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Background:Closed-source software for processing and analyzing accelerometer data provides little to no information about the
algorithms used to transform acceleration data into physical activity indicators. Recently, an algorithm was developed in
MATLAB that replicates the frequently used proprietary ActiLife activity counts. The aim of this software profile was (a) to
translate theMATLAB algorithm into R and Python and (b) to test the accuracy of the algorithm on free-living data.Methods:As
part of the INTErventions, Research, and Action in Cities Team, data were collected from 86 participants in Victoria (Canada).
The participants were asked to wear an integrated global positioning system and accelerometer sensor (SenseDoc) for 10 days on
the right hip. Raw accelerometer data were processed in ActiLife, MATLAB, R, and Python and compared using Pearson
correlation, interclass correlation, and visual inspection.Results:Data were collected for a combined 749 valid days (>10 hr wear
time). MATLAB, Python, and R counts per minute on the vertical axis had Pearson correlations with the ActiLife counts per
minute of .998, .998, and .999, respectively. All three algorithms overestimated ActiLife counts per minute, some by up to 2.8%.
Conclusions: A MATLAB algorithm for deriving ActiLife counts was implemented in R and Python. The different
implementations provide similar results to ActiLife counts produced in the closed source software and can, for all practical
purposes, be used interchangeably. This opens up possibilities to comparing studies using similar accelerometers from different
suppliers, and to using free, open-source software.
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Valid and reproducible measurements of physical activity are
important for the surveillance of physical activity and for population
health research (Hallal et al., 2012). Physical activity is commonly
measured using accelerometer devices (Bassett, Troiano,Mcclain, &
Wolff, 2015). Accelerometer devices provide measures of accelera-
tion in three dimensions at a timescale below changes in human
behavior (e.g., 0.01 s) for a relatively long, continuous observation
period (e.g., 7 days; Plasqui & Westerterp, 2007). Acceleration data
can be processed and used to derive a range of physical activity
indicators (Bassett et al., 2015). Typical indicators of physical
activity are the type of physical activity (e.g., walking), physical
activity intensity levels (e.g., categorization in sedentary behavior,
light, moderate, and vigorous physical activity per minute), or the
accumulation of physical activity over time (e.g., total daily volume
of physical activity; Bassett et al., 2015]).

Software programs are available for processing and analyzing
acceleration data using different types of methods including

Euclidean Norm Minus One (ENMO), Activity Index, and Acti-
Graph counts. For example, open-source software includes the
R-package GGIR (van Hees et al., 2019) and OMGui (Open Lab
at Newcastle University). The large number of different physical
activity indicators make comparisons between studies difficult, if not
impossible (Bai et al., 2016). ActiGraph accelerometers and software
(ActiGraph LLC, Pensacola, FL) have been used extensively in
health research (Bassett et al., 2015). Unfortunately, the dominance
of ActiGraph devices has led to a dependence in health research on
physical activity indicators calculated using the closed-source Acti-
Life activity counts measure and the ActiLife software. The depen-
dence on closed-source methods and software is a problem for
several reasons. First, researchers using devices other than the
ActiGraph cannot easily compare their results to a large body of
work that is based on ActiGraph accelerometers. This is unfortunate,
as other devices can be advantageous for health research because
they can be cheaper, smaller, easier to wear, and/or based on open-
source principles. Second, researchers cannot improve on the activ-
ity counts algorithm. The dependency on close-source software
therefore limits scientific knowledge.

In response, Brønd, Andersen, and Arvidsson (2017) have
developed an open-source algorithm for calculating activity counts
that replicate proprietary ActiLife activity counts and have made
the algorithm freely available (Brønd). Although some small
differences in raw accelerometer data have been found between
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different brands of devices (Hildebrand, Van Hees, Hansen, &
Ekelund, 2014; Rowlands & Stiles, 2012; Rowlands et al., 2015);
most accelerometer devices on the market include comparable
accelerometer integrated circuits. Therefore, Brønd’s algorithm
should, in theory, allow researchers to calculate activity counts
comparable to those obtained by ActiLife, independent of the
device. A drawback of the Brønd algorithm, is its implementation
in MATLAB (MathWorks, Natick, MA), a commercial signal
analysis software program, which is not open-source and not free
to use. One option to apply the Brønd algorithm is to use Octave
(Eaton, Bateman, & Hauberg, 2013), an open-source software
package that interprets code in the same way as MATLAB. How-
ever, as few health researchers use Octave, the aim in this article was
to provide implementation of the Brønd algorithm in commonly
used free, open-source programming languages R (R Core Team;
Vienna, Austria) and Python (Van Rossum & Drake, 1995).

In this software profile, the different stages of the Brønd
algorithm are presented. Second, results testing the MATLAB, R,
and Python activity counts in comparison to the ActiLife counts
on free-living data collected in Victoria, Canada, are presented.
We compared activity counts per second, and activity counts
summed per minute and per day. We further compared the activity
counts summed per minute, but now within three categories
according to their estimated activity intensity; that is, we com-
pared counts per minute (CPM) for minutes with sedentary
behavior (SB), for minutes with light physical activity (LPA),
and for minutes with moderate-to-vigorous physical activity
(MVPA), separately. In a final comparison, we examine the
detected time spent in the three levels of activity intensity levels
and the non-wear time. Finally, the results are discussed, and
strengths and limitations were acknowledged. It should be noted
that the objective of this software profile was not to promote
ActiLife activity counts as the best way to measure physical
activity; but rather to develop and publish a new tool to compare
results between different types of accelerometers and the large
body of previous ActiGraph-/ActiLife-based studies. The R
algorithm is published as an R package (Brondeel et al., 2019)
under a GNU General Public License and with ongoing support
by the authors (see R package for more details); the R and Python
implementations can be found freely online, alongside the origi-
nal MATLAB implementation (Brønd; INTERACT, 2019).

Short Overview of the Brønd Algorithm

The algorithm to calculate activity counts includes eight steps,
previously described in more detail (Brønd et al., 2017). How-
ever, if data are collected at a higher sampling frequency, a
preliminary step is to resample the data to 30 Hz. First, on
the 30 Hz data, a band-pass filter is applied, filtering out the
lowest and highest frequencies in the signal. Second, a standard
transfer filter is applied, using the filter coefficients provided by
Brønd et al (Brønd, 2019). Third, the data are resampled to
10 Hz, by selecting every third observation. Fourth, the data are
leveled off to a constant (2.13); that is, values higher than this
threshold were replaced by this value. In steps five and six, the
absolute values are taken, and the lowest values are replaced by a
constant (0.068). In the seventh step, the data are reduced to the
8-bit analog-to-digital converter resolution, which means the
values are floored (i.e., rounded to a lowest of predefined values)
to one of 128 values evenly spaced between 0 and 2.13. Finally,
the 10 values per second are summed, resulting in a measure of
activity counts per second.

Comparing the Three Implementations of
the Algorithm to the ActiLife Algorithm

Raw Accelerometer Data

To compare the MATLAB, R, and Python implementations of the
ActiLife activity counts algorithm to the ActiLife algorithm,
accelerometer data were used from 86 participants recruited for
the INTERventions, Research, and Action in Cities Team study
(Kestens et al., 2019). Participants were asked to wear a SenseDoc
device for 10 days on the right hip from waking to bedtime. The
SenseDoc device is an integrated global positioning system and
accelerometer sensor that has been used in previous research
(Kestens et al., 2016). It has similar accelerometer technology to
the ActiGraph GT3X. SenseDoc devices include ADXL345 accel-
erometers, while ActiGraph GT3X devices use ADXL335 accel-
erometers, both produced by Analog Devices, Inc (Norwood, MA).
Note, it is not known to us which internal circuit current models of
ActiGraph devices use. As the same algorithm is used to calculate
activity counts in ActiLife, we presume that the raw accelerometer
data are similar to the older GT3X device. Following settings
in SenseAnalytics (version 1.7; Montreal, Canada) were used to
initialize the SenseDoc devices: a measurement range of ±8 and a
sampling rate of 50 Hz. The SenseDoc (MobiSens, http://moby-
sens.com/) has a sensitivity of 4 mg/least significant bit.

Data Preprocessing

Raw accelerometer data in g units were extracted with the Sen-
seAnalytics software from SenseDoc devices, and stored in.csv
files. MATLAB, R, and Python codes worked directly with the.csv
files. For ActiLife, the raw accelerometer data were first converted,
using Python, to ActiGraph binary files (.gt3x). The code to
convert.csv-files to.gt3x-files is available upon request.

Data Processing

The raw data (.gt3x files) were processed using ActiLife to obtain
ActiGraph counts per second on one side. Brønd’s MATLAB and
our corresponding Python and R translations were applied to the
raw data (.csv files) to obtain comparable, but open-source activity
counts per second. The parameters (e.g., filter settings) are included
in the codes (Brønd; INTERACT, 2019) and are the same for each
programming language. However, the filters are implemented
slightly differently in each language, which may create differences
in the results.

Data Postprocessing

The activity counts from each of the four different processing
methods on the raw data (ActiLife, MATLAB, R, and Python) were
transformed into the following indicators using R (version 3.5.0, 64
bit; R core team, Auckland, New Zealand). Counts per second were
aggregated to CPM and counts per day by summing the counts for
these time units and this for each of the three axes. Physical activity
intensity levels were calculated using vertical axis CPM with the
following ranges: sedentary behavior (CPM 0–99), LPA (CPM
100–2,019), and moderate-to-vigorous physical activity (CPM ≥
2,020) (Troiano et al., 2008). Nonwear was detected with the
“PhysicalActivity” package, using the Choi algorithm (Choi, Cole,
Liu, Matthews, & Buchowski, 2018) on vertical axis CPM (Choi,
Ward, Schnelle, & Buchowski, 2012).
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Analysis

ActiLife activity counts for the total wear time were compared with
MATLAB, Python, and R activity counts at the second, minute,
and day level. CPM, counts per day, and counts per second were
compared with different agreement measures, including intra class
correlations (calculated in R with “irr” package and settings: “one-
way model” [row effects random]) and Pearson correlation coeffi-
cients. Bias was measured using mean difference, mean absolute
difference, and mean percentage absolute difference.

The CPM were compared within physical activity intensity
categories (SB, LPA, and MVPA), as detected with ActiLife
counts. The comparison of CPM within intensity categories was
necessary because agreement and bias measures of the overall
CPM could have been influenced by the high presence of zero CPM
values. Finally, ActiLife was compared with the three algorithms
on its categorization of CPM into nonwear and the three activity
intensity levels, using a cross-tabulation. Due to the high corre-
spondence, no diagnostic testing, such as sensitivity and specific-
ity, were calculated.

Results

A total of 86 people who used a bicycle at least once per month
provided data for this study, 52% were female, and the median age
was 42 years (interquartile range = [33; 55]). The data included 749
valid days (at least 10-hr wear time) and 649,301 observed minutes
of data.

Table 1 presents the bias and agreement measures for counts
per day, CPM, and counts per second on the vertical axis; com-
paring MATLAB, Python, and R on one hand, and ActiLife counts
on the other hand. Pearson correlations and intraclass correlation
coefficients were all above .985 for counts per second, exceeded
.998 for CPM, and were greater than .998 for counts per day.

The CPM on the vertical axis is commonly used to detect
nonwear and to determine activity intensity levels. The vertical
CPM measures were further investigated. Figure 1 represents the
associations for CPM using scatter plots. Visual inspection of
Figure 1 shows the strong, linear correlations of MATLAB,
Python, and R CPM with ActiLife CPM. Many dots on the plot
are on the diagonal line or very close. In general, R, MATLAB, and
Python CPM were slightly higher than ActiLife CPM. The largest
deviations can be seen for a few observations, which underestimate
ActiLife CPM. It should be noted, however, that the scatter plots
include a preponderance of overlapping points, and the points at the
extremes represent a small, nearly insubstantial portion of the total
number of observations (total n = 649,301). Note, for the same
reason Bland–Altman plots were not presented. The general over-
estimation of CPM by the three new algorithms compared with
ActiLife can also be noted in Table 1. The mean differences
between ActiLife CPM and MATLAB, R, and Python CPM
(biases) are 4.58, 6.96, and 10.8 CPM, respectively. This corre-
sponds to 1.2%, 1.8%, and 2.8% of the mean ActiLife CPM during
wear time.

Table 2 presents the Pearson correlations between vertical axis
CPM within three intensity levels of physical activity, SB, LPA,
and MVPA. The intraclass correlation coefficient and correlations
between Python, R, and MATLAB CPM compared with ActiLife
CPM all exceeded .975. The lowest agreement was found for
counts during SB. This might be explained by the fact that the
algorithm has been optimized in lab settings, where there are
typically higher levels of activity. However, further investigation

is required to confirm this hypothesis and not within the scope of
this paper. The R CPM had the highest agreement with the ActiLife
CPM, compared with MATLAB and Python CPM. R CPM also
resulted in the highest bias measurements of the three algorithms,
with a mean deviation from ActiLife CPM of 1.6%, 1.9%, and
2.5% for CPM during SB, LPA, and MVPA, respectively. The
mean deviation from ActiLife CPM during SB, LPA, and MVPA
was 1.1%, 0.9%, and 1.6% for MATLAB and 0.8%, 1.8%, and
1.9% for Python.

Finally, the algorithms were compared with respect to detect-
ing activity intensity levels. The cut points presented above were
applied to the CPM obtained from ActiLife and the MATLAB, R,
and Python implementations of the algorithm. Using ActiLife
counts, 46% of observations were detected as nonwear. During
wear time, the participants performed SB for 63% of the time
(546 min/day on average), LPA 32% of the time (278 min/day on
average), and MVPA 5% of the time (43 min/day on average).
Table 3 shows a high correspondence (99% or higher) between the
SB and MVPA detected using ActiLife counts and, R, MATLAB,
and Python counts. For LPA, the algorithms corresponded highly
with ActiLife (97% or higher). Finally, the detection of nonwear
was independent of the algorithms, with algorithms correspond-
ing 100%.

Discussion

Recently, Brønd and colleagues published an open-source method
to calculate ActiLife counts in MATLAB (Brønd et al., 2017). The
purpose of this article was to present implementations of the
MATLAB code in R and Python, two free and widely used
statistical programs. The accuracy of the algorithms in replicating
ActiLife counts was tested in free-living conditions. It should be
noted that the aim was not to promote activity counts as the most
accurate way to capture bodily movement from accelerometer data,
but rather provide a tool to compare results from new studies to
older studies using ActiLife counts.

Based on indicators of bias and covariance, all algorithms
provided activity counts that were similar to ActiLife counts. In all
algorithms, there was a slight tendency to overestimate ActiLife
counts. The data processing from raw data to activity counts can
therefore be conducted in any of the programming languages
reliably and consistently. The derived physical activity intensity
indicators SB, LPA, and MVPA were similar when comparing the
three new algorithms to ActiLife counts. Decisions about health
outcomes would be unaffected by the choice of programming
language. Being able to apply this algorithm to raw accelerometer
data gives researchers an extra tool to compare their data to
previously collected ActiGraph data, especially when the raw
data from older studies may not be readily available. As the
majority of accelerometers allow raw data collection in g units,
this algorithm could be applied to newly collected data. Differences
in device design, in the wear of the device (e.g., type of attachment
to the body), sample rates, and study protocols, will still need to
be taken into consideration when performing such comparisons.
Finally, readers should note that older ActiGraph devices
(e.g., ActiGraph 7164) directly produced counts, instead of pro-
viding raw accelerometer data that were then transformed to counts
using the ActiLife software. These device-based counts are not
necessarily the same as ActiLife activity counts (Cain, Conway,
Adams, Husak, & Sallis, 2013). Comparison between our newly
implemented methods and counts from these older devices should
be done cautiously.
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The different implementations do not result in exactly the same
CPM, even though the overall steps in the algorithm are identical.
The reason is the implementation of the signal processing filter and
resampling functions, which are used to filter nonhuman accelera-
tion from the raw data. The original MATLAB code—like the R

and Python codes—uses a resampling function (in case the sample
rate is not 30 Hz) and two signal filters successively, an aliasing
filter and a frequency band-pass filter (Brønd et al., 2017). Unfor-
tunately, these functions are implemented slightly differently in the
three programming languages. Testing the differences between

Table 1 Comparing ActiLife With MATLAB, Python, and R Vector Magnitude Counts per Day, per Minute, and per
Second During Wear Time

ActiLife counts per
day

ActiLife counts per
minute

ActiLife counts per
second

Agreement

Pearson correlations

MATLAB .998 .998 .987

Python .998 .998 .986

R .999 .998 .986

ICC

MATLAB .998 .998 .987

Python .998 .998 .986

R .998 .998 .986

Bias

Means

ActiLife 336,679
[94,054; 951,386]

388
[0; 3,314]

6.473
[0; 71]

MATLAB 342,798
[95,888; 947,140]

393
[0; 3,417]

6.551
[0; 73]

Python 342,798
[96,342; 952,321]

395
[0; 3,430]

6.591
[0; 74]

R 345,971
[97,677; 958,575]

399
[0; 3,440]

6.652
[0; 74]

Mean difference
[quantiles: 2.5; 97.5]

MATLAB 4,053
[−9,164; 19,229]

4.675
[−41; 114]

0.078
[−4; 6]

Python 6,119
[−7,923; 23,673]

7.059
[−35; 126]

0.118
[−4; 6]

R 9,292
[702; 26,184]

10.719
[−27; 135]

0.179
[−5; 7]

Mean absolute difference
[quantiles: 2.5; 97.5]

MATLAB 7,331
[402; 27,510]

16.369
[0; 125]

0.809
[0; 8]

Python 9,009
[850; 29,624]

17.442
[0; 136]

0.814
[0; 8]

R 10,430
[1,628; 28,251]

17.888
[0; 140]

0.919
[0; 9]

Mean percentage absolute difference [quantiles: 2.5;
97.5]

MATLAB 2.043
[0.186; 3.969]

7.087
[0.000; 60.000]

5.128
[0.000; 60.000]

Python 2.649
[0.341; 4.625]

7.298
[0.000; 63.612]

5.214
[0.000; 60.000]

R 3.164
[0.989; 4.861]

7.598
[0.000; 60.000]

5.885
[0.000; 69.231]

N 749 649,301 38,958,061

Note. Bias = differences in means between MATLAB, Python or R counts, and ActiLife counts. N days = 749; n minutes (wear time only) = 649,301; n seconds =
38,958,060 (n minutes × 60). ICC = intraclass correlation coefficient.
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Figure 1 — ActiLife vertical axis CPM versus MATLAB (a), Python (b) and R (c) vertical axis CPM. CPM= counts per minute; SB = sedentary
behavior (ActiLife CPM 0–99); LPA = light physical activity (ActiLife CPM 100–2,019); MVPA = moderate-to-vigorous physical activity (ActiLife
CPM ≥ 2,020).

Table 2 Comparing ActiLife With MATLAB, Python, and R Vector Magnitude CPM During SB, LPA, and MVPA

ActiLife CPM during SB ActiLife CPM during LPA ActiLife CPM during MVPA

Agreement

Pearson correlations

MATLAB .985 .996 .993

Python .978 .996 .993

R .985 .998 .995

ICC

MATLAB .985 .995 .992

Python .978 .995 .992

R .984 .996 .994

Bias

Means
[quantiles: 2.5; 97.5]

ActiLife 10.187
[0; 82]

577.317
[109; 1,779]

3,956.053
[2,061; 9,536]

MATLAB 10.076
[0; 82]

582.397
[105; 1,825]

4,018.673
[2,107; 9,263]

Python 10.106
[0; 83]

587.746
[106; 1,832]

4,031.736
[2,117; 9,270]

R 10.343
[0; 84]

595.108
[109; 1,848]

4,054.868
[2,128; 9,452]

Mean difference
[quantiles: 2.5; 97.5]

MATLAB −0.111
[−8; 7]

5.080
[−70; 83]

62.620
[−328; 220]

Python −0.081
[−8; 7]

10.429
[−60; 96]

75.684
[−324; 241]

R 0.156
[−8; 9]

17.791
[−45; 109]

98.815
[−177; 283]

(continued)
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the MATLAB code and R code step-by-step, the major difference
was in the resampling step. Where MATLAB uses an antialiasing
low-pass filter in the resampling function (Center, 2020), the R
code uses a simple nearest neighbor technique (Signal developers,
2014). Currently, the exact copy of the MATLAB resample
function has not yet been implemented in R. In Python, there is
a filter included in the resample function, comparable to—but not
exactly the same as—the filter included in the MATLAB resample
function. Comparing the MATLAB to the Python results step-by-
step, small differences were found in both the resampling and the
filtering; even though the differences were smaller compared with
the differences between MATLAB and R. MATLAB is closed-
source software, as a result it was not possible to find a perfect
solution for the differences in implementation. Given the small
average differences in the activity counts calculated with the three
different programming languages, these languages can, for all
practical purposes, be used interchangeably.

A strength of the comparisons provided in this article is the use
of data obtained from free-living adults. The data represent mea-
sures of movement during a large range of physical behavior. One
disadvantage of using this data is the use of a single device in
combination with a fixed set of device settings. For example, data

obtained at different sampling frequencies might result in activity
counts that are more or less divergent between the programming
languages. This is because ActiLife handles the filtering of acceler-
ometer data differently depending on the sampling frequencies
(Brønd & Arvidsson, 2016; Clevenger et al., 2019). The influence
of this issue on our results is likely small given that these high
frequencies are typically registered at high-speed running (or similar
behavior), which is not common behavior in this data set. However,
it might be a more important issue in other populations
(e.g., observations of professional athletes during training sessions).

Conclusions

A method recently developed in MATLAB to calculate ActiLife
counts was successfully implemented in R and Python, two
open-source programming languages. Free, open-source soft-
ware and our newly published method to replicate ActiLife
activity counts in MATLAB, R, and Python can be applied
on data obtained from different accelerometer brands and may
allow researchers to reduce the costs of accelerometer studies,
while still being able to compare their results to previously
obtained results using proprietary ActiLife activity count mea-
sures. The authors do not promote the use of activity counts per
se, as other physical activity indicators derived from acceler-
ometer data might be better able to characterize bodily move-
ment. The R package and Python code do provide an extra tool
for comparing study results.
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