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Summary Paragraph:  

This study explores how analytical choices of researchers affect the reliability of scientific 

findings. Current lack-of-reliability discussions focus on systematic biases. We broaden the lens 

to include idiosyncratic decisions in data analysis that lead researchers to diverging results and 

conclusions. We coordinated and observed decisions among 73 research-teams as they 

independently tested the same hypothesis using the same data. Results show that in this typical 

secondary data research situation, the universe of pathways from data to results is so vast that each 

analysis was unique in some way. Teams reported divergent findings with contradictory 

substantive implications that could not be explained by differences in researchers’ expertise, prior 

beliefs, and expectations. This calls for greater humility and clarity in presentation of scientific 

findings. Idiosyncratic variation may also be a cause for why many hypotheses remain highly 

contested, particularly in large-scale social and behavioral research.  
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Organized scientific knowledge production involves institutionalized checks such as editorial 

vetting, peer-review, and methodological standards to ensure that findings are independent of the 

characteristics or predispositions of any single researcher1,2. These procedures should generate 

inter-researcher reliability, offering consumers of scientific findings assurance that they are not 

arbitrary flukes and that other researchers would generate similar findings given the same data. 

Recent meta-science research challenges this assumption as many attempts to reproduce the 

findings of previous studies failed3,4. In response, scientists discuss various threats to the reliability 

of the scientific process. 

These discussions tend to focus on a lack of reliability due to biases inherent in the 

production of science in practice. Pointing to both misaligned structural incentives and the 

cognitive tendencies of researchers5–7, this bias-focused perspective argues that systematic 

distortions of the research process push the published literature away from truth and accurate 

observation. This then reduces the probability that a carefully executed replication will arrive at 

the same findings. 

Here, we argue that the roots of reliability issues in science run even deeper systematically 

distorted research practices. We propose that to better understand why research is often non-

replicable or lacking inter-researcher reliability we need to account for idiosyncratic variation 

inherent in the scientific process. Our main argument is that researcher variability can occur even 

under rigid adherence to the scientific method, high ethical standards and state-of-the-art 

approaches to maximizing reproducibility. As we report below, even well-meaning scientists freed 

from pressure to distort results and provided with identical data may not reliably converge in their 

findings because of the complexity and ambiguity inherent to the process of scientific analysis.  

 

Variability in research outcomes 

The scientific process confronts researchers with a multiplicity of seemingly minor, yet nontrivial, 

decision points. Each of these decision points may introduce variability in research outcomes. An 

important but underappreciated fact is that this even holds for what is often seen as the most 

objective step in the process: working with the data after it has come in. This problem may become 

particularly acute with large social and behavioral observational data. Researchers can take many 

different paths in wrangling, analyzing, presenting, and interpreting their data. Literally millions 

of different analytical pathways are possible for any given dataset, as the number of choices grows 

exponentially with the number of cases and variables included8–10. 
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The bias-focused perspective on research reliability implicitly assumes that reducing 

incentives to generate surprising and sleek results would allow researchers to take a path that will 

lead to valid conclusions. This hope may have been too optimistic. While removing these barriers 

may prevent researchers from systematically taking invalid analytical paths8–11, this alone does not 

guarantee researchers will converge on paths leading to valid outcomes. They could also disperse 

in different directions in the ‘garden of forking paths’ (following the term popularized by Gelman 

and Loken8). We just do not know much about the reliability of the data-analytic process. 

A first approach to assessing and explaining data-analytical variation is to consider the 

individuals doing the data analysis: do their decisions vary based on how well-versed they are in 

applying relevant methods or their preexisting beliefs about what they will find? The competency 

hypothesis posits that researchers may make different analytical choices as a result of varying 

levels of statistical and subject expertise which leads to different judgments as to what constitutes 

the ‘ideal’ analysis in a given research situation. The confirmation bias hypothesis holds that 

researchers may make reliably different analytical choices as a result of differences in preexisting 

beliefs and attitudes, which may lead to justification of analytical approaches favoring certain 

outcomes post hoc. However, many other covert influences, large and small, may also lead to 

unreliable - and thus unexplainable, idiosyncratic variation in analytical decision pathways10. 

Crucially, even when distinct pathways appear equally reasonable to outsiders, seemingly minor 

variations between them may lead to widely varying outcomes. 

There is growing awareness of the dependence of findings on statistical modeling decisions 

and the importance of analytical robustness9,11,13,14. But only recently scientists began to assess 

whether researcher variability affects scientific outcomes in realistic settings, sometimes 

employing ‘many analysts, one dataset’ approaches. For instance, when 29 researchers tested if 

soccer referees were biased toward darker skin players using the same data, 29 unique model 

specifications were reported with empirical results ranging from modestly negative to strongly 

positive15. Most of these many analyst studies were small in scale, preventing the possibility for 

multivariate meta-analysis of their results16–18. Some of these studies focused on the development 

of narrow, field-specific methods of analysis17,19,20. The aforementioned ‘soccer study’ was 

conducted in a research environment deliberately obtuse from involved researchers’ substantive 

knowledge and foci. This strategy alleviates potentially biasing incentives or expectations but it 

also creates a less ecologically valid research setting. Nonetheless, these studies provide evidence 

that researchers are likely to come to a variety of results when provided with the same data and 
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hypothesis even after incentives are removed; however, they provide little information as to why 

this is the case or how much their unbiased decisions shape the outcomes.  

With most of these studies employing less than 30 researcher teams, reliable analysis of 

variance was either not possible or not even considered by the principal investigators. To 

circumvent this, the PIs of one study simulated researcher decisions to create a theoretical set of 

all outcomes that would have resulted had they had enough researchers to make all possible 

‘plausible’ choices, known as a metaverse analysis. They then meta-analyzed how those simulated 

decisions impacted the simulated outcomes and used this as analogous evidence for how decisions 

in the workflow impacted results21. The drawback of a simulation approach is that it is constructed 

based on a single data analysis pipeline from one research team and not likely reflective of the 

more complex reality of different research processes carried out by different teams, which involves 

minute and seemingly trivial decisions (e.g., the choice of statistical analysis software). 

A recent study by Botvinik-Nezer et al.20 upped the ante by getting together an impressive 

65 teams. This would appear to be enough to perform a multivariate analysis of outcome variance, 

and they were able to show two discrete factors that varied across teams could explain as much as 

4% of the variance in outcomes: the software package used and estimated smoothness (a factor in 

the statistical analysis of functional magnetic resonance imaging, which was the data type used in 

the study). This finding suggested that if we were to observe every step of each independent 

research teams’ workflows we might be able to explain even more of the outcome variance and 

arrive at a deeper understanding of variation, perhaps to the point where we could identify key 

moderator variables in the data that can explain why results go in a certain direction or have a 

certain size. Our study was designed to produce such knowledge.  

We expected that a large controlled study of many analyst teams, allowing for close 

observation of the workflows of each team through surveys, pre-defined tasks and careful 

qualitative analysis of their code, would provide the necessary information to explain why highly 

skilled and accuracy-motivated researchers arrive at widely differing results when analyzing the 

same data. We assumed that certain consequential and identifiable decisions taken in each team’s 

workflow such as their measurement strategy for the dependent and independent variables, 

selection of variables to include or omit in their models, estimation strategy and sample subsetting 

would explain how and why teams came to different results and conclusions. This would then 

allow us to examine how these decisions interacted to produce variation in the results of different 

researchers when they tested the same social science hypothesis with the same data. Meanwhile, 
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we also assumed there would be minor analytical decisions (e.g., robust clustering, listwise 

deletion, model specification) that would matter but only generate some noise at the margins. We 

expected we could adjudicate between minor and major decisions, in addition to controlling for 

potential sources of variance in findings by observing all decisions of each team as well as their 

methods expertise and preexisting beliefs about the hypothesis allow us to test, and control for, 

both the competency and confirmation bias explanations for variation in researchers’ data-

analytical decision-making. Using all decisions, competencies and beliefs as variables we expected 

to explain outcome variance using multivariate regression approaches. 

 

 

Design 

The principal investigators (PIs) coordinated a group of 162 researchers in 73 teams who were 

given a simple instruction: to test, independently from each other, a hypothesis that has been at the 

center of an “extensive body of scholarship”22. Namely, whether immigration reduces support for 

social policies among the public. The hypothesis a typical example of social science studies that 

often test complex and broad hypotheses that leave room for interpretation regarding the central 

concepts or quantities of interest23,24. For example in a classic study, economists Alberto Alesina 

and Edward Glaeser hypothesized that differences in North American and European social security 

systems trace back to immigration-generated ethnic diversity25,26. New waves of immigration 

subsequently led Alesina and hundreds of other scholars to apply this hypothesis to the potential 

retrenchment of these systems within Western Europe and across the globe. In short, the hypothesis 

given to participating teams was chosen because the PIs considered it influential and representative 

of the practices in contemporary social research, for example in sociology, economics, political 

science and geography27–32. 

To increase the ecological validity of the project, the PIs provided teams with survey data 

from the International Social Survey Programme which had recently also been used in a frequently 

cited study that investigated the same hypothesis.22 The ISSP is a long-running, high-quality, 

multi-country survey that is widely used in the social sciences. It includes a six-question module 

on different social policies and measures of stock and flow of immigrants by country and year that 

were analyzed in the original study (see Communications in Supplementary Materials for sampling 

details). To remove potentially biasing incentives, all participating researchers were ensured co-

authorship on the final paper regardless of their results. Before running their test models, 
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participants were given preparatory tasks to familiarize them with the topic and asked to develop 

and pre-submit a research design to the PIs. Moreover, the researchers participated in surveys 

before and after the project to capture predispositions and perceptions of the research process. 

Participating teams were instructed to report standardized marginal effect estimates, yet 

were autonomous to decide what models to run and report. The teams submitted a total of 1,261 

models, often following the template of the predecessor study which investigated this question 

with the same data and analyzed different policy attitude outcomes independently and using 

multiple model specifications.22 Participants also submitted substantive conclusions on whether 

the data supported or rejected the hypothesis. The analysis code was checked and then anonymized 

for public sharing by the PIs (Figs. S1,S2 and Tables S1,S2). Many teams submitted 12 models 

testing two different immigration measures predicting opinions about the six social policies (model 

N ranged from 1 to 124 models per team; mean = 17.3). 

 

Results 

Fig. 1 visualizes the substantial variation of results reported by 73 researcher teams who analyzed 

the same data. Results are diffuse. Little more than half the reported estimates were statistically 

not significantly different from zero at 95% CI, while a quarter were significantly different and 

negative, and 16.9 percent were significant and positive. 
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Fig. 1 Broad variation in findings from 73 teams testing the same hypothesis with 

the same data. The distribution of estimated average marginal effects (AME) across 

all converged models (N = 1,253) includes results that are negative (yellow, and in the 

direction predicted by the given hypothesis the teams were testing), not different from 

zero (grey) or positive (blue), using a 95% confidence interval. AME are XY-

standardized. Y-axis contains two breaks at +/-0.05. Numbers inside circles represent 

the percentage of the distribution of each outcome inversely weighted by the number 

of models per team (see Interactive Results). 

 

 

We observe the same pattern when we use the teams’ subjective conclusions rather than 

their statistical results. Overall 13.5% (12 out of 89) of the team conclusions were that the 

hypothesis was not testable given these data, 60.7% (54 out of 89) concluded the hypothesis should 

be rejected and 28.5% (23 out of 89) concluded the hypothesis was supported (see Figs. 

S5,S9,S10). Note that 16 teams reported two differing conclusions based on their interpretation of 

different model specifications causing the N to jump from 73 teams to 89 team-conclusions.  

We find that competencies and potential confirmation biases do not explain the broad 

variation in outcomes: researcher characteristics show no significant association with statistical 

results or even substantive conclusions (Fig. 2). Hence, it is not consistent with the data that 

outcome variability simply reflects a lack of knowledge among some participants or individual 

preferences for particular results.  
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Fig. 2 Researcher characteristics do not explain outcome variance between teams or within 

teams. The distribution of team average of AMEs (left panel) and within-team variance in AMEs 

(right panel) across researchers grouped according to mean-splits (“LOWER” and “HIGHER”) on 

methodological and topic expertise (potential competencies bias), and on prior attitudes toward 

immigration and beliefs about whether the hypothesis is true (potential confirmation bias). Log 

variance shifted so that minimum log value equals zero. Teams submitting only one model 

assigned a variance of zero. Pearson correlations along with a p-value (“R”) are calculated using 

continuous scores of each researcher characteristic variable. 

 

 

In the next step we attempted to locate the sources of outcome variability in the research 

process. We conducted an in-depth examination of all 1,261 models, which identified 166 research 

design decisions that were taken by at least one team. “Decision” here means any component of a 

model, for example measurement strategy, estimator, hierarchical structure, choice of independent 

variables and potential subsetting of the data (see Table S12). We found 107 identified decision 

points that were taken in more than two teams’ workflows. Strikingly, the varying presence of 
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these 107 common decisions in a dissimilarity matrix revealed that no two models were an 

identical combination (Table S4). 

In principle, variation in outcomes must reflect prior decisions of the researchers. Yet, Fig. 

3 shows that the 107 identified decision points explain very little of the variation. The major 

components of the identified researcher decisions explain less than a quarter of the variation in 

four measures of research outcomes. Most variance also remains unexplained after accounting for 

researcher characteristics or assignment to a small experiment (not reported in this study, see box 

“Assigned Conditions” in Fig. 3). Looking at total variance in the numerical results (top bar), 

identified components of the research design explain 2.6% (green segment) and researcher 

characteristics only account for a maximum of 1.2% of the variance. In other words, 95.2% of the 

total variance in results is left unexplained, suggesting that massive variation in reported results 

originated from idiosyncratic decisions in the data analysis process 
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Fig. 3 Variance in statistical results and substantive conclusions between and within teams 

is mostly unexplained by conditions, research design and researcher characteristics. 

Decomposition of variance from generalized linear, multilevel regression models. Numerical 

outcomes (AMEs) (top three bars), and explained deviance from multinomial logistic regressions 

using the substantive conclusions about the target hypothesis as the outcome (bottom bar) 

submitted by the research teams. We used informed stepwise addition and removal of predictors 

to identify which specifications could explain the most numeric variance (Table S6) and others 

that could explain the most subjective conclusion deviance (Table S7) while sacrificing the least 

degrees of freedom and maintaining the highest level of model fit based on log-likelihood and 

various information criteria. We also tested every possible combination as a sensitivity check. 

Assigned conditions were the division of participants into two different task groups and two 

different deliberation groups during the preparatory phase. Identified researcher decisions are the 

107 common decisions taken in data preparation and statistical modeling across teams and their 

models. Researcher characteristics were identified through a survey of participants and multi-item 

scaling using factor analysis (Fig S3). Many more other details throughout the Supplementary 

Materials. 

 

 

The share of explained variance is somewhat higher when looking at between-team results 

(second-from-top bar) but still 82.4% remained unexplained. Variance remains mostly 

unexplained when moving away from the numerical results and when we look at the substantive 
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conclusions that the researchers have drawn (bottom bar, 80.1% unexplained). It is noteworthy 

that even the percentage of test results per team that statistically support their conclusions, at least 

from a naïve 95% CI perspective, explain only about a third of the deviance in conclusions 

(salmon-colored segment, bottom bar), which points at variation in how different researchers 

interpret the same set of numerical results. Overall, the complexity of the data-analytic process 

leads to variation that cannot be easily explained even with a close look at researcher 

characteristics and researcher decisions.  

We confirmed the robustness of our results by automatically assessing every possible 

combination of model specifications. We ran separate regressions by dependent variable and a 

variance function regression to check if specifications impacted the variability of results within 

teams and to correct for potential heteroscedasticity (Tables S4,S9-S11). All results support the 

conclusion that nearly all of the variance in research outcomes is from idiosyncratic researcher 

variability - unique sets of analytical decisions taken for each model in each team. 

To gauge whether decisions explaining 2.6% of variance was a surprising finding or not, 

we ran a multiverse analysis. In this we found that using only 23 simulated decisions (dependent 

variable, three different test variable measurement strategies, an interaction of the previous two 

items, four different estimators, three different sample wave subsets, three different sample 

countries subsets, inclusion of up to three country-level ‘control’ variables and two different ways 

of introducing variance components) we could explain just over 16% of the variance in simulated 

numerical outcomes of 2,304 models (Table S8). This leaves a wide gap that we attribute to 

idiosyncratic researcher variability. 

 

Summary 

Results from our tightly controlled research design in a large-scale crowdsourced research effort 

involving 73 teams, demonstrate that offering the same data and hypothesis led to substantial 

variation in statistical estimates and substantive conclusions. Our finding of outcome variability 

echoes those of recent studies involving many researchers undertaken across scientific disciplines. 

It differs from these previous studies because it attempted to catalog every decision in the research 

process among each team and use those decisions and predictive modeling to explain why there is 

so much outcome variability. Every model was a unique combination of the 107 identified 

decisions taken across teams and across their models. In spite of this highly granular 
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decomposition of the analytical process we could only explain less than 2.6% of the variance in 

numerical outcomes. We also tested if expertise, beliefs and attitudes observed among the teams 

biased results and they explained little. Even highly skilled scientists motivated to come to accurate 

results varied tremendously in what they found based on the same provided data and hypothesis. 

Our conclusion is that the totality of research decisions in the research process remain undisclosed 

in the standard presentation and consumption of scientific results. We have tapped into a hidden 

universe of idiosyncratic researcher variability. 

Only many-analyst studies that observe researchers in their ecological environment can 

truly reveal this hidden universe. Simulations simply cannot capture the complexities and actual 

decisions taken by any given research team. For instance, a multiverse analysis allows for the 

decomposition of possible outcomes by simulating decisions, usually all possible combinations of 

a set of plausible decisions. Our own multiverse analysis explains about 16% of the variance in 

AMEs using a subset of consequential decisions. But we have no reason to believe that researchers 

would consider all possible combinations of certain decisions as plausible when they attempt to 

create a model of the data-generating process. Hence, previously used methods have failed to 

appreciate the role of both smaller and larger decisions researchers make in the research process 

that may be hidden from conscious awareness but are consequential for its outcomes, including 

the actual judgment calls they need to make about what they consider plausible analytical choices. 

 

Implications and limitations 

If researchers are responsible for assessing and communicating uncertainty, they should address 

sources of error. Their task is to recover a signal while attenuating noise as much as possible. 

Attenuation requires understanding the noise itself. In line with work that has demonstrated the 

implications of noise in human judgements33,34, our study raises awareness of noise in the research 

process and enhances our understanding of the nature and magnitude of idiosyncratic variation 

that results.   

Researchers must make analytical decisions so minute that they often do not register as 

decisions but go unnoticed as non-deliberate actions within ostensibly standard operating 

procedures. When taken as a whole, we show these hundreds of decisions are far from trivial and 

effect outcomes beyond the typically expected parsing or software-induced variabilities35,36. 

Moving forward from discussions of the reproducibility crisis in science, our findings suggest 



14 

 

reliability across researchers may remain low even when their accuracy motivation is high and 

biasing incentives are removed. Higher levels of methodological expertise, another frequently 

suggested remedy, did not reduce variance either. Hence, we are left to believe that noise is a 

fundamental feature of the scientific process that is not easily explained by typically observed 

researcher characteristics or analytical decisions. 

We believe that serious acknowledgment of idiosyncratic variation in research findings has 

at least three implications for improving presentation and interpretation of empirical evidence. 

First, contemplating that results would vary greatly if any given study had been conducted by a 

different set of researchers, or even the same researchers at a different time, underscores the 

uncertainty inherent in scientific outcomes. Drawing conclusions based on seemingly objective 

quantitative procedures therefore calls for epistemic humility. Second, the findings remind us to 

carefully document all analytical decisions, because the most seemingly minute could drive results 

in different directions. Third, countering the risk of defeatist notions, this study helps us appreciate 

the knowledge accumulated in those scientific fields where scientists do repeatedly converge on 

expert consensus - such as climate science or predictions of special relativity.  

At the same time, we see limitations. First, we do not know the generalizability of our 

ecological setting to different topics, disciplines or even datasets. A major segment of social 

science works with observational survey data and our results directly reflect this type of research. 

In experimental research, the data-generating model is often much clearer or simply involves less 

decisions. Moreover, in the social sciences there are no Newtonian laws or definite quantum 

statistical likelihoods to work with, suggesting our case might be less conservative than a similar 

study in the natural sciences. It remains to be seen whether these data are more or less prone than 

other data to idiosyncratic variance in scientific results. Second, although we hoped to offer deeper 

insights on the substantive hypothesis under observation, we did not obtain evidence that moves 

conclusions in any direction. The lessons combined with the fact that a substantial portion of 

participants considered the hypothesis not testable with these data, offer a potential explanation 

for why this is such a contested hypothesis in the social science literature22,29,37. It brings forth a 

final general call for more attention to conceptual, causal and theoretical clarity, and gathering new 

data when results no longer appear to move a substantive area forward23,24. Our study adds to the 

urgency of this call. For us to reap epistemic benefits from the present move towards open research 

practices, we must complement transparency with theoretical clarity. Future many-analyst studies 

should consider this before investing such large amounts of resources in a new study. 
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We hope that others will embrace the noisy component of scientific knowledge, not as 

disheartening but as simply helping us to understand what we do and do not know - which may be 

a basic goal of science to begin with. Our findings demonstrate that we need to do more work to 

understand the idiosyncrasies across researchers in the data analysis process and the differences in 

their subjective conclusions. Rather than signifying a ‘crisis’, we submit that such work will bring 

‘new opportunities and challenges’ for scientific advancement38–40. And that novel research and 

theories often arise out of contradictions41. 

We close by noting that the conclusions of this study were themselves derived from myriad 

seemingly minor analytical decisions, just like those we observed among the teams. We therefore 

encourage readers to scrutinize our analytical process and, to that end, provide robustness checks 

by taking advantage of the Supplementary Materials’ many additional figures and tables, complete 

reproduction files and a web-based interactive app that allow readers to easily explore the data 

themselves. 
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