
command specifying the barcoding kit with the “--kit-name” parameter. Reads were 
extracted from the BAM files using the “fastq” command of samtools v1.17 (27) and 
filtered using Seqkit v2.8.2 to remove reads shorter than 1 kb or with a median quality 
of less than 10 (28). The filtered reads were assembled de novo using Flye v2.9.4 (29) 
providing the input with the “--nano-corr” option and the “--genome-size” parameter 
set to 2,200,000 and 5,000,000 for the Neisseria and Salmonella data sets, respectively. 
The high-coverage Neisseria S16BD06814 RBK and S18BD02673 RBK data sets failed to 
assemble with these options and were restarted with the “--asm-coverage” parameter 
set to 50. QUAST v5.2.0 (30) was used to assess the quality of the assemblies, with both 
the assemblies and the reads provided as input, the latter using the “--nanopore” option. 
Additional assemblies were generated by long-read polishing of the Flye assemblies 
with the filtered reads using medaka v1.12.0 (available at https://github.com/nanopor­
etech/medaka). The “medaka_consensus” script was used with the model parameter 
set to “r1041_e82_400bps_sup_v5.0.0” and other options left at their default values. In 
this manuscript, the term “polished ONT assemblies” refers to ONT-only assemblies that 
were polished using long reads with Medaka. While the term “polished assemblies” is 
sometimes also used in the literature to refer to hybrid assemblies polished with short 
and/or long reads, we will consistently use “hybrid assemblies” throughout. Information 
on the pre-processing of the Illumina data and hybrid assembly methods can be found in 
the Supplementary Material.

TABLE 1 Overview of the isolates in the studya (Continued)

Genus Isolate Serogroup/serovar ST cgMLST cluster Additional information

Salmonella S22BD04540 Heidelberg ST15 EQA reference strain
aOverview of the strains used in this study. The first and second columns contain the genus and isolate name, respectively. The third column contains the serogroup for 
the Neisseria strains and the serovar for the Salmonella strains. The fourth column contains the sequence type. The fifth column contains the cluster assignment based on 
cgMLST analysis using the strict clustering threshold (see “Phylogenetic tree construction and clustering”). Note that the Salmonella S23BD05085 and S24BD01743 isolates 
clustered according to cgMLST, while the metadata stated they were unrelated. The allelic distance between the two isolates was 5, which is the cut-off for the strict 
clustering. In practice, this would prompt an investigation using epidemiological data to verify the potential relationship between the two strains. The last column contains 
additional metadata for the isolates, including membership of known clusters. 
bThe ONT data for the Neisseria S18BD08604 and Salmonella S23BD06998 isolates generated using the RBK kit were low quality, and these data sets were not retained for the 
subsequent performance evaluation.
cEQA, external quality assessment.
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cgMLST allele calling and clustering

Allele calling

Alleles were called as described previously (25), with blast (31) updated to v2.14.0, on 
the Illumina, unpolished and polished ONT, and hybrid assemblies. For the Neisseria 
data sets, the cgMLST v3 scheme from PubMLST (3), containing 1,329 loci, was used 
(accessed on September 11th, 2024). For Salmonella, the EnteroBase (4) cgMLST scheme, 
containing 3,002 loci, was used (accessed on September 11th, 2024). Alleles detected 
in the hybrid assembly data sets that aligned over the full length of an existing allele 
in the database with >99% nucleotide identity were considered valid novel alleles. 
Updated cgMLST schemes were constructed locally by introducing these novel alleles 
with temporary allele identifiers, an approach functionally equivalent to submitting the 
alleles to the underlying databases maintained by PubMLST and EnteroBase (32). These 
schemes were used for further processing.

Phylogenetic tree construction and clustering

Phylogenetic trees were constructed from the cgMLST allele calls using an in-house 
script written in Python (https://github.com/BioinformaticsPlatformWIV-ISP/mlst_phy­
logeny). The script first constructs an allele matrix, considering only perfect hits (i.e., 
full length and 100% nucleotide identity). Then, loci detected in <75% of data sets were 
removed from the phylogenetic analysis. Note that these loci were still retained for 
the performance evaluation described below. Pairwise cgMLST distances were extracted 
from this filtered matrix. MSTs were then constructed using GrapeTree v2.2 (5) with the 
method parameter set to “MSTreeV2.”

Clusters were defined using strict and loose cluster definition thresholds based on 
pairwise allele distances. For Neisseria, the loose threshold, defined as possibly epide­
miologically linked, and the strict threshold, representing core clusters, were set at 
seven and four alleles, respectively (33). For Salmonella, loose and strict thresholds of 
ten and five alleles, respectively, were used. These thresholds were determined based 
on international guidelines (33) and retrospective evaluation of internal data sets and 
associated metadata.

Performance evaluation

Mismatches to hybrid assembly

The cgMLST allele calls for all loci for ONT assemblies were evaluated using the results 
of the corresponding hybrid assemblies for all individual isolates as ground truth. For 
instance, the allele calls in the unpolished and polished assemblies from ONT data 
generated with the RBK kit were compared with the allele calls in the hybrid assemblies 
generated using the same ONT data. The results of the Illumina data sets were compared 
to the results of both hybrid assemblies (i.e., generated with the RBK and RPB ONT data). 
Alleles were considered a match if the same allele was detected as a perfect hit in both 
data sets, that is, defined here as a full-length hit with perfect nucleotide identity. If no 
perfect hit was found in either data set, the locus was also considered a match (i.e., a 
locus that is absent in both replicates). All other cases were classified as mismatches. 
Note that this strategy differs from the “MSTreeV2” tree-building algorithm, where a 
missing allele in one of the data sets is not considered a mismatch but rather is treated as 
missing data, and therefore does not contribute to the distance between isolates in the 
MST.

Impact on clustering

The effect of sequencing technology and protocol on the clustering was assessed by 
constructing phylogenies using the strategy described in “Phylogenetic tree construc­
tion and clustering,” above. Both ONT barcoding protocols were evaluated with and 
without polishing. The assemblies generated using the Illumina data were analyzed 
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using the same methodology. Analogous to the allele calling evaluation (see “Mis­
matches to hybrid assembly,” above), results of cluster detection in the hybrid data sets, 
using the thresholds described in “Phylogenetic tree construction and clustering,” above, 
were considered the “ground truth” for comparing either Illumina and ONT data sets. 
The evaluation was performed separately for the loose and strict thresholds. Each isolate 
was classified according to the following definitions: true positives (TP) were defined 
as isolates that clustered in the reference phylogeny and were assigned to the correct 
cluster in the tested phylogeny; true negatives (TN) were defined as isolates that did not 
cluster in the reference phylogeny and were not assigned to any cluster in the tested 
phylogeny; (FP) were defined as isolates that did not cluster in the reference phylogeny
and were incorrectly assigned to a cluster or were assigned to the wrong cluster in the 
tested phylogeny; (FN) were defined as clustered isolates in the reference phylogeny that 
were not assigned to the correct cluster in the tested phylogeny. Several examples are 
provided in Fig. 1. Accuracy was then calculated by dividing the number of TPs and TNs 
by the total number of isolates in the phylogeny.

Tree and distance matrix similarity metrics

The similarity of the resulting phylogenetic trees and allele-based distance matrices 
was evaluated using several metrics that compared them to the results of their 
respective hybrid assemblies (see “Data preprocessing, filtering, and de novo assem­
bly,” above). The following metrics were evaluated: (i) Robinson-Foulds distance, which 
quantifies differences by counting mismatches splits (34), (ii) Kendall-Colijn distance, 
which accounts for both the topology and branch lengths (35), and (iii) the Pearson 
pairwise correlation of the allele distance matrices, which measures the similarity of all 
pairwise distances between two matrices. Unweighted Robinson-Foulds distances were 
calculated using the DendroPy Python package v5.0.1 (36) in Python v3.10. Kendall-Col­
ijn distances were calculated using the R script provided by Katz et al. (37) in R v4.3.1 with 

FIG 1 Overview of clustering definitions. This figure shows an example phylogeny to illustrate the definitions used to evaluate clustering performance. Figure 

A shows the reference phylogeny (based on the hybrid assemblies). Figures B and C show hypothetical phylogenies and the corresponding classification based 

on using ONT data. Isolates with a distance below the clustering threshold (indicated by an orange horizontal line) are grouped into clusters. Cluster labels are 

assigned based on the reference phylogeny: if more than half of the isolates within a cluster share the same label, the cluster is assigned that corresponding 

label. The detected clusters are shown in green. Accuracy was calculated by dividing the number of TP and TN by the total number of isolates and is given at the 

bottom of the figure. The left example (a) shows the reference topology and cluster assignments with one cluster of three isolates (i.e., A, B, and C) and a second 

cluster of two isolates (i.e., E and F). Isolates in a cluster are classified as TP, and isolates outside the clusters are classified as TN. In the second example (b), isolate 

A is classified as an FN because it is not assigned to cluster 1. Isolates B and C are classified as TP because they are correctly assigned to cluster 1. Isolate D is 

classified as an FP because it is incorrectly clustered with isolates E and F in cluster 2. Isolates E and F are correctly assigned to cluster 2 and classified as TP. In the 

right example (c), isolate A is still classified as an FN. Isolates B and D cluster together, but this cluster does not match the reference cluster for either isolate and is

therefore classified as FP. Isolate C is incorrectly assigned to cluster 2 and is therefore classified as an FP. Isolates E and F are in the correct cluster and are classified 

as TP. Abbreviations: true positive (TP), true negative (TN), false negative (FN), false positive (FP), reference (ref.).
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the lambda parameter set to 0.5. The Pearson pairwise correlation was calculated using 
the “pearsonr” function of the SciPy Python package v1.14.0 (38) in Python v3.10.

Combining ONT R10 with Illumina sequencing

Given that many laboratories have relied on short-read sequencing to build extensive 
collections of WGS data sets and cgMLST profiles, we also evaluated the integration of 
ONT R10 and Illumina sequencing specifically for phylogenetic tree construction and 
cluster detection (9). First, we used the methodology detailed in “Mismatches to hybrid 
assembly,” above, with the Illumina assemblies as reference standard to determine the 
number of allele mismatches with the ONT data sets. These allele distances between 
the Illumina and ONT data sets for the same samples were used to assess whether the 
data generation method could lead to missed clusters. Second, we constructed mixed 
phylogenies combining the Illumina and ONT R10 data sets into the same phylogeny 
to assess how potential inconsistencies between the two technologies might affect the 
resulting phylogenies.

Investigation of mismatches and methylation calling

The mismatches in the discrepant cgMLST loci were investigated by identifying SNPs and 
indels between the hybrid and unpolished assemblies using dnadiff from the MUMmer4 
v4.0.0rc1 package (39) with default options. The SNPs and indels within the cgMLST loci 
were extracted using a custom script. In addition, basecalling was repeated as described 
in “Data preprocessing, filtering and de novo assembly,” above, but with the “4mC_5mC” 
and “6mA” models added to perform methylation calling. The resulting reads were 
filtered as described previously and mapped to the corresponding hybrid assemblies 
using Minimap2 v2.26 (40) with the “-ax map-ont” and “-y” (i.e., to preserve methylation 
tags) options enabled. Modkit v0.3.1 (https://github.com/nanoporetech/modkit) was 
then used to call methylation. Assuming that sequencing errors are more likely to occur 
at methylated sites, methylation calling may be hindered by incorrectly called bases. For 
example, at a methylated cytosine site in the genome, 4mC or 5mC methylation can only 
be called on bases that are correctly identified as cytosine, which may be a minority 
at that position. To account for this, we applied relatively lenient filtering criteria: at 
least two reads with the corresponding base call and at least 2 out of 3 (i.e., 66.67%) of 
those classified as methylated. The SNPs detected by dnadiff and the methylation calls 
were then cross-checked. To account for potential basecalling inaccuracies due to nearby 
methylation, the positions immediately flanking the mutation were also checked. For 
the indels that were identified by dnadiff, a custom script was used to assess whether 
they were located within homopolymers. Erroneous indels were classified as homopoly­
mer-related errors if they occurred in stretches of six or more consecutive identical bases.

RESULTS

WGS data quality and yield

Read statistics from four ONT runs (RBK and RPB protocols for Neisseria and Salmonella) 
showed similar total yields. However, the median read lengths before filtering were 
shorter with the RBK kit due to many short reads. After filtering, read lengths were 
similar for both kits for the Neisseria data sets, but remained higher for the RBK kit in the 
Salmonella data sets. For both species, RBK data sets showed higher N50 values and less 
fragmented assemblies, with more complete circular chromosomes, which is likely due to 
the longer reads. By contrast, the RPB protocol produced slightly higher read quality and 
more consistent coverage across isolates. All data sets were retained for the subsequent 
analyses, except for the Neisseria S18BD08604 RBK and Salmonella S23BD06998 RBK, for 
which the data quality was deemed insufficient. All Illumina data sets passed the quality 
checks and were retained for subsequent analysis. Detailed results are provided in the 
Supplementary Material.
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cgMLST allele calling and clustering

cgMLST allele calling

As some of these genomes were not previously deposited in public databases, the 
analysis started by identifying high-quality alleles which were not yet present in the 
underlying cgMLST databases. For Neisseria, a total of 157 novel cgMLST alleles were 
detected across the hybrid assemblies for all isolates. Nearly all of these novel alleles 
were consistent across the hybrid assemblies for both protocols (i.e., they were detected 
as perfect hits in both hybrid assemblies). For Salmonella, 10 novel alleles were detected 
across the hybrid assemblies for all isolates. All novel detected alleles were then 
introduced into local copies of the corresponding cgMLST schemes for both species, 
and the cgMLST analyses were re-run using these updated schemes.

The percentage of cgMLST loci called afterwards for all data sets and assembly 
approaches is shown in Table 2. For Neisseria, the median percentage of loci called 
in the hybrid assembly data sets was similar for the RBK and RPB kits with 99.85% 
and 99.81%, respectively. Interestingly, the median percentage of loci detected in the 
Illumina data sets was slightly lower at 99.77%. Long-read polishing with Medaka had no 
impact on the percentage of perfect hits in the RPB-only assemblies. However, for the 
RBK-only assemblies, polishing slightly reduced the median percentage of loci detected. 
For Salmonella, the percentage of loci called as perfect hits in the hybrid assemblies 
was similar, with 97.90% and 97.88% for the RBK and RPB kits, respectively. The median 
percentage of loci detected in the Illumina data sets was comparable at 97.88%. The 
results for the unpolished and polished ONT-only assemblies were also comparable, 
ranging from 97.83% to 97.87%. In general, the fraction of alleles called perfect hits was 
substantially lower for Salmonella compared to Neisseria. Figure S6 provides a breakdown 
of the uncalled cgMLST loci in the hybrid assemblies. For Salmonella, the main cause of 
uncalled alleles was multi-hits, that is, multiple alleles with the same alignment statistics 
where the workflow could not select a best match. A schematic representation of a 
multi-hit is provided in Fig. S7. These multi-hits were restricted to 112 loci, correspond­
ing to <4% of the loci in the scheme. As multi-hits were consistently detected across 
sequencing and assembly methods and were very rare in the Neisseria data sets, we 
suspect this may be a consequence of problematic alleles in the Salmonella cgMLST 
scheme rather than the allele calling method or data quality.

TABLE 2 Percentage of cgMLST loci detecteda

Genus Sequencing technology 
and protocol

Assembly method Median no. of cgMLST loci 
detected (%)

Neisseria RBK + Illumina Hybrid 1,327/1,329 (99.85)
Neisseria RPB + Illumina Hybrid 1,326.5/1,329 (99.81)
Neisseria RBK ONT-only + medaka polishing 1,322/1,329 (99.47)
Neisseria RPB ONT-only + medaka polishing 1,327/1,329 (99.85)
Neisseria RBK ONT-only unpolished 1,323.5/1,329 (99.59)
Neisseria RPB ONT-only unpolished 1,327/1,329 (99.85)
Neisseria Illumina Illumina-only 1,326/1,329 (99.77)
Salmonella RBK + Illumina Hybrid 2,939/3,002 (97.90)
Salmonella RPB + Illumina Hybrid 2,938.5/3,002 (97.88)
Salmonella RBK ONT-only + medaka polishing 2,938/3,002 (97.87)
Salmonella RPB ONT-only + medaka polishing 2,937.5/3,002 (97.85)
Salmonella RBK ONT-only unpolished 2,937/3,002 (97.83)
Salmonella RPB ONT-only unpolished 2,938/3,002 (97.87)
Salmonella Illumina Illumina-only 2,938.5/3,002 (97.88)
aThis table lists the median percentage of cgMLST loci detected for each sequencing technology and protocol, and 
assembly method. The schemes for Neisseria and Salmonella contain 1,329 and 3,002 loci, respectively. Note that 
only perfect hits are considered (i.e., full length and perfect nucleotide identity). The columns list the genus name, 
sequencing technology & protocol, assembly method, and median percentage of cgMLST loci detected.
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Clustering

To assess the clustering performance of the ONT and Illumina data, we first estab­
lished the ground truth by performing clustering on the cgMLST results on the hybrid 
assemblies. The cgMLST-based phylogenies for both species and kits, constructed from 
the hybrid assemblies, are shown in Fig. 2 for the RPB kit and in Fig. S8 for the RBK kit. 
The phylogenies were very similar, regardless of the barcoding kit used. The clusters 
detected using the loose and strict thresholds were identical for both species and 
were mostly consistent with the available metadata (Table 1). For Neisseria, four clusters 
were detected, each consisting of two isolates. Two clusters corresponded to ST457 
and ST11846, which were the only isolates of their respective STs. These two clusters 
correspond to clinical duplicates collected from two different patients. The other two 
clusters were part of larger groups: ST11 and ST269, both with a total of five isolates. 
The ST11 cluster consisted of two strains of the serogroup W Hajj lineage collected 
during routine surveillance and not found to be part of an outbreak cluster. The two 
ST269 isolates in the corresponding cluster were confirmed as part of an outbreak and 
clustered separately from the other ST269 isolates circulating in the region during the 
outbreak. The pairwise distances for the ST11 and ST11846 clusters were two alleles, 
and the isolates in the ST269 and ST457 clusters had identical cgMLST profiles to each 
other (Fig. S9). For Salmonella, four clusters of two isolates were found (three assigned 
to ST34 and one to ST11), a cluster of three ST11 isolates, and a cluster of four ST10 
isolates (Fig. S10). The ST10 cluster of four isolates (i.e., cluster 5) and the ST11 cluster 
of three isolates (i.e., cluster 3) both consist of EQA samples and were in agreement 
with the provided metadata, meaning that the isolates with known cluster association 
clustered together, apart from the unrelated isolate(s). Three of the two-isolate clusters 
were assigned to ST34, which had a total of nine isolates. One of the clusters correspon­
ded to clinical duplicates from the same patient (i.e., cluster 6) and the other two to 

FIG 2 Reference phylogenies and clustering. These figures show the reference minimum spanning tree (MST) phylogenies, displayed as phylogenetic trees, for 

the (a) Neisseria and (b) Salmonella datasets, constructed from the RPB hybrid assemblies. The annotations are from left to right: isolate name, sequence type 

(ST), and cluster membership. Clusters were defined as isolates that clustered within four and five alleles of each other for Neisseria and Salmonella, respectively 

(i.e., the strict thresholds). The loose thresholds are not shown as the obtained clusters were identical. The results for the hybrid assemblies generated with the 

RBK data sets were very similar and are shown in Fig. S8. The scale bar is expressed as number of cgMLST differences, and branch lengths are indicated on 

branches. The phylogenetic tree was midpoint-rooted, resulting in some branch lengths being represented as decimals. The visualizations were created using 

iToL (41).

Full-Length Text Journal of Clinical Microbiology

Month XXXX  Volume 0  Issue 0 10.1128/jcm.00410-2510

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//j

ou
rn

al
s.

as
m

.o
rg

/jo
ur

na
l/j

cm
 o

n 
26

 A
ug

us
t 2

02
5 

by
 1

09
.1

31
.1

04
.2

02
.

https://doi.org/10.1128/jcm.00410-25


confirmed sub-clusters within an international foodborne outbreak (i.e., clusters 1 and 
2). The last cluster consisted of two ST11 isolates, including a confirmed outbreak strain 
and an outlier from the same outbreak. This cluster assignment was not consistent 
with the metadata, but the pairwise allele distance was five, which is the value of the 
strict threshold for cluster definition. Overall, the pairwise distances between Salmonella 
isolates in the same cluster ranged from zero to five alleles. The same clusters were 
obtained using the loose and strict cluster definition thresholds.

Performance evaluation

cgMLST mismatches of the ONT and Illumina data sets

A visualization of the number of mismatches for each ONT- and Illumina-only data set 
compared to the corresponding hybrid assemblies is provided in Fig. 3. For Neisseria, 
the median number of mismatches was five and six for the unpolished and polished 
RBK kit assemblies, respectively. The variability between isolates was considerable, with 
five isolates having more than 30 mismatches in the unpolished ONT-only assemblies 
and six isolates having none. The number of mismatches with the RPB kit was much 
lower, with a median of zero and a maximum of one allele for both the unpolished 
and polished ONT-only assemblies. For Salmonella, the median number of mismatches 
was one for both kits with and without polishing. The total number of mismatches 
on the unpolished ONT-only assemblies was slightly higher for the RBK kit (n = 41) 
compared to the RPB kit (n = 29), but overall the number of mismatches was comparable. 

FIG 3 Mismatched cgMLST loci in the Illumina- and ONT-only assemblies compared to the hybrid assembly. Number of cgMLST locus mismatches between 

the Illumina- and ONT-only assemblies and their corresponding reference hybrid assemblies. The x-axis represents individual isolates, while the y-axis shows the 

number of cgMLST mismatches between the assemblies and the corresponding hybrid assemblies. Note that the scale of the y-axis varies between sub-plots 

to accommodate the different value ranges. The comparison of the Illumina assemblies with the RBK and RPB hybrid assemblies is shown in red and green, 

respectively. The results for the unpolished and medaka-polished ONT-only assemblies are shown in purple and blue, respectively. The median, minimum, and 

maximum values per kit are listed in Table S6. The ONT data for the Neisseria S18BD08604 and Salmonella S23BD06998 isolates generated using the RBK kit were 

low quality and these isolates were not included.
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The maximum number of mismatches was six for the RBK kit and three for the RPB 
kit, and in contrast to the Neisseria results with the RBK kit, there were no extreme 
outliers. Mismatches occurred much more frequently in certain loci, as illustrated in Fig. 
S11. For example, in the Salmonella STMMW_17581 locus, which did not correspond to 
the hybrid assemblies in 18 of the 23 unpolished RBK assemblies and in 23 of the 24 
unpolished RPB assemblies, whereas the vast majority of loci showed no mismatches at 
all. More information about potential causes for mismatches in the ONT-only assemblies 
is available in section “Investigation of mismatches and methylation calling.”

For the Illumina data sets, the proportion of mismatches compared to the hybrid 
assemblies was comparable for both species, with a median of zero mismatches for 
Neisseria and Salmonella compared to both hybrid assemblies.

Cluster detection of the ONT and Illumina data sets

The performance expressed as accuracy of the cluster detection for each of the 
methodologies using the loose and strict clustering thresholds is shown in Table 3. The 
number of loci that passed the allele matrix filtering for each phylogeny is listed in Table 
S2. For both species and thresholds, the isolates sequenced by Illumina were always 
correctly classified into the reference cluster or as unrelated isolates. For the Neisseria 
isolates sequenced using ONT and the RPB kit, the correct clustering was obtained with 
and without polishing for both thresholds. The accuracy for the RBK kit and the strict 
threshold was 75%, regardless of polishing. Only the cluster containing S19BD00230 and 
S19BD00371 (i.e., cluster 4) was correctly identified in the RBK data set, while the six 
isolates of the other clusters did not group as expected (Fig. S9). No FP or FN clusters 
were detected, resulting in 18 out of 24 isolates (75%) being correctly assigned. Using 
the loose threshold, the cluster containing S18BD07975 and S19BD08966 (i.e., cluster 
3) was also correctly identified, resulting in an accuracy of 83.33% (i.e., 20 out of 24 
isolates correctly classified). For Salmonella, 100% accuracy was obtained for all methods 
with the loose threshold. For the strict threshold, 100% accuracy was obtained with the 
unpolished RPB kit assemblies and the polished RBK assemblies. For the polished RPB 
assemblies, the S23BD05085 and S24BD01743 isolates (i.e., cluster 4) did not cluster 
together as expected, due to a difference of six alleles (Fig. S10). In addition, the 
S23BD05331 isolate was not assigned to cluster 5, resulting in an accuracy of 87.5% (i.e., 

TABLE 3 Clustering performancea

Genus Method Barcoding kit Accuracy (%)

Strict threshold Loose threshold

Neisseria Hybrid RPB 100.00 100.00
Neisseria ONT only unpolished RPB 100.00 100.00
Neisseria ONT only + medaka polishing RPB 100.00 100.00
Neisseria Hybrid RBK 100.00 100.00
Neisseria ONT only unpolished RBK 75.00 83.33
Neisseria ONT only + medaka polishing RBK 75.00 83.33
Neisseria Illumina-only - 100.00 100.00
Salmonella Hybrid RPB 100.00 100.00
Salmonella ONT only unpolished RPB 100.00 100.00
Salmonella ONT only + medaka polishing RPB 87.50 100.00
Salmonella Hybrid RBK 100.00 100.00
Salmonella ONT only unpolished RBK 91.30 100.00
Salmonella ONT only + medaka polishing RBK 100.00 100.00
Salmonella Illumina-only - 100.00 100.00
aThis table shows the accuracy of the clustering by comparing with the results obtained using the hybrid 
assemblies with the strict and loose cluster definition thresholds. Accuracy was calculated by dividing the number 
of TP and TN by the total number of observations, with the definitions for TP, TN, FP, and FN results provided in 
section “Impact on clustering.” A visual explanation of these definitions is provided in Fig. 1. The loose threshold 
was seven alleles for Neisseria and ten alleles for Salmonella. The strict threshold was four alleles for Neisseria and 
five alleles for Salmonella.
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21 out of 24 correct classifications). For the unpolished RBK assemblies, the S23BD05085 
and S24BD01743 isolates (i.e., cluster 4) did not cluster together in the ONT phylogeny, 
resulting in an accuracy of 91.3% (i.e., 21 out of 23 correct classifications). The pairwise 
distance between these isolates was seven alleles in the ONT data sets, compared to four 
alleles in the hybrid assemblies.

Tree and distance similarity metrics of the ONT and Illumina data sets

The Robinson-Foulds distance, Kendall-Colijn distance, and Pearson correlation metrics 
are listed in Table 4. For the Neisseria data sets, phylogenies generated from the RPB data 
sets closely matched the reference phylogeny, resulting in the lowest Robinson-Foulds 
and Kendall-Colijn distances and the highest Pearson correlation values. By contrast, 
Illumina-based phylogenies showed greater divergence from the reference phylogeny 
and its distance matrix. This divergence can be explained by a larger number of “true” 
mismatches where a different allele is called as a perfect hit, rather than a mismatch 
where one allele is missing in one of the two datasets, which was more common in the 
Illumina data sets compared to the RPB data sets. The phylogenies obtained with the RBK 
data sets differed the most from the reference, with much higher values of the Robin­
son-Foulds and Kendall-Colijn distances and much lower distance matrix correlation. For 
the Salmonella data sets, the phylogenies generated from the RPB data sets were also 
the most similar to the reference phylogeny. In contrast to Neisseria, the phylogenies 
obtained with the RBK data sets were more similar to the reference phylogeny than the 
results obtained with Illumina. The Pearson correlation coefficients between the distance 
matrices were very high, with values > 99.9% for all methods. For both species and kits, 
polishing slightly reduced the similarity to the reference but did not have a substantial 
impact.

Combining ONT and Illumina data sets within the same phylogenetic analysis 
and cluster detection

To evaluate the combination of Illumina and ONT data separately into the same 
phylogenomic analysis, MSTs were constructed combining data sets generated by both 
methods (e.g., the Neisseria RPB-only and Illumina-only data sets in Fig. 4). The pairwise 
distances between the ONT-only and corresponding Illumina data sets are shown in 
Fig. S12 and S13 for Neisseria and Salmonella, respectively. The proportion of pairwise 
cgMLST allele mismatches between replicates was highest for the Neisseria RBK data sets, 
almost entirely due to alleles that were not called as perfect hits in the ONT data sets. 

TABLE 4 Tree-similarity metricsa

Genus Method Barcoding kit Robinson-Foulds distance Kendall-Colijn distance Pearson correlation (%)

Neisseria Hybrid RPB 0 0 100
Neisseria ONT-only unpolished RPB 0 0 100
Neisseria ONT-only + medaka polishing RPB 1 1 100
Neisseria Hybrid RBK 0 0 100
Neisseria ONT-only unpolished RBK 9 4,095 99.03
Neisseria ONT-only + medaka polishing RBK 10 4,141 99.16
Neisseria Illumina-only - 2 37 100
Salmonella Hybrid RPB 0 0 100
Salmonella ONT-only unpolished RPB 1 15 100
Salmonella ONT-only + medaka polishing RPB 2 21 100
Salmonella Hybrid RBK 0 0 100
Salmonella ONT-only unpolished RBK 9 3770 100
Salmonella ONT-only + medaka polishing RBK 9 3770 100
Salmonella Illumina-only - 10 7,340 100
aThis table lists the similarity metrics for the phylogenies and distance matrices obtained with the different assemblies. The evaluated metrics are the unweighted 
Robinson-Foulds distance, the Kendall-Colijn distance with the lambda parameter set to 0.5, and the Pearson correlation of the allele distance matrices. The results on the 
hybrid assemblies were used as ground truth.
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For the Neisseria RPB data sets, the number of pairwise differences between the alleles 
called in the replicates generated with the ONT-only and Illumina-only data ranged from 
zero to eight, with a median of zero. The majority of these mismatches were due to 
alleles that were not called in the Illumina data. Interestingly, the four Illumina data sets 
with a relatively high number of these missing alleles also had the lowest N50 values, 
suggesting that the missing alleles may be a consequence of lower assembly quality 
(i.e., more fragmented) rather than being different allele calls. For both the unpolished 
and polished RPB assemblies, the total number of “true” mismatches (i.e., a different 
allele called as a perfect hit) across all data sets was two. Note that since the MSTreeV2 
algorithm does not consider missing alleles as mismatches, the replicates (i.e., the same 
isolate sequenced with a different method) of 22 of the 24 Neisseria isolates clustered 
at distance zero in the corresponding phylogeny (Fig. 4). Using the definitions shown in 
Fig. 1 to determine clustering performance, an accuracy of 100% was obtained. For the 
Salmonella data sets generated with the RBK kit, the number of mismatches ranged from 
zero to six, with a roughly equal distribution of missing alleles in the ONT and Illumina 
data. After polishing, the maximum number of mismatches decreased to three alleles. In 
contrast to the Neisseria phylogeny, there were many more replicates that did not cluster 
at distance zero in the minimum spanning tree, consistent with the higher number of 
“true” mismatches (i.e., mismatches other than missing loci). For the Salmonella data sets 
generated with the RPB kit, the maximum number of mismatches in the unpolished 
and polished assemblies was three and two, respectively. Notwithstanding, the overall 
clustering performance for these data sets was also 100%.

FIG 4 Minimum spanning tree for the unpolished Neisseria ONT RPB and unpolished Salmonella ONT RBK assemblies combined with the corresponding Illumina 

datasets. This plot shows the minimum spanning tree phylogeny combining (a) the ONT R10 RPB and the Illumina data sets as a network for the Neisseria 

isolates and (b) the ONT R10 RBK and Illumina data sets for the Salmonella isolates. Branch lengths and the scale bar correspond to the number of cgMLST allele 

differences and are scaled logarithmically. Nodes are colored by isolates, and clusters are indicated with green boxes. Note that for all Neisseria isolates, replicate 

data sets for the same sample using either ONT or Illumina, clustered at distance zero, except for isolates Z1269 and Z4678, which had a pairwise distance of 

one allele. For Salmonella, the branch lengths between replicate data sets for the same sample using either ONT or Illumina were slightly larger, but all clustered 

isolates matched the clustering in the reference phylogeny, separated from other isolates. A similar figure for the Neisseria RBK and Salmonella RPB datasets is 

provided in Fig. S20. The visualizations were created using GrapeTree [5].
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Investigation of mismatches and methylation calling

An overview of the types of mismatches between the hybrid assemblies and unpol­
ished ONT-only assemblies in the cgMLST loci is provided in Table 5. For Neisseria, the 
only mismatch within the cgMLST loci in the unpolished RPB assemblies compared to 
the hybrid assemblies was an indel in sample Z4678 (Fig. S14). Note that there was 
an additional cgMLST mismatch (Fig. 3) when comparing the unpolished ONT-only 
S16BD06814 assembly with the hybrid assembly. The origin of this mismatch was not 
investigated, as this locus was not called as a perfect hit in the S16BD06814 hybrid 
assembly, which was used to determine the genomic location of the cgMLST loci. For 
the RBK kit, 311 mismatches were found across all high-quality unpolished ONT-only 
assemblies, with the majority being SNPs (n = 208). Interestingly, 199 of these 208 SNPs 
occurred at G or C positions in the hybrid assembly, which were modified into A and T, 
respectively (i.e., the same mutation on opposite strands). Of the 208 discrepant SNPs, 
154 (77.39%) were located at sites called as methylated, the vast majority being 5mC 
(n = 152), with two instances of 6mA (Fig. S15). For 21 of the remaining 54 mismatches 
at positions not reported as methylated, methylation was detected in the next base 
upstream and/or downstream for the following: 6mA (n = 11), 5mC (n = 9), and both (n 
= 1). The extremely high proportion of the C/G to A/T mismatch compared to others, 
even when positions with detected methylation are discarded, and the absence of this 
mismatch in the RPB assemblies may indicate that the number of mismatches associated 
with methylation is underestimated. A visualization of an alignment at a methylated 
position resulting in a cgMLST mismatch is shown in Fig. S16. For the majority of the 
103 erroneous indels, methylation was detected at the position of the indel (n = 33) 
or one base up/downstream (n = 44). Only eight indels were located in homopolymer 
regions of six bases or more (Fig. S17), for which no methylation was detected, including 
in the upstream and downstream bases. The remaining 18 indels were not located in 
homopolymer regions, and no methylation was detected at the corresponding site or 
one base upstream or downstream.

For Salmonella, the number of SNPs and indels within the cgMLST loci was similar for 
both barcoding kits, with 39 and 28 mismatches for the RBK and RPB kits, respectively 
(Fig. S18). For the RBK kit, the majority of mismatches were indels (71.79%), all but one of 
which were located in homopolymers of length six or longer (Fig. S17). An example of a 
homopolymer-related error leading to a mismatched cgMLST allele call is provided in Fig. 
S19. All SNPs were C/G to T/A mutations (n = 11), but, in contrast to Neisseria, methylation 
was not detected at any of these positions. However, for six SNPs, 6mA methylation was 

TABLE 5 Overview of the mismatches between the hybrid assemblies and unpolished ONT-only 
assemblies in the cgMLST locia

Neisseria Salmonella

RBK RPB RBK RPB

No. of isolates 23 23 23 23
SNPs
  Methylated 154 0 0 0
  Methylated (±1 base) 21 0 6 0
  Unmethylated 33 0 5 0
  Total 208 0 11 0
Indels
  Methylated 33 0 0 0
  Methylated (±1 base) 44 0 0 0
  Homopolymer 8 1 28 28
  Non-methylated and non-homopolymer 18 0 0 0
  Total 103 1 28 28
aMismatches were identified using dnadiff. Only cgMLST loci detected as a perfect hit in the corresponding 
hybrid assemblies were considered. Abbreviations: single nucleotide polymorphisms (SNPs). Note that the 
Neisseria S18BD08604 isolate and the Salmonella S23BD06998 isolate were omitted from this analysis because 
of low-quality RBK data sets.
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detected one base up- or downstream. For the RPB kit, all mismatches were indels, and 
no SNPs were found. All mismatches were located within homopolymer regions of size 
six bp or longer. Interestingly, the ONT data contained one missed base compared to 
the hybrid assembly for all indels within cgMLST loci for both species, except for a single 
indel in the STMMW_21691 locus in the Salmonella S22BD01190 RBK data set. Although 
the same number of erroneous indels were detected in the RPB and RBK data sets, these 
were not the same. However, certain loci, such as STMMW_17581 (i.e., 27 mismatches 
across all data sets) and STMMW_27051 (i.e., eight mismatches across all data sets), were 
commonly associated with homopolymer-related errors for both barcoding kits.

DISCUSSION

In this study, we have evaluated ONT R10 sequencing for cgMLST-based allele calling and 
clustering for bacterial outbreak investigation on a selection of Neisseria and Salmonella 
isolates. The performance of the RBK and RPB barcoding kits was assessed both with and 
without long-read polishing.

Overall, cgMLST allele calling on the ONT R10 data sets was very accurate, with over 
99% of alleles called correctly, with the exception of the Neisseria data sets sequenced 
using the RBK kit. In these data sets, methylation-related errors had a substantial 
negative impact on the accuracy of cgMLST allele calling and subsequent clustering. 
A relatively large number of SNPs (n = 208) were identified between the unpolished 
ONT-only assemblies and the hybrid assemblies, with 74.04% of these located at 
positions that were identified as methylated. An additional 10.10% of these mismatches 
were located one base upstream or downstream of a methylated position (Table 5). 
Our results also suggest that methylation may cause indel errors, as 74.76% of the 
erroneous indels between the hybrid and unpolished ONT-only assemblies were located 
at methylated sites, or one base up/downstream (Fig. S15). Interestingly, the frequency of 
methylation-related errors was strongly strain-dependent, as seen elsewhere (16, 17) (Fig. 
3). These strain-dependent differences may be caused by differences in the methylation 
profiles of the strains. For example, some hypervirulent Neisseria meningitidis strains have 
been shown to carry different methyltransferases that can regulate gene expression (42). 
Similarly, methylation profiles have been shown to vary widely between bacteria (43). 
The overall proportion of errors in the Neisseria RBK data sets was substantially higher 
than for the Salmonella RBK data sets, where six out of a total of eleven SNP mismatches 
in the unpolished ONT-only assemblies were located at positions called as methylated. 
Interestingly, in contrast to the Neisseria RBK data sets, none of the erroneous indels 
were associated with methylation. In the Salmonella data sets, all methylation-related 
mismatches were attributed to 6mA methylation, whereas in Neisseria, almost all were 
caused by 5mC methylation. Note that because the screening was limited to three 
types of methylation, other types of methylation that could affect the accuracy of base 
calling may have been missed. The PCR-based RPB kit removes methylation prior to 
sequencing (16) and resulted in near-perfect concordance with the hybrid assemblies 
for both Neisseria and Salmonella. An additional potential advantage of this kit was the 
reduced variation in sequencing depth of isolates within the same run. Consequently, 
the likelihood of having to re-sequence low-depth isolates is likely lower. However, the 
nature of this kit results in shorter read lengths, leading to more fragmented assemblies 
(Fig. S3). Therefore, for applications where obtaining near-complete genomes is required, 
the use of the RPB kit could limit the added value of long-read ONT sequencing. In 
addition, the protocol is more laborious and time-consuming. Given the substantial 
variation in cgMLST allele calling accuracy across the species and strains tested, we 
recommend evaluating different barcoding kits to identify the most appropriate one for 
the intended application. Performance can be assessed by comparing allele calls with 
Illumina data, as these are not affected by epigenetic modifications and ONT-specific 
homopolymer errors. However, comparing to hybrid assemblies may be preferable, as 
these assemblies tend to be more complete and accurate. For example, we found several 
typing loci were not adequately covered by the Illumina data, especially for Neisseria.
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As an alternative to the RPB kit, polishing with medaka was tested to resolve potential 
methylation-related and other errors (44, 45). Overall, polishing slightly reduced the 
number of mismatched cgMLST loci. However, polishing also frequently introduced 
novel errors. The second most common source of errors was homopolymers, a well-
known phenomenon in nanopore-based sequencing (46). These errors were observed 
for both kits (Fig. S17). However, the impact was relatively limited, especially when 
compared to the overall level of error observed in the Neisseria RBK data sets. Future 
advances in polishing, such as the recently released v2 of the Medaka polishing software 
and updated models, may help to better correct both types of error in the future.

The proportion of cgMLST loci that could be identified as perfect hits was consid­
erably lower for Salmonella than for Neisseria, irrespective of sequencing technology 
and protocol (Table 2). The main cause of uncalled alleles in the Salmonella data sets 
was multi-hits, shown schematically in Fig. S7. This issue stems from database curation. 
Ideally, overlapping alleles should be avoided, as they can lead to a loss of resolution or, 
in the worst case, mismatches when comparing strains. In this study, we used the third 
iteration of the Neisseria cgMLST scheme, which has been refined over time by removing 
problematic loci. When using the first iteration of the cgMLST scheme, we also observed 
a reduced proportion of perfect hits (Table S3). These findings highlight how the choice 
and curation of the cgMLST scheme can affect allele calling and subsequent clustering 
results.

Despite these limitations, ONT R10 sequencing enabled accurate cgMLST-based 
clustering of both species, consistent with findings reported for other species (13, 
15). For Salmonella, both the RBK and RPB kits produced phylogenies that were very 
similar to the results obtained with hybrid sequencing data, leading to identical cluster 
interpretations using the loose cluster definition threshold. When using the strict allele 
threshold for cluster membership, the clustering performance was slightly reduced for 
the unpolished RBK and the polished RPB data sets due to a few isolates that were 
misclassified (Table 3). In these cases, the isolates were already at a pairwise distance 
close to the threshold in the reference phylogeny, and discrepancies in a few loci 
caused the pairwise distance to exceed the threshold. It may, therefore, be beneficial 
to apply slightly more lenient thresholds when integrating data from multiple sequenc­
ing technologies to account for potential technology-specific discrepancies, followed 
by additional investigation of detected clusters. The number of cgMLST mismatches 
observed in this study for Salmonella was lower than the number of mismatches 
reported in previous studies. Xian et al. previously reported ~16 cgMLST mismatches 
per strain using ONT R9 sequencing, which could be reduced to ~5 using a database-
based homopolymer correction approach (47). Hong et al. similarly evaluated ONT R10 
sequencing using the ligation and the rapid barcoding kit, and the number of average 
mismatches per strain ranged from 7 to 9, depending on the barcoding kit (48). In the 
current study, we have observed fewer mismatches, likely due to improvements in the 
sequencing technology and basecalling model, as Xian et al. used an older chemistry 
and Hong et al. used v4 of the SUP model, compared to v5 used in this study. In 
addition, by sequencing with a PCR-based barcoding kit, we were able to demonstrate 
a link between methylation and sequencing errors that had not been observed in 
these previous studies. For Neisseria, methylation-related errors substantially impacted 
the results on the data sets generated with the RBK kit, leading to different clustering 
compared to the hybrid assemblies (Fig. S9 and S20; Table 3). The RPB kit did not suffer 
from this issue and led to nearly identical results as the hybrid assembly approach, with 
at most a single mismatched allele (Fig. 4) and identical clustering with both thresholds. 
To the best of our knowledge, this is the first study for Neisseria meningitidis to focus on 
the performance of cgMLST-based allele calling and clustering using ONT data. Based 
on the errors observed with the RBK kit, we currently advocate the use of the RPB 
kit for Neisseria, despite it being more laborious and time-consuming, although future 
updates of the sequencing chemistry, basecalling model, and/or polishing methods 
could potentially resolve such methylation-induced errors.
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Given the extensive collection of cgMLST profiles generated by short-read sequenc­
ing accumulated by laboratories and public resources such as PubMLST and EnteroBase 
(3, 4), we also evaluated the performance when combining cgMLST results obtained 
with ONT and Illumina sequencing. This could be crucial, for example, to link isolates 
sequenced with ONT to historical clusters or to combine data from laboratories using 
different sequencing technologies. Our results showed that the pairwise allele distances 
between replicates of the same sample sequenced with different technologies were 
relatively small, regardless of the sequencing method and/or polishing, except for the 
Neisseria ONT data sets generated with the RBK kit (Fig. S12 to S14). However, as clusters 
are usually defined using allele thresholds of a relatively small number of alleles (4), even 
minor discrepancies due to the employed sequencing technology can impact clustering. 
This was observed in the evaluation of the clustering performance, which was perfect for 
the loose threshold, but was lower for the strict threshold (Table 3). It should be noted 
that the method used to extract clusters can also have a major impact on the results 
obtained. For example, in the MSTreeV2 tree-building algorithm, missing alleles do not 
contribute to the difference between strains (5). Consequently, 22 out of 24 Neisseria 
replicates sequenced using the ONT RPB kit and Illumina clustered at distance zero (Fig. 
4a), as almost all mismatches were due to alleles not called in one of the data sets (Fig. 
S12). Similar to allele calling, an evaluation of suitable cluster definition thresholds for 
the intended application is hence critical (49, 50). In summary, our results show that 
Illumina and ONT sequencing can be used interchangeably for cgMLST allele calling 
and cgMLST-based phylogenetic investigation, provided methylation-induced errors are 
accounted for, and data processing and cluster definitions are adjusted accordingly.

While our study highlights some critical aspects and considerations for ONT R10-
based cgMLST analysis for bacterial outbreak analysis, there are several limitations. 
First, only a single allele calling method was evaluated while numerous alternatives 
are available (51–53). The allele calling method could affect performance, with some 
methods being more or less affected by the methylation- and homopolymer errors 
observed here. In addition, the assembly and polishing methods may also affect 
performance. Notwithstanding, our employed bioinformatics approach corresponds to 
standard practice for cgMLST allele calling using ONT data. Second, our evaluation was 
limited to two species, and the application of this approach to other species will require 
further evaluation, as we observed substantial interspecies variation but also intraspecies 
variation within Neisseria. Different species will need to be evaluated separately to assess 
the potential impact of methylation-related errors, homopolymer-related errors, or other 
potential sources of error that were not observed in our Neisseria or Salmonella data 
sets. We also focused on including data from well-described outbreaks, corresponding 
only to a relatively small number of STs. However, this only covers a small fraction of the 
diversity of both species, given the huge number of known STs. Third, the performance 
on cgMLST allele calling does not necessarily transfer to other genomic assays, such as
AMR or virulence gene detection, in silico serotyping, plasmid reconstruction, etc. Further 
studies with high-quality phenotypic or genomic reference data are required to evaluate 
the performance of other bioinformatics assays using ONT sequencing. Fourth, there 
were no replicates for data sets generated using the same protocol, as only a single 
ONT flow cell was used for all barcoding kits and species combinations, while there 
still existed considerable variation in active pores, throughput, etc. Consequently, for 
the integration of ONT sequencing for cgMLST-based cluster detection into the routine 
activities of clinical and public health laboratories operating under a quality system and 
requiring certification and/or accreditation, future large-scale validation is still required 
to assess the performance and stability of ONT R10 sequencing.

In conclusion, our results show that ONT R10 sequencing is well-suited for 
core-genome MLST-based phylogenomic analysis, taking into account species-specific 
differences, but library preparation protocols should be adapted to cope with errone­
ous base calls due to DNA methylation and other ONT-specific errors. As ONT-based 
sequencing is still rapidly evolving, advances in sequencing chemistry, base calling 
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models, and analysis software can still improve results, address potential issues, and 
achieve even greater accuracy in cgMLST-based allele calling and clustering. The 
methodology presented in this paper could serve as a baseline for other laboratories to 
incorporate ONT sequencing for cgMLST analysis and connect their data with historical 
cgMLST data sets generated using Illumina sequencing.
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