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Metagenomic sequencing is a promising method that has the potential to 
revolutionize the world of pathogen detection and antimicrobial resistance 
(AMR) surveillance in food-producing environments. However, the analysis of 
the huge amount of data obtained requires performant bioinformatics tools and 
databases, with intuitive and straightforward interpretation. In this study, based 
on long-read metagenomics data of chicken fecal samples with a spike-in 
mock community, we proposed confidence levels for taxonomic identification 
and AMR gene detection, with interpretation guidelines, to help with the analysis 
of the output data generated by KMA, a popular k-mer read alignment tool. 
Additionally, we  demonstrated that the completeness and diversity of the 
genomes present in the reference databases are key parameters for accurate 
and easy interpretation of the sequencing data. Finally, we explored whether 
KMA, in a two-step procedure, can be used to link the detected AMR genes to 
their bacterial host chromosome, both detected within the same long-reads. 
The confidence levels were successfully tested on 28 metagenomics datasets 
which were obtained with sequencing of real and spiked samples from fecal 
(chicken, pig, and buffalo) or food (minced beef and food enzyme products) 
origin. The methodology proposed in this study will facilitate the analysis of 
metagenomics sequencing datasets for KMA users. Ultimately, this will contribute 
to improvements in the rapid diagnosis and surveillance of pathogens and AMR 
genes in food-producing environments, as prioritized by the EU.
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1 Introduction

In the context of diagnosis, the methods currently used for 
pathogen detection and characterization and outbreak investigation 
or surveillance are mainly reliant on culture-based approaches that are 
time-consuming. These conventional techniques are targeted and 
hence limited to few pathogens and their related antimicrobial 
resistance (AMR) and virulence genes, all prioritized based on their 
level of risk or pathogenicity. Additionally, only one or a few isolates 
obtained from the sample are often characterized by culture-based 
methods. Thus, these approaches cannot provide the full picture of all 
the pathogens and AMR genes present in a sample. The increasing 
burden of AMR is not limited to healthcare systems but spreads also 
in food-producing environments. Considering this, untargeted 
techniques are needed for surveillance and rapid detection of resistant 
food-borne pathogens from a One Health perspective (Torres et al., 
2021; Pennone et al., 2022; Pillay et al., 2022). Shotgun metagenomics, 
i.e., untargeted sequencing of all DNA material present in a sample, is 
a valuable tool to profile the composition of microbial communities 
for the identification of potential pathogens and AMR genes, as shown 
with short read-sequencing (Illumina) (Bengtsson-Palme, 2017; 
Oniciuc et al., 2018; Pillay et al., 2022). Therefore, the EFSA BIOHAZ 
panel considered, in one of their opinions, the use of this technology 
for outbreak investigation and risk assessment (EFSA Panel on 
Biological Hazards et al., 2019). Moreover, with this technique, the 
selection and dissemination of AMR in microbiomes of food-
producing animals and their environments can be  better studied 
using, for instance, fecal samples as a proxy, to track horizontal gene 
transfer between commensal and pathogenic bacteria (Bengtsson-
Palme, 2017; Torres et  al., 2021). Long-read sequencing (Oxford 
Nanopore Technologies, ONT) can also be used for pathogen and 
AMR detection by shotgun metagenomics (Pennone et al., 2022; Pillay 
et al., 2022). Oxford Nanopore technology is portable, generating 
sequencing results in real-time and making on-site use possible, 
without the need to send samples to centralized sequencing 
laboratories using big laboratory equipment (Leggett and Clark, 2017). 
This has the potential to facilitate real-time detection of pathogens 
carrying AMR genes in the food chain, to implement appropriate 
treatment options and improve risk assessment by monitoring the 
spread of AMR genes within the microbiome (Gardy and Loman, 
2018; Lamb et al., 2020).

Due to the huge amount of data generated by shotgun 
metagenomics sequencing, it is essential to have efficient 
bioinformatics tools for data analysis. Moreover, the relatively easy use 
of the ONT technology needs to be combined with easy and unbiased 
data interpretation. Several bioinformatics tools and databases exist 
for bacterial taxonomic identification and AMR gene detection 
(Breitwieser et  al., 2019; Pillay et  al., 2022). They can roughly 
be separated into two groups: read-mapping-based and assembly-
based. The assembly-based approach can be resource-demanding, and 
in the context of gene detection, poor assembly quality or gene split 

between multiple contigs can return erroneous results (Pillay et al., 
2022). The direct mapping of reads against large databases containing 
reference genomes or genes of interest has been demonstrated to 
be  accurate, fast, and resource-efficient when applied to Illumina 
sequencing data from bacterial isolates (Clausen et al., 2016). The 
open-source bioinformatics tool k-mer alignment (KMA) is a fast read 
mapper using k-mer alignment and has been proven to be  more 
performant in accuracy and speed in comparison with other classifiers 
(Clausen et al., 2018; Marcelino et al., 2020). Notably, it has been 
widely used in studies for metataxonomics (16S/18S rRNA) and AMR 
gene identification from metagenomics samples sequenced with 
short-read technologies (Sturød et  al., 2020; Horie et  al., 2021; 
Speksnijder et al., 2022; Stege et al., 2022). Using a scoring scheme 
named ConClave, KMA is able to overcome the difficulties 
encountered when using a redundant database, such as SILVA for 
metataxonomics and ResFinder for AMR detection (Clausen et al., 
2018). Recently, KMA has also been integrated into the CCMetagen 
pipeline, to improve output data filtering and visualization, and 
applied to taxonomic classification using large databases containing 
full genomes (Marcelino et al., 2020). Finally, KMA has also been 
employed with long-read technology in metagenomics studies 
including targeted sequencing, DNA enrichment, and in combination 
with short-reads (Kinoshita et al., 2021; Kirstahler et al., 2021; D’aes 
et al., 2022; Schulz et al., 2022; Teudt et al., 2022). Based on these 
observations, KMA is an efficient tool to be  included in a rapid 
protocol for bacterial species and AMR gene identification based on 
sequencing approaches. However, in the aforementioned studies using 
KMA, a large variety of settings and confidence thresholds were used 
to analyze and interpret the data, often without a clear justification of 
what motivated the choice of these criteria. Indeed, the choice of 
optimal parameters and database, to use with bioinformatics tools and 
the validated confidence thresholds to filter the output data and avoid 
false positive results, is not always clearly communicated or extensively 
tested (Breitwieser et al., 2019; Wright et al., 2023). However, these 
parameters have a critical impact on the results and their correct 
interpretation. Moreover, the interpretation of the bioinformatics 
output results, usually aiming at answering as simple questions as 
“Does my sample contain pathogen(s) carrying AMR gene(s)?,” is not 
always straightforward. Therefore, more knowledge is needed about 
the impact of parameters, thresholds, and databases on the generation 
of true and false positive results when using bioinformatics tools, such 
as KMA (Smith et  al., 2022; Wright et  al., 2023; Xu et  al., 2023). 
Furthermore, guidelines for clear and easy interpretation, which are 
currently lacking, are needed to allow reliable detection of pathogens 
and their AMR genes in metagenomics samples. Finally, KMA has 
mostly been used with short-read sequence data, and more studies are 
needed to investigate the feasibility of using this tool with long reads 
solely for pathogen and AMR detection by shotgun metagenomics.

In the present study, we aimed to facilitate for KMA users the 
interpretation of the analysis results that are generated from ONT 
metagenomics for bacterial taxonomic identification and AMR 
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detection. To this end, we  first evaluated the impact of the 
completeness of the template genomes in the KMA database on the 
correct interpretation of the species identification, leading to some 
guidelines on which the database is used. Subsequently, we proposed 
confidence thresholds to filter the KMA output data for the correct 
detection of pathogens potentially carrying AMR genes, with 
recommendation for complementary analyses to confirm or reject 
the detection if needed. To make this evaluation, we used defined 
microbial mock communities of known composition, abundance and 
AMR gene content. These mock communities were used in “pure” 
status and “spiked” in chicken fecal material. The obtained samples 
were sequenced using ONT (long-read) with different levels of 
multiplexing, and analyzed with KMA for taxonomic classification 
and AMR gene detection. The “unspiked” matrix was also analyzed. 
From these experiments, KMA settings and confidence threshold 
were selected and subsequently tested on 28 sequencing datasets. 
Additionally, we  explored the possibility of using KMA to link 
detected AMR genes to their bacterial host chromosome.

2 Materials and methods

2.1 Sample preparation

A commercial defined microbial mock community, containing 14 
bacteria, one archaeon, and their related AMR genes, if any, at various 
concentrations (Supplementary material S1), was used throughout 
this study: the ZymoBIOMICS Gut Microbiome Standard D6331 
(GMS) (Zymo Research, Irvine, United States). Five different strains 
of Escherichia coli were present in the standard, each at 2.8%, reaching 
an abundance of 14% for the species. Although the GMS also contains 
two fungal strains (not shown in Supplementary material S1), those 
fungal strains were not investigated as the present study focused on 
bacteria and detection of their AMR genes. Species composition of the 
GMS and relative abundance were provided by the manufacturer. 
AMR gene composition of each GMS strain was determined by 
analyzing their reference genome sequence (as communicated by the 
manufacturer: https://s3.amazonaws.com/zymo-files/BioPool/D6331.
refseq.zip; accessed in January 2022) and performing AMR gene 
detection (at the nucleotide level), as described by Bogaerts et  al. 
(2019) against the ResFinder database (Zankari et al., 2012) with the 
following parameters: minimum coverage 60% and minimum 
percentage identity 90%. All identified AMR genes were found with 
100% coverage and more than 97% of identity (Supplementary  
material S2).

The GMS was either analyzed “pure” or “spiked” into a matrix. 
For the “pure” condition, 75 μL of the GMS (≈ 2.96 × 108 cells in 
total, stored in DNA/RNA shield 2x concentrate) was mixed with 
75 μL of DNA/RNA nuclease-free distilled water (Thermo Fisher 
Scientific, Waltham, United States) and 50 μL of DNA/RNA shield 
1x (R1100; Zymo Research, Irvine, United States). The same was 
applied for the “spiked” condition, except for that 100 mg of chicken 
fecal material was added to the mixture. Finally, a third mix, named 
“unspiked,” was prepared with 100 mg of chicken fecal material 
(from the same fecal sample used for “spiked” condition) and 
200 μL of DNA/RNA shield 1x (R1100; Zymo Research, Irvine, 
United States).

2.2 DNA extraction

Total genomic DNA was extracted from the “pure,” “spiked,” and 
“unspiked” samples using a kit previously used for metagenomics 
ONT sequencing [Quick-DNA HMW MagBead kit (Zymo Research, 
Irvine, United  States; Gand et  al., 2023)] with the following 
modifications: (i) during microbial lysis, enzymatic digestion (step 6) 
was performed with 20 μL of a 5 mg/mL solution of MetaPolyzyme 
(Sigma–Aldrich, Saint-Louis, United States) for 1 h at 37°C (instead 
of lysozyme), and proteinase K digestion (step 9) was performed for 
30 min; (ii) during DNA purification, incubation time with the 
MagBinding Beads (step  4) was extended to 20 min, and elution 
(step 18) was performed for 10 min at 55°C to maximize the recovery 
of long fragments.

The DNA yield and fragment length were measured using the 
Invitrogen Qubit 4 Fluorometer (Thermo Fisher Scientific, Waltham, 
United  States) with Qubit dsDNA HS Assay Kit (Thermo Fisher 
Scientific, Waltham, United States) and the 4200 TapeStation System 
(Agilent, Santa Clara, United  States), with the Genomic DNA 
ScreenTape and reagents (Agilent, Santa Clara, United  States), 
respectively. For “spiked” and “unspiked” samples, sufficient DNA, 
with average fragment size comprised between 56,000 bp (“unspiked” 
sample) and > 60,000 bp (“spiked” sample), was obtained for the 
preparation of two ONT libraries. Concerning the “pure” GMS 
sample, DNA extraction was performed twice to get enough DNA for 
the two libraries, and the obtained average fragment length was 
comprised between 29,000 bp (1st extract) and 37,000 bp (2nd extract) 
(Supplementary material S3).

2.3 ONT sequencing

For the singleplex experiment, the library preparation was 
performed using the Ligation sequencing kit for genomic DNA (SQK-
LSK109) (Oxford Nanopore Technologies, Oxford, United Kingdom) 
with 1 μg of DNA as input. The generated libraries were then loaded 
on a Spot-ON MinION flow cell (FLO-MIN 106D, R9.4.1 version) 
(Oxford Nanopore Technologies, Oxford, United Kingdom) with one 
sample (“pure,” “spiked,” or “unspiked”) per flow cell. Sequencing was 
performed on the Mk1C device (Oxford Nanopore Technologies, 
Oxford, United Kingdom) for 72 h with live-basecalling turned off. 
The same method was used for the triplex experiment, except that the 
native barcoding expansion kit (EXP-NBD104) (Oxford Nanopore 
Technologies, Oxford, United Kingdom) was used for multiplexing 
the “pure,” “spiked,” and “unspiked” samples into a barcoded library 
which was loaded onto one MinION flow cell.

Raw sequencing data were basecalled and demultiplexed using 
Guppy version 5.0.7 (Oxford Nanopore Technologies, Oxford, 
United Kingdom) on a GPU server in super high accuracy mode with 
config file dna_r9.4.1_450bps_sup.cfg. Trim strategy was set to DNA, 
and qscore filtering was disabled. The basecalled reads were 
subsequently filtered with NanoFilt version 2.8.0 (De Coster et al., 
2018), to obtain high-quality reads with minimum quality score and 
length equal to 10 and 500 bp, respectively. The data are available on 
the NCBI Sequence Read Archive (SRA) repository under the 
BioProject ID PRJNA1031997. Statistics of the filtered high-quality 
reads were obtained with NanoPlot version 1.36.2 (De Coster et al., 
2018) (Supplementary material S4).
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2.4 KMA databases

k-mer alignment requires a reference database that is indexed. 
This database contains the template reference sequences against which 
the reads will be mapped. Some of the KMA databases used in this 
study (abbreviated with the nomenclature “name_db” throughout the 
manuscript) were downloaded, already indexed, and ready to use. 
Alternatively, sequences (FASTA format) were indexed into a KMA 
database using kma_index (included in KMA tool; Clausen et al., 
2018) with default options. All the databases used in this study are 
available upon request.

The GMS_db is composed of the genome sequences belonging to 
the different strains included in the GMS. This database was indexed 
using the sequences provided by ZymoResearch and was accessible 
here: https://s3.amazonaws.com/zymo-files/BioPool/D6331.refseq.zip 
(accessed in January 2022).

The RefSeqFull_db and RefSeqComplete_db were indexed with 
kma_index from sequences downloaded in January 2019 from NCBI 
and manually curated at Danmarks Tekniske Universitet (DTU) using 
the criteria described by Osakunor et al. (2020). In brief, the sequences 
were downloaded via NCBI GenBank clade specific assembly_
summary.txt files.1 The sequences were selected from the assembly_
summary.txt file with the tags version_status = “latest,” genome_
rep = “Full,” and assembly_level = “Complete genome” or 
“Chromosome.” Then, the additional tag refseq_
category = “representative genome” for the RefSeqFull_db was also 
selected. As such, the RefSeqComplete_db was composed of complete 
bacterial genomes, i.e., complete and chromosome assembly levels 
only, and the RefSeqFull_db was composed of complete and partial 
bacterial genomes, i.e., complete, chromosome, scaffold, and contig 
assembly levels. No plasmids were included. Next, almost identical 
genomes were removed from the two databases by filtering out with 
dRep (Olm et al., 2017); all sequences had more than 99% of similarity 
with other sequences, keeping only one each time. Finally, the 
RefSeqComplete_db was trimmed to keep only clinically relevant 
species, i.e., all the strains from the Two Weeks in the World (TWIW) 
collection (Nag et al., 2023). After curation, the RefSeqFull_db was 
composed of 944,390 sequences belonging to 18,999 unique species 
that are shown in Supplementary material S5. The RefSeqComplete_
db was composed of 12,335 sequences belonging to 2,926 unique 
species that are shown in Supplementary material S6.

The RefSeqComplete_db did not contain sequences belonging to 
three of the GMS species, i.e., Veillonella rogosae, Prevotella corporis 
(no complete genome sequences available in NCBI at the time of the 
database construction), and Methanobrevibacter smithii (filtered out 
during the trimming of the database, see above). The RefSeqFull_db 
did not contain sequences belonging to one of the GMS species, i.e., 
Veillonella rogosae. The farmed_db was composed of the 
RefSeqComplete_db, to which RefSeq complete genome sequences 
belonging to M. smithii (GCF_000016525.1, GCF_002813085.1, 
GCF_022846175.1, and GCF_022846155.1) and RefSeq draft 
incomplete genome sequences (contigs or scaffolds) belonging to 
V. rogosae (GCF_002959775.1) and P. corporis (GCF_001546595.1, 

1 ftp://ftp.ncbi.nlm.nih.gov/genomes/genbank

GCF_000430525.1, and GCF_022713225.1), three GMS species which 
were missing from this database, were appended using the option 
-t_db in kma_index. For V. rogosae and P. corporis, no complete 
genome sequences were available in RefSeq when the farmed_db was 
created (June 2022).

Finally, for antimicrobial resistance, the ResFinder database 
(ResFinder_db of August 2020) was used to assign antimicrobial 
resistance genes to all our microbiomes.

2.5 KMA analysis

k-mer alignment version 1.4.4 was used with the filtered long-
read sequencing data, and the following options are described 
hereinafter. Circular alignment was allowed with -ca. Each read 
was mapped to only one template with −1 t1 (preferred for the 
determination of a “best hit,” see below). The -proxi parameter 
was set to 0.9. Additionally, the minimum template identity (-ID) 
was set loose to 0.01, as the output data were subsequently 
evaluated according to confidence threshold (see section 3.2). The 
option -mem_mode was included to save memory because large 
databases were used. In addition, to save computational time and 
resources, no alignment (−na) and consensus (−nc) files were 
generated. Finally, KMA settings optimized for long reads 
included -bc set to 0.7 and -bcNano (https://bitbucket.org/
genomicepidemiology/kma/src/master/README.md; accessed 
on June 2023). The detailed specification of KMA can be assessed 
here: https://bitbucket.org/genomicepidemiology/kma/src/
master/KMAspecification.pdf; accessed on June 2023. From the 
result file (.res) generated by KMA (available upon request), the 
“best hit” per bacterial species or AMR gene, i.e., the template 
having the highest depth, was extracted with its corresponding 
mapping statistics: template name, template identity, template 
length, and depth value. The result (.res) file containing these 
statistics can be imported and further processed in any tabular 
software (such as Excel), where the confidence thresholds 
developed in section 2.6 can be applied to filter the KMA template 
results per level of confidence detection.

2.6 Determination of KMA confidence 
threshold using specificity evaluation

The detection confidence thresholds were determined using the 
true positive (TP) and false positive (FP) hits. For the “pure” and 
“spiked” samples, when KMA reported mapping statistics (depth, 
template identity, and template length) for a best hit belonging to one 
of the species or AMR included in the GMS, this was considered as a 
TP. For the “pure” sample, when KMA reported mapping statistics for 
a best hit not belonging to one of the GMS species or their AMR, this 
was considered as an FP. The investigation of FP was not performed 
for the “spiked” sample as the background microflora contained 
non-GMS species, which were unknown. Based on this result 
clustering excluding the FP while including the TP, the confidence 
thresholds were derived from the mapping statistics.
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2.7 Linking AMR gene detection and 
species identification

To establish the link between AMR gene detection and species 
identification, a two-step KMA procedure was performed with the 
steps presented in this section. The first-step KMA analysis was 
performed using the command line described in section 2.5 and a 
taxonomic database, i.e., the GMS_db or the farmed_db, for bacterial 
species detection. Then, all the reads attributed to the species of 
interest were extracted from the sequencing dataset. For doing this, all 
the read identifiers linked to this species were extracted from the 
fragment file (.frag) and generated by KMA (using grep with “species 
name” as argument and cut to extract the read ID from the 7th field of 
each line retrieved by grep), to make an identifier list. Then, this list of 
identifiers was subsequently used as input in seqtk_subset (version 
1.2; https://github.com/lh3/seqtkhttps://github.com/lh3/seqtk), to 
extract the species reads from the original dataset, which was used as 
input in the first KMA analysis. The extracted reads formed a new 
dataset that was specific for the considered species and were finally 
used as input in the second-step KMA analysis by the same command 
line as described in Section 2.5, but this time with the ResFinder_db 
for AMR gene identification. The second-step KMA analysis was 
repeated for each species of interest for which the reads were extracted 
from the original sequencing dataset as described above.

With the aim to estimate the time that the analysis would need to 
be completed locally (without Internet required) on a laptop, if used 
with an on-site portable setting, the two-step KMA procedure was 
tested on a virtual machine equipped with eight virtual CPUs, 8 GB of 
RAM, and 150 GB of disk space.

2.8 Evaluation and validation of the 
applicability of the KMA confidence 
thresholds with various metagenomics 
datasets

The confidence thresholds selected in Section 3.2 for taxonomic 
identification and AMR detection, as well as the two-step KMA 
method for species-AMR linkage (Section 2.7), were tested on 
different datasets. Some datasets including the sequencing of the GMS 
were publicly available or generated in the context of this study. Other 
publicly available datasets included sequencing data from two other 
mock communities: the Microbial Community Standard I (MCSI) and 
Microbial Community Standard II (MCSII) from ZymoResearch 
(D6300 and D6310, respectively). This Microbial Community 
Standard was composed of eight bacterial strains in even (MCSI) or 
log (MCSII) distribution (Nicholls et al., 2019; Gand et al., 2023), and 
its AMR composition was obtained with ResFinder as described in 
section 2.1 for the GMS (Supplementary material S7).

Various experimental conditions, numbered from A to K in 
Table 1, were used for the generation of 21 out of the 28 datasets. 
Experiments B and C were used in Section 3.2 for the selection of the 
KMA threshold with the GMS. Experiments A, D, and E, which were 
obtained within the context of the present study, used the GMS “pure” 
or “spiked” in a matrix (chicken feces, buffalo feces, and pig feces), but 
with different experimental settings (Table 1), which are presented in 
more details in Supplementary material S8. Experiment A included 

the same samples but sequenced with Illumina technology. For each 
of these experiments, the matrix was also analyzed as “unspiked.” 
Therefore, Experiments A to E included three datasets, namely, “pure,” 
“spiked,” and “unspiked.” Experiments F and G were composed of 
publicly available datasets generated from the sequencing of the GMS 
(pure) with two different library preparation kits: kit9 (SQK-LSK109) 
vs. kit12 Q20+ (SQK-LSK112) (Liu et al., 2022). Finally, experiments 
H to K were publicly available datasets encompassing the sequencing 
of the MCSI and MCSII, which analyzed pure or spiked in a synthetic 
fecal matrix, with various experimental settings (Nicholls et al., 2019; 
Gand et al., 2023; Table 1).

Furthermore, seven publicly available ONT metagenomics 
datasets out of the 28 datasets used in this study were also used for the 
validation of the KMA confidence thresholds and AMR linkage. Four 
out of these seven datasets were generated in the context of the 
detection of genetically modified microorganism (GMM), i.e., Bacillus 
species, B. licheniformis, B. amyloliquefaciens, and B. velezensis, in four 
food enzyme products (FE) (D’aes et al., 2022). Three out of the seven 
publicly available ONT datasets were produced with MinION and 
Flongle, to simulate a foodborne outbreak investigation for the 
detection of Shiga toxin-producing Escherichia coli (STEC) spiked in 
minced beef (MB) (Buytaers et al., 2021). The methodology developed 
in this study for KMA output data interpretation was applied to these 
seven datasets, and the generated data were compared with the 
expected results obtained in the original studies by D’aes et al. (2022) 
and Buytaers et al. (2021).

Sequencing statistics of the different experiments are presented in 
Supplementary material S4, and detailed protocol associated with the 
publicly available data presented in this section is accessible in the 
corresponding original studies (Table 1) (Nicholls et al., 2019; Buytaers 
et al., 2021; D’aes et al., 2022; Liu et al., 2022; Gand et al., 2023).

3 Results

3.1 Influence of the completeness of the 
template genomes in the KMA database on 
the correct result interpretation for 
detection of species

The composition of databases used in taxonomic classifier tools 
can greatly influence the output results and how they are reported 
and interpreted by users. Here, the impact of using the 
RefSeqComplete_db composed of complete genomes, i.e., one 
template sequence per bacterial genome in the database, or the 
RefSeqFull_db composed of a mixture of complete and draft 
genomes, i.e., incomplete assemblies resulting into a list of contigs 
or scaffolds serving as multiple templates for a given bacterial 
genome, was tested. The sequencing data of the defined microbial 
mock community GMS “pure” sample obtained with the ONT 
singleplex experiment (Exp B, Table 2) were analyzed using KMA 
with the two databases and the GMS_db for reference comparison. 
The mapping results of three GMS species present at different 
abundance levels, i.e., Bacteroides fragilis (14%), Fusobacterium 
nucleatum (6%), and Akkermansia muciniphila (1.5%), were 
compared. In addition to their diverse spiking concentrations, these 
species were selected because both complete and draft genomes 
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TABLE 1 Summary of the experimental settings used for the generation of the different sequencing datasets including the GMS, MCSI, and MCSII.

Exp
Mock 

com.
Matrix

DNA extraction kit Seq. Library preparation kit Multiplexing Run. time Basecalling Q filt. Acc. 

number
Ref.

HMW Zymo Beck Qia CB ONT Illum Ligat9 Ligat12 Rap Next 1 3 5 6 24 48 72 fast hac sup 7 9 10 20

A GMS
Chicken 

feces*
● ● ● ● ● PRJNA1031997 This study

B GMS
Chicken 

feces*
● ● ● ● ● ● ● PRJNA1031997 This study

C GMS
Chicken 

feces*
● ● ● ● ● ● ● PRJNA1031997 This study

D GMS
Buffalo 

feces*
● ● ● ● ● ● ● PRJNA1031997 This study

E GMS Pig feces* ● ● ● ● ● ● ● PRJNA1031997 This study

F GMS - ● ● ● ● † ● ● SRR17907852 Liu et al. (2022)

G GMS - ● ● ● ● † ● ● SRR17907851 Liu et al. (2022)

H MCSI 

even

- ● ● ● ● ● ‡ ¥ ERR

3152364

Nicholls et al. (2019)

I MCSII 

log

- ● ● ● ● ● ‡ ¥ ERR

3152366

Nicholls et al. (2019)

J MCSII 

log

Synthetic 

feces

● ● ● ● ● ● SRR24138602 Gand et al. (2023)

K MCSII 

log

Synthetic 

feces

● ● ● ● ● ● SRR24138605 Gand et al. (2023)

Exp: experiments identifiers numbered from A to K; Mock com: Mock community used in the different experiments; Matrix: Matrix in which the mock community was spiked, when “*” was indicated, the GMS was tested “pure” or “spiked” into a matrix and the 
matrix was also tested “unspiked,” when “-“is indicated, the corresponding mock community was used “pure” only; DNA extract. Kit: DNA extraction kit with “HMW” being Quick-DNA HMW MagBead kit (Zymo Research), “Zymo” being ZymoBIOMICS DNA 
Miniprep extraction kit (Zymo Research), “Beck” being GenFindV3 (Beckman Coulter), “Qia” being Dneasy PowerSoil Kit (Qiagen) and “CB” being DNAexpress kit (Claremont BioSolutions); Seq: Sequencing platform with “ONT” being Oxford Nanopore Technology 
and “Illum” being Illumina; Library preparation kit: “Ligat9” and “Ligat12” being Ligation sequencing kit for genomic DNA SQK-LSK109 and SQK-LSK112 (Oxford Nanopore Technologies), respectively, “Rap” being Rapid Barcoding Kit (SQK-RBK004; Oxford 
Nanopore Technologies) and “Next” being Nextera XT kit (Illumina); Multiplexing: number of samples multiplexed during a sequencing run; Run time: sequencing running time in hours, only for ONT experiments (†: not communicated) as for Illumina this 
corresponds to the number of cycles, i.e., 2 × 250 bp run, and it is not comparable with long-read sequencing; Basecalling: basecalling model used in Guppy with “hac” being high accuracy and “sup” being super high accuracy (‡: former flipflop model was used); Q filt.: 
filtering of the basecalled data based on minimum quality (Q) score for Q7, Q9, and Q10, and on average quality score for Q20 (¥: Q score filtering was not communicated).
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TABLE 2 Comparison of KMA output results influenced by database composition.

Complete genomes Draft genomes

DB
GMS 
species

Relative 
abundance1

Number 
of hits2

Best hit 
template 
name3

Length 
(bp)

Depth ID%
Number 
of hits2

Best hit 
template 

name3

Number 
of 

scaffold4

Length 
(bp)

Depth ID%

GMS_db

Bacteroides 

fragilis
14 1/1

Bacteroides 

_fragilis
5.17 × 106 503.15 99.97 - - - - - -

Fusobacterium 

nucleatum
6 1/1

Fusobacterium 

_nucleatum
2.45 × 106 240.12 99.99 - - - - - -

Akkermansia 

muciniphila
1.5 1/1

Akkermansia_

muciniphila
2.85 × 106 129.27 99.99 - - - - - -

RefSeq

Complete_db

Bacteroides 

fragilis
14 7/7 CP012706.1 4.90 × 106 355.39 94.01 - - - - - -

Fusobacterium 

nucleatum
6 7/16 NC_021281.1 2.26 × 106 145.35 91.86 - - - - - -

Akkermansia 

muciniphila
1.5 4/6 CP024742.1 2.76 × 106 116.79 97.99 - - - - - -

RefSeqFull_

db

Bacteroides 

fragilis
14 9/14 CP012706.1 4.90 × 106 113.72 70.52 57/377

MGS47 

scaffold84
36/118 7.39 × 104 473.4 99.45

Fusobacterium 

nucleatum
6 6/23 CM002368.1 2.15 × 106 10.4 39.6 4/554

ATCC 51191 

scaffold294
4/465 9.63 × 102 11.24 100

Akkermansia 

muciniphila
1.5 9/27 CP025827.1 2.76 × 106 107.55 97.49 8/81

MGS154 

scaffold65
8/81 7.43 × 104 4.38 39.84

DB: Database; Length: Template length in bp; ID%: Template identity in percent; −: not applicable. 1Percentage of genomic DNA from each species in the GMS (according to the manufacturer). 2Number of templates reported by KMA out of the total number of 
sequences available in the database, for the corresponding species. 3NCBI accession numbers for RefSeqComplete_db and RefSeqFull_db and strain names for GMS_db. 4Number of templates reported by KMA out of the total number of scaffold sequences available in 
the database and belonging to the corresponding template strain name. The table shows the template length, template identity, and depth of the templates having obtained the maximum depth (best hit) among the results reported by KMA, from the complete draft 
genomes present in the tested databases, for the considered species.
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belonging to them were present in the RefSeqFull_db. For each of 
these species, the mapping results belonging to the best KMA hit, 
i.e., the template sequence having the highest depth, are shown in 
Table 2.

As expected, high depth and high template identity (> 99.9%) 
were obtained when analyzing the “pure” sequencing data with the 
GMS_db. Moreover, the depth declined with respect to the 
decreasing relative abundance of the considered species. 
Comparable results (high depth and identity) were observed when 
the KMA analysis was performed with the RefSeqComplete_db. A 
global decrease in the depth and template identity was observed for 
complete genomes when the “pure” sample was analyzed with the 
RefSeqFull_db, but this was particularly dramatic for B. fragilis and 
F. nucleatum. For these two species, best hits from RefSeqFull_db 
corresponding to draft genomes obtained a higher depth and 
template identity than hits corresponding to complete genomes. 
However, it can be noted that the scaffold sequences from these 
draft genomes, which were determined as best hits, have a length 
that covers only 1.5% (MGS47 scaffold84) and 0.04% (ATCC 51191 
scaffold294) of the corresponding complete genomes from the same 
species, i.e., CP117955.1 and CP117964.1, respectively. As shown in 
Supplementary material S9 for B. fragilis, templates with short 
length were also more likely to obtain high mapping scores when 
other GMS species were considered (data not shown). Moreover, 
when using the RefSeqFull_db, reads mapped to only a fraction of 
the total number of contigs belonging to one bacterial strain from 
the database, only 31 and 0.9% of the total available scaffolds 
belonging to B. fragilis MGS47 and F. nucleatum ATCC 51191, 
respectively, were reported with mapping scores (Table  2). 
Therefore, the interpretation of KMA mapping results should 
be  done with caution when using draft genomes, preferably 
compiling all the results from template contigs belonging to the 
same bacterial genome (assembly), otherwise the species detection 
results can be misleading.

The decrease in depth and template identity observed for complete 
genome templates when using the RefSeqFull_db, in comparison with 
RefSeqComplete_db (Table  2), could be  explained by different 
templates being reported as best hit between the two databases, 
potentially not having the same specificity for the strains present in 
the GMS. Nevertheless, this is not true for B. fragilis as the best hit 
template (CP012706.1) was identical for the two databases. Another 
hypothesis is that the reads have mapped to multiple templates, i.e., 
multiple scaffold sequences, instead of being grouped to one perfect 
match. This is supported by the data presented in 
Supplementary material S9 showing that the scaffold sequences have 
obtained a wide range of depth and template identity values, which, as 
a result, decreased mapping statistics for CP012706.1 when analyzed 
with RefSeqFull_db. On the contrary, when using the 
RefSeqComplete_db, only one out of the seven B. fragilis templates 
reported by KMA (Table 2; Supplementary material S9) obtained high 
mapping scores, suggesting that most of the reads mapped to 
CP012706.1 and allowing the clear determination of a best match. As 
the farmed_db is derived from the RefSeqComplete_db, to which 
missing GMS species were added, the same ease of interpretation was 
obtained for this database (Supplementary material S10). Therefore, 
the farmed_db was preferably used in sections 3.2, 3.4, and 3.5 for the 
elaboration of the confidence threshold and their application on 
various datasets.

3.2 Determination of confidence threshold 
for a clear and easy interpretation of KMA 
output data

To help users to interpret the KMA output, confidence thresholds 
were derived from experimental data. “Pure” and “spiked” GMS 
samples, sequenced by ONT singleplex (Experiment B, Table 1) and 
triplex (Experiment C, Table 1), were analyzed by KMA using the 
farmed_db (for the detection of species) and ResFinder_db (for the 
detection of AMR genes). The best hits from the output data were 
classified into TP or FP results (Figure 1), according to the expected 
results from the GMS, i.e., composition of species and AMR genes 
(Supplementary material S1).

Among all the detected GMS species in the four conditions (52 in 
total), the majority of the TP best hits (34/52, 65%) were grouped at 
the top right of the graph, as shown in Figure 1A, with depth values 
above 4 and percentage identities above 80% 
(Supplementary material S11). This group was predominantly 
composed of the most abundant species: 75% of the five species spiked 
at 14% over the 4 conditions (15/20) and 81% of the four species 
spiked at 6% over the four conditions (13/16). Nevertheless, it can still 
be noted that for one of the most abundant species F. prausnitzii, best 
hits obtained lower depth and template identity (Figure  1A; 
Supplementary material S11). For these exceptions, it is hypothesized 
that the reads from this species have split over the three F. prausnitzii 
templates available in the farmed_db, impairing the determination of 
a perfect match. This is supported by the data 
(Supplementary material S12) showing that the three F. prausnitzii 
templates [each assigned to a different clade (De Filippis et al., 2020) 
or species (Sakamoto et al., 2022)] from farmed_db were detected 
with a high depth but obtained various template identity results, with 
the reads covering only between 31 and 56% of the reference genomes. 
In comparison, when the GMS_db containing the exact GMS 
F. prausnitzii genome sequence (belonging to clade F) was used, a 
100% template identity was obtained. For the remaining other best 
hits shown in Figure 1A, a decrease in depth (<4) was correlated to a 
decrease in template identity. This drop can be explained by the lower 
abundance of the species considered here and/or a matrix effect from 
the “spiked” sample.

A high depth (> 8) and template identity (> 90%) were reported 
for the detection of one of the GMS species, E. coli, in the “unspiked” 
sample sequenced by ONT singleplex (Experiment B) 
(Supplementary material S11). It is acknowledged that the presence of 
this species in the background of the chicken feces microbiota can bias 
the determination of TP results from the “spiked” GMS sample, 
resulting in possible overestimation. However, as E. coli is already 
present in high abundance (14%) in the GMS, this overestimation is 
considered to be limited.

The FP results for species detection were almost delimited by a 
maximum depth of 4 and a maximum template identity of 10% 
(Figure 1B). Surprisingly, one template identified as Rhodococcus sp. 
obtained a high percentage identity above 60% but with a depth below 
2. This genus has often been reported as possible reagent contaminant 
in microbiome studies (Salter et al., 2014; Piro and Renard, 2023).

Considering the TP and FP data obtained for species detection 
with KMA, confidence thresholds were proposed to help with the 
interpretation of the data (Figure 1C). All the KMA results with depth 
and template identity equal or above 4 and 80%, respectively, were 
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FIGURE 1

True positive and false positive results reported by k-mer alignment (KMA) for the detection of species and AMR to define confidence thresholds. The 
graphs show the representation of the template identity (y-axis) in function of the depth (x-axis in log scale) for all the TP (parts A,D) and FP (parts B,E) 
best hits reported by KMA when analyzing the sequencing data of the “pure” and “spiked” samples obtained by ONT singleplex and triplex. Parts (A–C) 
show the results obtained with the farmed_db and parts (D–F) show the results obtained with the ResFinder_db. The gray shape in part (A) shows the 
mapping results obtained for the species Faecalibacterium prausnitzii. Parts (C,F) show superposition of the TP and FP value and proposition of 
different levels of confidence threshold for the detection of species and AMR genes based on depth and template identity. *defined composition 
represents the percentage of genomic DNA from each species in the GMS, as communicated by the manufacturer.
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considered as positive, with nuance added to results with extremely 
good mapping scores, i.e., depth and template identity above 8 and 
90%, respectively. Then, all the results with percentage identity below 
10% were considered as likely negative. Intermediary thresholds were 
determined for all other results falling in a depth range of 0.1–4 and 
template identity range of 10–80%, following the trend of depth in 
relation with percentage identity for the TP values (Figure 1C).

Considering the results of Section 3.1, databases composed of 
complete genomes are preferred for KMA analysis. However, this was 
not possible in our study as no complete genomes belonging to the 
GMS species P. corporis and V. rogosae were available in RefSeq during 
analysis. Therefore, draft genomes were added to the farmed_db, 
which were able to detect these two bacterial species. To 
counterbalance the drawbacks of using draft genomes with KMA 
(shown in Section 3.1), a third criterion was included in the detection 
threshold: the template length. The average size of the complete 
bacterial genome templates from the farmed_db was approximately 
106 bp; if KMA reported a result from a template having a shorter 
length, this was penalized as a lack of genome coverage and identity 
and was considered as partial detection, with a lower level of 
confidence. Taking this into account, the final confidence thresholds 
and related results of interpretation guidelines for the detection of 
species with KMA were proposed (Table 3).

The same methodology and samples were used for the 
determination of confidence thresholds for the detection of AMR 
genes by KMA with the ResFinder_db. There was a clear distinction 
between TP and FP, as shown in Figures 1D,E. Indeed, all the detected 
AMR genes, except for aac(6′)-laa, obtained a depth of above 4 and a 
template identity of above 97%. Some GMS AMR genes [tet(Q), 
tet(W), mdf(A), and erm(B)] were also detected with high mapping 
scores (depth > 4 and template identity >97%) in the “unspiked” 
sample, probably leading to a bias in the “spiked” GMS sample 
(Supplementary material S11). The aac(6′)-laa gene was detected with 
a lower depth comprised between 1.5 and 4 (Figure 1D), which was 
not surprising as this gene was carried by a GMS species present at 
0.01% (Salmonella enterica) in the standard and could be detected 
only in the “pure” sample sequenced by ONT singleplex (see section 
3.3). Very few FP results were reported (only in the ONT triplex 

condition), and they all obtained a depth of below 1.5 (Figure 1E). 
Based on these numbers, three levels of confidence threshold were 
proposed for the detection of AMR gene (Figure 1F), as shown in 
Table 4. As for the detection of species, an intermediary level between 
clear positive and negative detections was proposed, with a minimum 
depth of 1.5 and a minimum template identity of 90%, as this 
percentage identity value included all the TP and was frequently used 
in the literature for filtering KMA output data obtained with ResFinder 
(Brinch et al., 2020; Osakunor et al., 2020; Horie et al., 2021; Stege 
et al., 2022). As the variation in template length was less important 
among AMR genes than between complete and draft genomes, this 
criterion was not needed for the elaboration of confidence threshold 
for the identification of AMR genes.

3.3 Evaluation of the feasibility of linking 
taxonomic classification and the detection 
of AMR genes with KMA

The feasibility of linking the taxonomic and AMR gene results 
obtained with KMA was investigated. A two-step KMA procedure was 
performed with the GMS “pure” long-read sequencing data obtained 
with ONT singleplex (Exp B). Table  5 shows the taxonomic 
identification and AMR genes that are detected using the GMS_db 
and ResFinder_db, respectively, as well as their association. Except for 
S. enterica and E. faecalis, a link between AMR genes and their host 
has been found for the other expected bacterial species, with high level 
of confidence. No linkage could be found for E. faecalis and its AMR 
gene lsa(A), as the species and gene were not detected in the sample 
due to its low abundance (0.001%) in the GMS. Similarly for 
S. enterica, its AMR gene aac(6′)-laa was detected in the whole sample 
but could not be  associated with its host as the species was not 
detected in the sequencing output. A few unexpected associations 
were found for mdf(A) and tet(W), but with a low level of confidence, 
in the range of detection where FP results are known to potentially 
occur. The two-step KMA procedure succeeded to retrieve the 
expected associations, although it was impacted by the relative 
abundance of the species in the GMS “pure” sample.

TABLE 3 Confidence threshold for the detection of bacterial species using KMA.

Confidence threshold Level of confidence Result interpretation

Depth %ID Length

≥ 8 ≥ 90 ≥ 106 6
High

The corresponding species is detected and identified 

with a high level of confidence.4–8 80–90 105–106 5

1–4 60–80 5 × 104–105 4
Medium

Partial detection, identification at species level to 

be confirmed.0.5–1 40–60 104–5 × 104 3

0.1–0.5 10–40 103–104 2
Low

Weak detection, result to be confirmed by 

alternative method.0–0.1 0–10 0–103 1

ID%, Template identity in percent; length is expressed in bp.
Levels of confidence are numbered from 1 to 6, 6 being the most likely positive and 1 being the most likely negative, giving to the user various nuances in the interpretation of the results. Each 
level of confidence is determined by the combination of depth, template identity, and template length ranges, with first number included in the range and last number excluded. For instance, 
every hit reported by KMA with a depth higher or equal to 4 but lower than 8, a template identity higher or equal to 80% but lower than 90%, and a template length higher or equal to 105 bp 
but lower than 106 bp, obtained a level of confidence of 5, which informed the user that the species was detected with a high level of confidence.
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3.4 Validation of the KMA confidence 
threshold and AMR linkage strategy with 
different metagenomics datasets obtained 
from sequencing of mock communities 
with various experimental conditions

With the aim to further test the strategy elaborated in this study 
for KMA output data interpretation and AMR linking, several 
sequencing datasets, obtained with various experimental conditions 

including three mock communities, namely, GMS, MCSI, and MCSII, 
were analyzed with KMA using the farmed_db for the identification 
of bacterial taxonomic and the ResFinder_db for AMR for the 
detection of genes (Table 6; Supplementary material S13).

In general, the confidence levels reflected the correct detection of 
the GMS species and their AMR genes and the link with their host 
(Table 6). However, besides influenced by species relative abundance 
and/or the spiking into a matrix, as shown in Section 3.2, correct 
detection seemed to also be affected by experimental factors such as, 
the sequencing technology, the running time, and the level of 
multiplexing. Globally, the more samples were multiplexed 
(Experiments C, D, and E), the less data per sample were available 
(Supplementary material S4) and the more the confidence levels 
decreased for the detection of species and AMR genes, in comparison 
with singleplex experiments (Experiments B, F, and G). Notably, the 
detection of S. enterica, one of the lowest abundant GMS species 
(0.01%), linking with its AMR gene aac(6′)-Iaa, was obtained with 
medium level of confidence, with the “pure” sample processed with 
Experiments B and F, both in singleplex. The confidence levels 
generally decreased when the GMS was spiked into a matrix, 
illustrating the potential impact of the matrix on the quality of the 
DNA extraction (probably influenced by the DNA extraction kit 
used) and dilution of the GMS sequences in the background 
microbiome and matrix DNA. This was particularly clear for 
B. adolescentis, a gram-positive bacterium with high G/C content, 
which could not be clearly detected anymore in the “spiked” sample, 
independent of the tested conditions, whereas this species obtained 
good detection scores in the “pure” sample. As expected, F. prausnitzii 
never obtained a detection score higher than medium, despite its 
high relative abundance in the GMS (14%), which is in line with the 
mapping problem suspected for this species (section 3.2). Although 
the focus of this study was to develop confidence thresholds for long-
read metagenomics data, the confidence levels were applied 
successfully to short-read sequencing data (Table  6). When 
comparing Illumina and ONT sequencing, both performed in 
singleplex (Experiments A and B), the two technologies were able to 
pick-up the same species from the GMS, except for E. faecalis which 
was only detected by Illumina at a low level of confidence. For the 
other detected species and the detection of AMR, comparable or 
higher level of confidence was generally obtained by ONT in 
comparison with Illumina. It can be noticed that no GMS species 
with an abundance 0.1% or lower could be detected with a confidence 
level of higher than 2 (low) in the “spiked” samples, suggesting that 
the limit of detection of the investigated metagenomics approaches 
was somewhere between 0.1 and 1.5% of genomic DNA in the 
sample, which corresponded to 4.79 × 106 and 5.02 × 105 cells, 
respectively (Supplementary material S1).

Two-step KMA analysis was successful in linking species and 
AMR genes, although it was affected by the experimental settings, 
with multiplexing likely decreasing the sensitivity of the method 
(Table  6). Surprisingly, no linking could be  established between 
erm(B) and its host C. difficile in the “pure” sample, whereas this 
species and its AMR were correctly detected alone in most 
experimental conditions. On the contrary, this linking could 
be established in the “spiked” sample for Experiments A, B, and C 
because of the presence of erythromycin-resistant C. difficile in the 
background microflora, as the same AMR and species could be linked 
to the “unspiked” sample. Moreover, it can be noticed that independent 

TABLE 4 Confidence threshold for the detection of AMR gene using KMA.

Confidence 
threshold

Level of 
confidence

Result 
interpretation

Depth %ID

≥ 4 ≥ 97 3 High

The corresponding 

AMR gene is detected 

with a high level of 

confidence.

1.5–4 90–97 2 Medium

Partial detection, 

allelic variant of the 

AMR gene to 

be confirmed.

0–1.5 0–90 1 Low

Weak detection, result 

to be confirmed by 

alternative method.

ID%: template identity in percent.
Each level of confidence is determined by the combination of a minimum depth and 
template identity. Levels of confidence are numbered from 1 to 3, 3 being the most likely 
positive and 1 being the most likely negative. For instance, every hit reported by KMA with a 
depth higher or equal to 1.5 but lower than 4 and a template identity higher or equal to 90% 
but lower than 97% obtained a level of confidence of 2, which informed the user that the 
species was detected with a medium level of confidence.

TABLE 5 Linking taxonomic and AMR gene detections in the GMS sample 
‘pure’ sequenced with ONT singleplex (Exp B).
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Table is showing at the left the KMA results obtained for taxonomic identification (TaxID) 
with GMS_db and at the top KMA results for AMR genes (tet(Q), mdf(A), tet(W), cepA, 
erm(B), aac(6’)-laa, and lsa(A)) identification (AMR ID) in the whole sample (*) with 
ResFinder_db. The list of GMS species is presented with their percentage of expected 
abundance. In the middle are shown with green dots (●) the expected associations between 
AMR genes and bacterial species carrying them, and the obtained AMR ID results, i.e., the 
AMR gene detection in reads from the corresponding bacterial species (2nd KMA step). ** 
Levels of confidence were high (6–5), medium (4–3) and low (1–2) for TaxID (see Table 3) 
and high (3), medium (2) and low (1) for AMR ID (see Table 4), no color (0) means no 
detection.
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of the experimental conditions, an unexpected link was established 
between R. hominis and tet(W) in the “pure” and “spiked” samples.

For the other mock community samples, i.e., MCSI (even) or 
MCSII (log), pure or spiked, extracted with different DNA purification 
methods (Table 1; Supplementary material S13), the attribution of the 
confidence levels for taxonomic identification and the detection of 
AMR genes matched the relative abundances of the two community 
standards. Indeed, only high levels were attributed for the MCSI 
(Experiment H; even distribution) and decreasing confidence levels 
were obtained for the MCSII (Experiments I, J, and K; log distribution), 
in line with the decreasing abundance of the species. Similarly, for the 
GMS experiments, the correct detection of the MCSII species was 
impacted by spiking into a matrix, the choice of DNA extraction 
method, and the amount of sequenced data (Experiments I, J, and K). 
With the MCSI and MCSII mock communities containing more AMR 
genes than the GMS, the two-step KMA could be further tested and 
proved again to be successful for the linking of AMR and identification 
of species, although this was negatively affected by the low abundance 
of S. enterica, E. faecalis, and S. aureus in the MCSII 
(Supplementary material S13). It can still be noticed that fosX and 
crpP never obtained a level of confidence higher than medium. This 
is due to the KMA results obtained for their template identity, being 
comprised between 90 and 97%. These results were in line with the 

percentage identity obtained with ResFinder when analyzing the MCS 
S. enterica and L. fermentum host reference genomes containing fosX 
and crpP (Supplementary material S7). The percentage identity not 
being above 97% for fosX and crpP detection, is probably due to their 
templates in the ResFinder database not being the same allelic variants 
than the ones from the S. enterica and L. fermentum strains contained 
in the MCSI and MCSII.

It can be  noticed that some FP results were reported for the 
identification of species and AMR gene when analyzing the “pure” 
GMS sample over the seven experimental conditions (Experiments A 
to G) and the pure MCSI and MCSII samples with Experiments H and 
I (Supplementary material S14). In almost all cases, a low level of 
confidence was attributed to the KMA output data for these results. In 
few cases for the detection of AMR with Experiments D and E, some 
FP obtained the detection of medium and high levels of confidence. 
Experiments D and E involved high level of multiplexing, where 
“pure,” “spiked,” and “unspiked” samples were barcoded and mixed 
together. Therefore, it is suspected that FP with such high mapping 
scores, i.e., depth between 2 and 13 and template identity between 95 
and 100%, come from crosstalk of the barcoding, as shown in other 
studies (Xu et al., 2018; Hatfield et al., 2020).

Finally, the dataset of Exp F was chosen to evaluate the 
performance of the two-step KMA procedure with farmed_db and 

TABLE 6 Validation of the KMA interpretation and AMR linking strategy with GMS sequencing datasets obtained with various experimental settings.

TaxID tet(Q) mdf(A) tet(W) cepA erm(B) aac(6’)-Iaa
Exp A B C D E F G A B C D E F G A B C D E F G A B C D E F G A B C D E F G A B C D E F G A B C D E F G
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M. smithii 0.1%
S. enterica 0.01%
E. faecalis 0.001%
C. perfringens 0.0001%
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6%B. adolescentis
F. nucleatum
L. fermentum TaxID**
C. difficile 1.5% 6 5 4 3 2 1 0
A. munciniphila
M. smithii 0.1%
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The table is showing at the left the KMA results obtained for taxonomic identification (TaxID) with farmed_db and at the top of ‘Unspiked’, ‘Pure’ and ‘Spiked’ sample rows, KMA results for 
AMR genes (tet(Q), mdf(A), tet(W), cepA, erm(B) and aac(6’)-laa) identification (AMR ID) in the whole sample (*) with ResFinder_db. The list of GMS species is presented with their 
percentage of expected abundance. In the middle are shown with green dots (●) the expected associations between AMR genes and bacterial species carrying them, and the obtained AMR ID 
results, i.e., the AMR genes detection in reads from the corresponding bacterial species (2nd KMA step). Experiments A to G include the GMS samples analyzed ‘pure’ or ‘spiked’ into a matrix, 
as well as the matrix processed alone ‘unspiked’ (see Table 1 for more details). For better readability, the lsa(A) results and potential association with E. faecalis were not shown as this AMR 
gene could never be detected in any of the tested conditions. ** Levels of confidence were high (6–5), medium (4–3) and low (1–2) for TaxID (see Table 3) and high (3), medium (2) and low 
(1) for AMR ID (see Table 4), no color (0) means no detection; /: not measured as in Exp F and G the GMS was analyzed pure only.
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ResFinder_db when used on a virtual laptop, simulating a more 
“on-site” environment. This dataset was chosen because it contained 
the highest number of bases (Supplementary material S4) and 
included the highest number of expected species (14 bacteria and one 
archaeon) from the GMS, for which potential linkage with AMR genes 
could be  investigated, being the most challenging. The first KMA 
analysis for the detection of species with the farmed_db took 59 min 
12 s to be  completed and did not require more than 6.06 GB of 
RAM. The subsequent operation of extraction of the reads, belonging 
to one of the GMS species, followed by second KMA analysis with the 
ResFinder_db and extracted reads as input, took 54 min to 
be  completed with an average of 3 min 36 s per species. The total 
two-step KMA procedure took 1 h 52 min to be  completed for 
Experiment F.

3.5 Application of the KMA confidence 
threshold on publicly available 
metagenomics datasets in the context of 
food safety

k-mer alignment analysis, including AMR linking, was performed 
with the farmed_db and ResFinder_db on four metagenomic datasets 
generated by ONT sequencing of food enzyme products (Coobra, 
Stillspirits, Browin, and Pureferm) containing three GMM Bacillus 
species, i.e., B. licheniformis, B. amyloliquefaciens, and B. velezensis 
(D’aes et  al., 2022) and their related AMR genes, i.e., clbA, blaP, 
erm(D), and aadD [referred to as ant(4′)-Ia in the original study], 
bleO, and catA. The KMA level of confidence developed in this study 
was applied to the KMA output data to determine if the targeted 
species and their related AMR genes could be detected in the case of 
original studies, where other data analysis tools had been used 
(Buytaers et  al., 2021; D’aes et  al., 2022). The detection statistics 
reported in the original study are shown in Supplementary material S15 
compared with the obtained KMA interpretation results. As expected, 
the attributed KMA levels of confidence decreased in line with the 
depth values obtained in the original study when mapping sequencing 
reads to Bacillus reference genomes (Supplementary material S15). 
Moreover, high level of confidence was attributed to species for which 
viable isolates or Metagenome-Assembled Genomes (MAGs) with 
level of completeness of above 70% were obtained in the original 
study. On the contrary, when no viable isolates or MAGs with high 
completeness could be found, lower level of detection was attributed 
to the concerned species (Supplementary material S15).

The erm(D) gene was reported being common in B. (para)
licheniformis strains (Agersø et al., 2018; Zhou et al., 2019; D’aes et al., 
2022). This was illustrated here by its detection and linkage to 
B. licheniformis with high level of confidence in all samples except one 
(Pureferm), in which it was also not detected by D’aes et  al. 
(Supplementary material S15). The aadD gene was correctly detected 
in all the samples but could not be linked to its two bacterial hosts, 
except for B. velezensis in the Pureferm sample. This can be explained 
by the fact that this AMR gene was used as a reporter in the genetic 
artificial constructs, which were suggested to be located on a plasmid 
originating from Staphylococcus aureus (D’aes et al., 2022). As obtained 
in the original study, the aph(3′)-Ia gene was detected in the PureFerm 
sample with high level of confidence but could not be linked to one of 
the Bacillus species (data not shown). Finally, few other bacterial 

species and AMR genes were detected as FP, with a low level of 
confidence (Supplementary material S16).

The KMA analysis was also performed with the farmed_db on 
long-read metagenomics sequencing data from minced beef sample 
containing a pathogenic E. coli (STEC) strain (Buytaers et al., 2021). 
The sequencing data were generated with a MinION or Flongle device. 
When performing Flongle sequencing, a protocol for the removal of 
matrix (host) DNA was also tested. For all three conditions, E. coli 
could successfully be  detected with high level of confidence 
(Supplementary material S17). Additionally, the template hit that 
obtained the best mapping score came from the genome 
(NC_017906.1) of an O157:H7 STEC strain isolated from a Chinese 
outbreak (Xiong et al., 2012), which was corresponded to the expected 
serotype and pathotype of the E. coli strain present in the minced beef 
sample. Moreover, the KMA interpretation thresholds helped to 
visualize and compare the different experimental conditions. As 
expected, Flongle sequencing, with 10 times less output, was less 
powerful than MinION but could be improved for some species by the 
use of a host DNA removal technology (Supplementary material S17). 
The same background genus, as detected in the original study, could 
also be retrieved here. The presence of potential false positive could 
not be  evaluated as the exact composition of the minced beef 
microbiome was not fully known. As no AMR was previously reported 
for the STEC strain, the presence of AMR genes was not 
investigated here.

4 Discussion

Shotgun metagenomics is a promising method that revolutionized 
the world of pathogen diagnostics and surveillance with an untargeted 
approach for the detection of microorganisms and their AMR profiles 
(Hendriksen et al., 2019; Kirstahler et al., 2021). Combined with the 
ease of use of ONT long-read real-time sequencing, it has the potential 
to improve the rapid detection of pathogens along the food chain and 
their AMR genes and how they spread in food-producing 
environments. To allow this, performant bioinformatics tools, such as 
KMA, with tailored databases, are needed to process the huge amount 
of generated data and deliver the interpretation of clear and simple 
results. In this study, we  elaborated a filtering strategy based on 
detection thresholds with confidence levels and proposed guidelines, 
aiming to help future KMA users to obtain a clear interpretation of 
their metagenomics data. The suggested thresholds were validated 
with 28 metagenomics datasets, which were obtained from the 
sequencing of real or spiked samples. The composition of those 
samples was known, either via the use of defined microbial mock 
communities or because the samples had been previously analyzed 
using other methods (e.g., taxonomic classification with Kraken2 or 
metagenomic hybrid assembly followed by whole genome alignment-
based comparison). This allowed the verification of the defined 
confidence thresholds. Moreover, a two-step KMA-based approach 
was explored to link AMR genes and bacterial species, and this 
strategy was validated with the same sequencing datasets.

The reference genomic database used with taxonomic classifiers 
is a key aspect of the bioinformatics analysis performed on 
metagenomics data. In our study, we showed that the use of a database 
containing draft genomes, made of several contigs with various 
nucleotide lengths, was not compatible for simple and straightforward 
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interpretation of the KMA output. Indeed, the filtering strategy 
developed in the present study was based on the attribution of a 
confidence level of the detection of a single template sequence, which 
was linked to a bacterial genome. Therefore, this was not adapted to 
draft genomes fragmented in several template sequences, which would 
need to be compiled together for proper interpretation. Furthermore, 
short contigs were more likely to obtain high depth and percentage 
identity, which could have been misleading for the users, hampering 
the interpretation of correct results. Previous studies already suggested 
that the incompleteness of genomes in databases decreases the 
reliability and accuracy of metagenomics by making bioinformatics 
tools report false positive results which require to be filtered out (Lu 
and Salzberg, 2018; Wright et  al., 2023). Although the increasing 
number of genome submission on public repositories contributes to 
the sequencing effort to enrich the databases with more and more 
organisms, draft genomes are sometimes highly fragmented and can 
contain artifacts if not properly curated (Breitwieser et  al., 2019). 
However, using reference complete genomes only is not always 
possible for some organisms; no complete circular genomes are 
available yet. Most of the time, complete genomes are available only 
for a limited number of well-studied bacterial species (Smith et al., 
2022). Although this should not impair pathogen detection, as 
complete genomes are usually available, this can impact microbiome 
studies in the context of AMR transmission between less sequenced 
and characterized commensal bacteria in food-producing 
environments. Therefore, to allow the use of incomplete genomes in a 
KMA database, if unavoidable, and avoid additional contig 
compilation/concatenation steps, which might be less straightforward 
for users with less bioinformatics skills, the template length was 
included in the criteria, which was used to determine the confidence 
thresholds elaborated in this study. For future KMA developments, it 
would be interesting to improve the performance of this tool when 
dealing with draft genomes, to avoid the bias introduced by the 
analysis of short sequences from fragmented genomes. Concerning 
the confidence threshold for the detection of AMR, it was not needed 
to include the template length in the criteria, as the genes are 
considerably shorter and complete sequences are always available.

Choosing the “optimal” database for taxonomic classification of 
metagenomics sequencing data remains a challenge. The ideal 
database is composed of as many organisms as possible, and not 
limited to bacteria, but also including animals, fungi, viruses, plants, 
and plasmids. However, the size of such a database would require 
enormous computational resources to be used with bioinformatics 
tools and would make analysis impossible or too long to complete. 
Moreover, a highly resource demanding analysis would not 
be compatible with the portability of ONT sequencing, with data 
analysis most likely being performed on a laptop if carried out on-site. 
On the other hand, it has been proven that small databases only 
composed of organisms of interest, e.g., of specific pathogens, and can 
lead to erroneous results such as false positives and negatives 
(Marcelino et al., 2020; Wright et al., 2023). This was also suggested in 
the present study, given the unexpected linkage obtained for 
R. hominis and tet(W). This discrepancy can be  attributed to the 
existence of only one reference template from this species in the 
farmed_db, which does not share the same AMR gene content as the 
strain present in the GMS. This finding aligns with observations by 
Bloemen et  al. (2023). The lack of sufficiently similar genomic 
sequences as the template in the database can also lead to incorrect 

mapping, as illustrated by the insufficient coverage obtained for 
F. prausnitzii. This was due to the spread of reads over three different 
templates, which belong to different clades, without a perfect match. 
In addition, one template sequence (CP022479.1) has been recently 
re-identified as Faecalibacterium duncaniae by its submitter on 
NCBI. A good balance has to be found between a database as diverse 
as possible, containing good representation of genomes from the 
organisms most likely present in the analyzed sample (including DNA 
from the matrix/host if not removed beforehand), and a database that 
can be  handled by non-expert users on laptops and that is also 
compatible with computationally efficient pipelines for fast processing 
of ONT sequencing data.

In addition to using appropriate databases to avoid erroneous 
results, another challenge of taxonomic classifiers, such as KMA, is 
the exclusion of false positive results while keeping a good sensitivity 
(Ye et  al., 2019). This can be  achieved by the configuration of 
particular options during the analysis, such as the minimum template 
identity (-ID) in KMA. Alternatively, we made the choice in this 
study to keep this parameter loose, with post-processing filtering of 
the KMA output data in mind, to identify the best hits per species 
and AMR allelic variant. However, as shown in the present study and 
in the literature, false positive results can be  reported by read 
classifiers in the same depth and template identity ranges when 
detected species or AMR genes are present in low abundance in 
metagenomics samples (Ye et al., 2019; Xu et al., 2023). Therefore, 
filtering out these false positives by enforcing strict settings might 
also result in loss of sensitivity as some true positives could 
be  discarded (Sun et  al., 2021; Portik et  al., 2022). This was 
experienced by Rooney et al. (2022) who tested different filtering 
strategies on KMA output data to improve AMR gene detection, 
resulting in a decrease in false positives, and the detriment of true 
positives. To avoid this, instead of setting a minimum threshold that 
will eliminate part of the results, confidence detection levels were 
elaborated in the present study, allowing an increase in the specificity 
of KMA without sacrificing its sensitivity. As such, each detection 
threshold is associated with a level of confidence, aiming to help the 
user with a clear and simple result interpretation. For instance, if 
detection with a low level of confidence is reported, the 
recommendation for complementary analyses that could confirm or 
reject the detection, such as real-time PCR, is provided to the user. 
Furthermore, in the case of partial genome/AMR gene coverage or if 
read mapping issues occur, the partial identification is communicated 
to the user with an intermediary level of confidence (medium). This 
was observed in this study for F. prausnitzii, with the spread of reads 
over several templates and also shown by Rooney et al. with the reads 
mapping to multiple AMR allelic variants (Rooney et al., 2022). To 
keep the interpretation of the KMA results straightforward, the more 
stringent template identity criterion was preferred over the template 
coverage for the determination of confidence threshold. Trustful 
identification is guaranteed by high template identity, which implies 
high template coverage when using KMA. When a low template 
identity is obtained, which will result in a medium or low level of 
confidence, investigation of the detailed KMA results is needed to 
check whether this is due to a lack of template coverage or query 
identity. The user can also try other complementary analyses, such as 
mapping of the reads against a reference genome belonging to the 
species or AMR gene that was not detected with high level of 
confidence, to confirm or reject partial identification with KMA.
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Although the KMA confidence thresholds selected in our study 
were determined with only two samples processed each in two 
sequencing conditions, they were successfully tested on 28 sequencing 
datasets. Two types of datasets were used, but each time the content was 
known, either by using defined microbial mock communities or 
previously determined using other methods. Hence, a comparison 
could be  made with the results obtained applying the thresholds, 
thereby validating those thresholds. Similar findings were found for the 
identification of taxonomic and AMR gene, in the context of GMM and 
pathogen detection for food safety. This confirmed that they can 
be  applied to such types of metagenomics studies. Based on the 
confidence thresholds developed in this study, the CCMetagen tool 
could be extended to bacteria as only thresholds for fungi were proposed 
(Marcelino et al., 2020). For the characterization of pathogens, a similar 
approach, as was carried out for the AMR genes, could be performed 
for the detection of virulence genes with a dedicated database that could 
be developed and validated for the investigation of virulence factors. 
When the KMA-based thresholds were tested on other publicly available 
datasets including mock communities, they offered an alternative to the 
often used read/base count estimation, thereby facilitating the 
interpretation by giving a certain confidence level to the detection. 
Furthermore, although it was not the goal to analyze in detail the 
influence of the different experimental settings on the correct detection 
of the mock community species, the confidence threshold developed in 
this study helped to compare samples which were processed with 
different DNA extraction and sequencing protocols. Indeed, they 
demonstrated that the correct detection of the species contained in the 
mock communities was clearly impacted by some experimental settings, 
such as level of multiplexing (and hence barcoding and amount of 
generated data per sample), running time, spiking into a matrix, and/or 
basecalling model (fast accuracy vs. high accuracy). The confidence 
thresholds were successfully applied to short-read data. Nevertheless, 
this was tested with only one Illumina dataset, and further investigation 
is needed to verify if confidence thresholds optimized for ONT are fully 
compatible with Illumina sequencing data. While the thresholds 
determining the confidence levels were selected to be compatible with 
various experimental designs, they might need to be adapted to consider 
variations in metagenomics protocols. For instance, as the depth value 
is directly impacted by the level of multiplexing, the depth thresholds 
could be  lowered to be  adapted to high multiplexing conditions. 
Nonetheless, the risk would be to increase the occurrence of potential 
false positive results without detecting the low-abundant true positives. 
It is acknowledged that the “best detection thresholds” do not exist and 
that some adaptions might be needed, according to specific types of 
microorganisms studied, sample matrices, reference databases, and 
research questions (Wright et al., 2023). The different factors mentioned 
above, impacting the sensitivity of the metagenomics method, should 
be considered for future development of cost-efficient and time-efficient 
detection of AMR genes and their bacterial hosts, which are obtained 
in real-time and on-site by ONT sequencing. Fortunately, the ONT 
technology is rapidly evolving and constantly improving, with the new 
v14 chemistry and R10 flow cells, both allowing to achieve an accuracy 
above Q20, which will increase the detection performance of 
the method.

In addition to the KMA interpretation guidelines proposed in 
this study, a two-step KMA-based approach was also explored to 

link AMR gene detection and bacterial taxonomic identification. 
This included the detection of AMR genes present in reads, which 
were previously classified at the taxonomic level. It was successfully 
tested on two mock communities, containing seven and 12 AMR 
genes, respectively, under different experimental conditions. 
Furthermore, when simulating its usage on a laptop with a large 
dataset, the full procedure could be completed in less than 2 h, 
proving its potential for on-site application without remote access 
to powerful servers. The two-step KMA-based approach was also 
tested on sequencing datasets from the food enzyme products 
containing GMM Bacillus species and AMR genes but showed its 
limits when it came to the linking of an AMR gene that was 
suggested to be located in a plasmid. Although this workflow for 
AMR linking has to be further tested including more datasets with 
known content, it has the potential to add a new feature to the 
surveillance of AMR genes that are chromosomally located. 
Concerning AMR genes located on a plasmid, they cannot be easily 
linked to a host species without additional experimental steps, 
such as Hi-C sequencing (Brito, 2021; Lloréns-Rico et al., 2022). 
Finally, although the two-step KMA procedure was mainly 
developed and tested for long-read sequence data, it was also 
successfully applied to one short-read sequencing dataset. 
Nevertheless, more tests are needed to validate the method with 
short-read sequences.

Long-read sequencing, combined with clear and easy 
interpretation of the data due to confidence thresholds, allowed the 
detection of bacteria and their chromosomal AMR genes in complex 
metagenomics samples. We strongly believe that our approach has 
the potential to improve the surveillance of pathogens and AMR 
genes and the understanding of how they spread in natural 
microbiomes from commensal bacteria to pathogens. This is in line 
with priorities determined by the EU who stated in a recent report 
that AMR is a silent pandemic that remains a serious challenge 
(OECD, 2022). To assess the variability which can be encountered in 
different One-health applications, future studies will focus on further 
testing the approach on various real samples collected in food-
producing environment, such as farms where portable ONT 
sequencing could be used.
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