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Abstract: The popularity of plant food supplements has seen explosive growth all over the world,
making them susceptible to adulteration and fraud. This necessitates a screening approach for the
detection of regulated plants in plant food supplements, which are usually composed of complex
plant mixtures, thus making the approach not so straightforward. This paper aims to tackle this
problem by developing a multidimensional chromatographic fingerprinting method aided by chemo-
metrics. To render more specificity to the chromatogram, a multidimensional fingerprint (absorbance
× wavelength × retention time) was considered. This was achieved by selecting several wavelengths
through a correlation analysis. The data were recorded using ultra-high-performance liquid chro-
matography (UHPLC) coupled with diode array detection (DAD). Chemometric modelling was
performed by partial least squares–discriminant analysis (PLS-DA) through (a) binary modelling
and (b) multiclass modelling. The correct classification rates (ccr%) by cross-validation, modelling,
and external test set validation were satisfactory for both approaches, but upon further comparison,
binary models were preferred. As a proof of concept, the models were applied to twelve samples for
the detection of four regulated plants. Overall, it was revealed that the combination of multidimen-
sional fingerprinting data with chemometrics was feasible for the identification of regulated plants in
complex botanical matrices.

Keywords: plant food supplements; multidimensional fingerprinting; chemometrics

1. Introduction

The use of plant food supplements has been established in their popularity in devel-
oping countries since time immemorial and is rapidly emerging in the Western world over
the past few decades. This tremendous increase in their acceptance can be associated with
the consumer perception that everything natural is safe [1–4]. This is well catalyzed by
extensive marketing campaigns, the possibility of self-medication, the ease of purchase
without a prescription, and their availability through various sources [5–7].

With this rising consumer demand, a huge commercial market emerged, rendering
these plant food supplements vulnerable to fraudulent practices. This was propagated by
the availability of these products through unregulated sources, particularly ‘the internet’.
This put the consumer at high risk [8–12], raising an apprehension about the quality of the
available supplements on the market and necessitating their regulation and authentication.

In the European Union (EU), plant food supplements are regulated by the European
Directive 2002/46/EC, which allows the commercial sale of plant food supplements after
authentication from the member nations and declaration of safety standards [13]. In
Belgium, the list of plants and plant parts that are allowed to be used in plant food
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supplements is regulated by the Royal Decree of 1997 (amended in 2021), which consists of
three lists comprising (a) a list of forbidden plants and plant parts for use, (b) a list of edible
mushrooms, and (c) a list of plants allowed, but mandating notification to the concerned
national authority [14].

The screening of plant food supplements poses a problem due to their complex
matrices, a result of the pulverization and mixing of different plants. Therefore, classi-
cal macroscopic and microscopic techniques are unsuitable for their identification [15].
The World Health Organization (WHO) recognizes chromatographic fingerprinting as an
official technique for the identification and quality determination of herbs [16,17]. Chro-
matographic fingerprints represent complex chemical profiles of analysed samples which
can be obtained through spectroscopic, chromatographic or electrophoretic techniques [18].
They are informative profiles, but they may result in incorrect identification when dealing
with closely related species. This problem can be solved by combining chromatographic
fingerprinting with multivariate calibration techniques used in chemometrics [17,19].

Chemometrics can be defined as a statistical tool that is utilized for solving chemical
problems. In the ever-growing world of analytical instruments, it plays an important role
in extracting important information from the enormous amount of generated data [20,21]
The combination of chromatography and spectroscopy with chemometrics has been used
by many authors for the identification of plants using chemical markers [22–24]. However,
very few have applied this approach to complex herbal matrices [25].

This paper is aimed at developing a fingerprinting approach using ultra-high-performance
liquid chromatography (UHPLC–DAD) for the detection of four regulated plants (Aristolochia
fanghi, Ilex paraguariensis, Hoodia gordonii, and Garcinia cambogia, of which Aristolochia fanghi falls
into list 1 of the Royal Decree and the other three fall in list 3). These are commonly found in
plant food supplements claiming weight loss as an indication [26]. Weight-loss supplements
have been found to be one of the most adulterated products, owing not only to their use for
the treatment of obesity but also to the societal pressure that promotes ‘slim’ figures [6,27–29].

In order to detect the herbal adulteration of plant food supplements, a unique multidi-
mensional fingerprinting approach was followed in this paper. It takes into account not
only classical chromatograms with one wavelength but the whole information consisting of
absorbance × retention time × wavelength recorded by diode array detectors. Self-made
triturations (using 10 blank herbal matrices and lactose) were prepared in order to validate
the method. The recorded data sets were further subjected to a supervised chemometric
approach such as partial least squares–discriminate analysis (PLS-DA) for obtaining models
and carrying out the classification of the samples. Before modelling, the obtained data
were subjected to peak alignment through correlation-optimized warping (COW) in order
to reduce any external (analytical) disturbances. It was further explored if it was benefi-
cial to use pretreatment techniques, such as derivatives, standard normal variate (SNV),
and autoscaling. Next, different modelling strategies were tested; after selecting the best
one, a proof of concept was performed on a set of twelve real samples, out of which nine
claimed slimming and three claimed potency enhancement as indications for use. Potency
enhancers were added to check the reliability of the model. However, a note should be
made that such supplements are very prone to adulteration, and it would be interesting to
see if they are adulterated using plants with slimming potential.

2. Results
2.1. Final Chromatographic Conditions

The mobile phase consisted of methanol (organic modifier) and 0.1% formic acid in
milli-Q water (aqueous component). The column of choice was a C18 Acquity BEH Shield
(2.1 mm × 100 mm, 1.7 µm). Methanol/milli-Q water (50:50, v/v) was selected as the
extraction solvent. The column temperature was set at 35 ◦C. A compromise method for
all four plants was difficult to devise, but one common method for a group of two plants
could be developed. For Aristolochia fanghi and Hoodia gordonii, the gradient was set at 90%
aqueous phase, held for 30 s, and then decreased to 50% in 1 min. This was held for 1 min,
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lowered to 10% in 1.5 min, and held for 30 s. Then, the aqueous phase rose again to 90%
during 2.5 min and was held for one minute to re-equilibrate the system. The flow rate
was 0.25 mL/min. In the case of Ilex paraguariensis and Garcinia cambogia, the flow rate
was 0.30 mL/min and only the gradient differed. The change from 90% to 50% aqueous
occurred in 2.5 min and was held for 1.5 min, while the change from 50% to 10% aqueous
was faster, occurring within 30 s. The total run time for both methods was only 8 min.

2.2. Correlation Analysis and Choice of Wavelengths

Classically, aromatic compounds are recorded at a wavelength of 254 nm. In order to
include more information in the data and provide more specific fingerprints, a correlation
analysis between the recorded wavelengths (200–400 nm) was carried out. The whole data
cube of the reference standard was imported into Matlab to construct a colour map in order
to make the first choice of wavelengths.

A colour scale was added in order to infer from the map. Areas in ‘blue’ were highly
uncorrelated whereas areas in ‘yellow’ (corresponding to a value of 1 from the scale) were
highly correlated (Figure 1). Based on the map, the corresponding wavelengths were
selected from the data set and correlation coefficients were determined. A selection of a
maximum of five wavelengths was made owing to the limitation of calculation power.
A cutoff of 0.95 was set and five orthogonal wavelengths were selected for Aristolochia
fanghi, Ilex paraguariensis, and Hoodia gordonii, while four were selected for Garcinia cambogia
(Table 1). An overlay of the chromatograms at each of their respective selected wavelengths
is presented in Figure 2.
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related” and yellow as “highly correlated” wavelengths. The axis forms the wavelengths in nm. The 

Figure 1. Colour map for Aristolochia fanghi, Garcinia cambogia, Hoodia gordonii, and Ilex paraguar-
iensis depicting the correlation between wavelengths. The colour scale represents blue as “highly
uncorrelated” and yellow as “highly correlated” wavelengths. The axis forms the wavelengths in nm.
The red marker represents an approximation of the selected wavelengths on the colour map for the
individual plants. The wavelengths are listed in Table 1.
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Table 1. Selected wavelengths (nm) for all 4 plants.

Aristolochia fanghi Ilex paraguariensis Hoodia gordonii Garcinia cambogia

264 210 249 249
284 230 266 265
305 282 280 303
322 361 325 316
333 382 360
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Figure 2. Overlays of the chromatograms of the concerned plants represented at their selected
wavelengths (nm) with the X-axis representing retention time (in minutes) and the Y-axis representing
the absorbance (in absorbance units). An offset of 0.01 is added to the chromatograms to provide a
better overview of the overlaid wavelengths of each reference plant.

2.3. Chemometric Analysis

A total of 67 samples (55 self-made triturations + 11 blanks + the reference plant),
were injected in the UHPLC–DAD system. As already mentioned before, the triturations
were composed of 10 herbal matrices (besides lactose) that did not claim slimming as an
indication and are not listed as the regulated plants considered in this paper. The raw
data of the recorded fingerprints at the selected wavelengths for these triturations were
then imported to Excel from Empower. The nature of the data was multidimensional,
i.e., consisting of sample × wavelength × retention time as the dimension of the data
cube with values constituting absorbance × wavelength × retention time. After selecting
the fingerprint region (1.5–6.6 min), the data set was imported into Matlab. Here, 3D
matrices were created, which were represented as 67 × 5 × 6121 for binary models and
235 × 5 × 6121 for multiclass models, with 67/235 being the samples, 5 being the wave-
lengths, and 6121 representing the time points. The data set was then unfolded in order to
carry out chemometric treatment owing to the complexity of the data set. The unfolded
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matrices were represented as 67 × 30,605 and 235 × 30,605. The same representation was
obtained for Garcinia cambogia but with four wavelengths, and the unfolded matrices were
represented as 67 × 24,484 and 235 × 24,484.

In order to avoid any shifts in retention time, the chromatograms for the whole data
set as well as real-life samples were aligned using COW. The alignment was performed
at all five or four (in the case of Garcinia cambogia) wavelengths separately. The target
chromatogram for all four plants at each wavelength was then determined by calculating
the highest mean. The optimal parametric values of segments and slack were evaluated.
A combined data set consisting of all the warped data (at each wavelength) was created
for each plant separately. After warping, a separate data set for samples was created and
further analysis was performed on the rest. The whole data set was subjected to different
data pretreatment techniques. However, no improvement was observed in the results.
Therefore, the final data set was considered with just warping as pretreatment.

This data set with triturations and blanks was subjected to the duplex algorithm. After
assigning the categorical variables to class 1 as positives for the reference plants and class 2
as negatives (the unspiked or blank matrices), the data for binary modelling were split into
two representative sets: a training set (calibration set) and a test set (validation set). For
multiclass modelling, five categorical variables were assigned. Each variable represented a
different plant and the fifth was blank matrices. More details are represented in Table 2.

Table 2. Overview of results obtained from duplex showing the attribution of samples (objects) into
the training set and test set.

Type of Data Set Class Assigned Total Samples in the
Data Set

No. of Samples in
Training Set

No. of Samples in Test
Set

Binary data set 1, 2 67 50 17

Multiclass data set 1, 2, 3, 4, 5 235 176 59

2.3.1. Partial Least Squares–Discriminant Analysis

PLS-DA was carried out to determine whether the samples in the data set could be
classified according to the assigned classes. The aim was to create the best model with
the least misclassifications in cross-validation and external test set predictions for further
testing of real samples. This technique was applied in two approaches of modelling: (a)
binary models and (b) multiclass models.

Binary Models

The first data set to test this approach was chosen to be that of individual plants
consisting of 67 samples in total, with 11 negatives and one reference. Classes were then
assigned to positive samples as ‘1′ and negative samples as ‘2′. After defining training
and test sets, cross-validation was carried out. A 10-fold cross-validation was used with
30 latent variables to be predicted. After the selection of the most suitable number of PLS
factors, modelling was performed. The models were validated using the external test set of
17 samples.

For Aristolochia fanghi, 23 PLS factors gave the best results. A cross-validation of 94%
correct classification rate (ccr) was obtained with 47 out of 50 samples in the training set
predicted correctly. The three misclassifications were false positives. Modelling results were
also acceptable with a ccr of 96%. In order to test the model, external test set validation was
performed. The results indicated that only one sample from the test set was misclassified
as false positive, and a total ccr of 94% (Table 3) was obtained.
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Table 3. Binary modelling using PLS-DA with 67 total samples.

Slimming Plant PLS Factors

Cross Validation
(ccr%) with

Misclassified Samples
between Brackets ()

Modelling (ccr%)

External Test Set
Prediction (ccr%) with
Misclassified Samples

between Brackets ()

Aristolochia fanghi 23 94% (3/50) 96% 94% (1/17)

Ilex paraguariensis 14 96% (2/50) 100% 94% (1/17)

Hoodia gordonii 20 88% (6/50) 96% 94% (1/17)

Garcinia cambogia 22 96% (1/50) 98% 88% (2/17)

Similarly for Ilex paraguariensis, after obtaining the results of cross-validation, 14 PLS
factors were selected, giving a ccr of 96% with 48 out of 50 samples predicted correctly. The
two misclassified samples were false positives. Modelling results revealed a 100% correct
model based on the training set. External test set validation revealed that all samples were
predicted correctly except one (Table 3). The misclassified sample here is considered to be a
false positive.

For Hoodia gordonii, the best cross-validation results were obtained with 20 PLS factors.
For the training set, 44 samples were predicted correctly with 6 misclassifications attributed
as false positives. Next, modelling was carried out, and a ccr of 96% for the model was
determined. Only one misclassified sample was observed for Hoodia gordonii after the
external test set validation, which was revealed to be a false positive (Table 3).

For Garcinia cambogia, cross-validation of 96% was obtained for 22 PLS factors with
the incorrect prediction of only 1 sample out of 50, which was classified as a false positive.
The data were then modelled using 22 PLS factors, revealing a ccr of 98%. This model was
further validated using the test set. Two samples were misclassified, yielding a ccr of 88%
(Table 3). Both samples were revealed to be false positives.

It is interesting to note that all misclassified samples, apart from two (one in the
training set of Aristolochia fanghi and the other in the test set of Ilex paraguariensis) were
all blank or unspiked matrices. A possible explanation could be the variation in the
matrix rendering the inability to differentiate between spiked matrices (triturations) and
unspiked matrices.

A confusion matrix summarizing the prediction and classification results is depicted
in Table 4.

Table 4. The overall depiction of the confusion matrix summarizing best predicting binary models
for the 4 plants. The training set consists of 50 samples and the test set consists of 17 samples.

Slimming Plant
True Positives

Training Set Test Set
(cv)

False Positives
Training Set Test Set

(cv)

True Negatives
Training Set Test Set

(cv)

False Negatives
Training Set Test Set

(cv)

Aristolochia fanghi 45 12 2 1 3 4 0 0

Ilex paraguariensis 43 12 2 0 5 4 0 1

Hoodia gordonii 42 14 6 1 2 2 0 0

Garcinia cambogia 43 13 2 2 5 2 0 0

Multiclass Models

A cumulative approach to classifying all the plants was attempted by assigning
different classes to different plants when developing the model. The modelling was carried
out four times, each time using the selected wavelengths for the respective plants (see
Section 2.2). For example, a data set using the wavelengths for Aristolochia fanghi consisted
of samples (triturations of four plants + blanks) at wavelengths of 264 nm, 284 nm, 305 nm,
322 nm, and 333 nm (Table 1); five classes were assigned to each plant and the blank. The
data set was composed of 235 samples. The duplex algorithm was performed on this data
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set, and a total of 59 samples were selected for the test set (Table 2). A similar approach to
binary modelling was followed.

Multiclass modelling for data consisting of wavelengths for Aristolochia fanghi revealed
a ccr for cross-validation equal to 91% using 22 PLS factors with 161 out of 176 samples
in the training set predicted correctly. During cross-validation, six false positives for
Aristolochia Fanghi were observed, from which, respectively, three, one, and two samples
were triturations of Ilex paraguariensis, Garcinia cambogia, and the blanks. Similarly, one
trituration of Ilex paraguariensis and five blanks were misclassified as Hoodia gordonii. Ilex
paraguariensis was falsely detected in two samples of Garcinia cambogia, and Garcinia cambogia
in one sample of Hoodia gordonii. Modelling was carried out to obtain a ccr of 93%, and
the external test set validation resulted in six misclassifications with a ccr of 90%. When
evaluated, the misclassifications were found for Hoodia gordonii, which was falsely classified
as positive in three blank samples and one sample of Ilex paraguariensis, whereas one
sample of Ilex paraguariensis and one blank sample were misclassified as containing Garcinia
cambogia (Tables 5 and 6).

Table 5. Multiclass modelling by PLS-DA depicting the best models selected for each plant. The total
data set consisted of 235 samples.

Slimming Plant PLS Factors

Cross Validation
(ccr%) with

Misclassified Samples
between Brackets ()

Modelling (ccr%)

External Test Set
Validation (ccr%) with
Misclassified Samples

between Brackets ()

Aristolochia fanghi 22 91% (15/176) 93% 90% (6/59)

Ilex paraguariensis 18 93% (12/176) 97% 88% (7/59)

Hoodia gordonii 23 87% (23/176) 94% 90% (6/59)

Garcinia cambogia 22 84% (28/176) 93% 90% (6/59)

For the model with wavelengths of Ilex paraguariensis, 18 PLS factors were chosen, and a
ccr of 93% was obtained by cross-validation, revealing the correct prediction of 164 samples
in the training set. Ilex paraguariensis was further detected as a false positive for the blanks,
whereas Garcinia cambogia was found to be positive for one sample in Hoodia gordonii and
four blank samples. Moreover, Aristolochia fanghi was found to be present in one sample
of Hoodia gordonii, whereas Hoodia gordonii was found to be falsely positive in samples
of Garcinia cambogia and blanks with values of three and two, respectively. Modelling
results showed sufficiently good models with a ccr of 97%. Seven misclassifications were
observed when validation with an external test set was carried out. Out of these seven
misclassifications, one and three false positives for Aristolochia fanghi were detected in
Hoodia gordonii and the blanks, respectively. Hoodia gordonii was found to be positive in
one trituration of each Garcinia cambogia and the blank sample, and one sample of Ilex
paraguariensis was misclassified as blank (Tables 5 and 6).

Similarly, for the model constructed with wavelengths of Hoodia gordonii, the best
modelling results were obtained with 23 PLS factors, and a ccr of 87% was obtained
by cross-validation. One hundred fifty-three of the training set samples were predicted
correctly. Hoodia gordonii was found to be positive in five samples of Ilex paraguariensis,
in one sample of Garcinia cambogia, and in four blank samples. Aristolochia fanghi was
misclassified as falsely positive, amounting to one trituration of Hoodia gordonii, one of Ilex
paraguariensis, four of Garcinia cambogia, and two of the blank samples. On the other hand,
for Ilex paraguariensis, one false positive was evaluated in the blank sample, and for Garcinia
cambogia, a total of four misclassifications (all false positives) were found as one in Hoodia
gordonii and three in Ilex paraguariensis. The ccr of modelling was found to be 94%. The
validation results using the test set revealed six misclassifications with 90% ccr, all of which
were false positives of Hoodia gordonii in triturations of Garcinia cambogia (1) and the blanks
(5) (Tables 5 and 6).
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Table 6. The overall depiction of the confusion matrix for multiclass modelling for 4 separate models
constructed using the wavelength of that plant. The total sample set comprised 235 samples, and
each training and test set formed 176 and 59 samples, respectively.

Slimming Plant
True Positives

Training Set Test Set
(cv)

False Positives
Training Set Test Set

(cv)

A multiclass model with wavelengths of Aristolochia fanghi

Aristolochia fanghi 43 13 6 0
Hoodia gordonii 49 6 6 4

Ilex paraguariensis 29 20 2 0
Garcinia cambogia 39 14 1 2

Blank 0 0 0 0

A multiclass model with wavelengths of Ilex paraguariensis

Aristolochia fanghi 46 10 1 4
Hoodia gordonii 44 9 5 2

Ilex paraguariensis 34 21 1 0
Garcinia cambogia 40 12 5 0

Blank 0 0 0 1

A multiclass model with wavelengths of Hoodia gordonii

Aristolochia fanghi 43 11 8 0
Hoodia gordonii 46 10 10 6

Ilex paraguariensis 26 23 1 0
Garcinia cambogia 38 8 4 0

Blank 0 1 0 0

A multiclass model with wavelengths of Garcinia cambogia

Aristolochia fanghi 40 12 10 2
Hoodia gordonii 35 10 2 2

Ilex paraguariensis 27 23 1 0
Garcinia cambogia 45 8 13 1

Blank 0 0 2 1

When modelled with 22 PLS factors, the data set with the wavelengths of Garcinia cambo-
gia showed a ccr of 84% by cross-validation with 28 misclassifications for the training set. It
was revealed that Garcinia cambogia was predicted as falsely positive in one trituration of Ilex
paraguariensis, three of Aristolochia fanghi, six of Hoodia gordonii, and three of the blanks. Ilex
paraguariensis was also predicted as a false positive in Hoodia gordonii. Meanwhile, for Aris-
tolochia fanghi, two false positives were observed in Garcinia cambogia, two in Ilex paraguariensis,
five in Hoodia gordonii, and one in the blanks. For Hoodia gordonii, Garcinia cambogia consisted of
two misclassified predictions, and two samples of the blanks were falsely predicted as Garcinia
cambogia. External test set validation results comprised six misclassifications with a ccr of 90%.
Garcinia cambogia, Aristolochia fanghi, and Hoodia gordonii were all classified as falsely positive,
respectively, in one, two, and two blank samples, whereas one blank was misclassified as
positive in triturations of Ilex paraguariensis (Tables 5 and 6).

A common pattern in multiclass models was the higher amount of misclassifications
when compared with binary models. It was observed that blank matrices were not predicted
correctly. A reason could be that the features of the blank class were not strong enough
to differentiate between spiked and unspiked mixtures, which is contrary to what was
seen in binary modelling, where a maximum of two misclassifications was obtained for the
external test set validation.

Furthermore, the best-performing multiclass model was chosen for the prediction of
real samples. This was achieved by comparing the ccr% of all the models along with their
misclassifications, which led to the choice of model based on the wavelengths of Aristolochia
fanghi (for reference see Supplementary Material Figures S1 and S2).
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2.3.2. Real Samples

As proof of concept, 12 samples that showed slimming (9 samples) and potency
enhancement (3 samples) as indications were tested. Out of 12, using binary modelling
10 samples were found to be positive for a regulated plant. Herein, six were detected
as positive for Hoodia gordonii, four were positive for Ilex paraguariensis, and seven were
positive for Garcinia cambogia. Samples were found to be positive for several plants as
summarized in Table 7. Surprisingly, Aristolochia fanghi was also found in four samples,
even though it is a banned product in Belgium.

Table 7. Depiction of obtained predicted samples by comparing binary modelling for the four plants
and multiclass model based on the selected wavelengths for Aristolochia fanghi.

Samples Plants Classified According to Binary Modelling
(Comparative)

Plants Classified with the Multiclass
Model

Sample 1 Ilex paraguariensis, Garcinia cambogia Garcinia cambogia
Sample 2 – Garcinia cambogia

Sample 3 Aristolochia fanghi, Hoodia gordonii,
Garcinia cambogia Hoodia gordonii

Sample 4 Hoodia gordonii, Ilex paraguariensis Aristolochia fanghi
Sample 5 Hoodia gordonii, Aristolochia fanghi
Sample 6 Garcinia cambogia, Ilex paraguariensis Ilex paraguariensis

Sample 7 Aristolochia fanghi, Hoodia gordonii,
Garcinia cambogia Hoodia gordonii

Sample 8 – –

Sample 9 Aristolochia fanghi, Hoodia gordonii,
Garcinia cambogia Garcinia cambogia

Sample 10 Garcinia cambogia, Ilex paraguariensis Garcinia cambogia
Sample 11 Aristolochia fanghi, Hoodia gordonii Aristolochia fanghi
Sample 12 Garcinia cambogia Aristolochia fanghi

For the rest, samples that claimed to be positive for a regulated plant on the label
(samples 3 and 7 for Garcinia cambogia and sample 6 for Ilex paraguariensis) were also found
to be positive by our modelling approach.

The multiclass model constructed using wavelengths of Aristolochia fanghi, when
used for the prediction of the real samples, could detect 11 positives out of 12 samples.
Four positives were found for Aristolochia fanghi, one for Ilex paraguariensis, two for Hoodia
gordonii, and four for Garcinia cambogia. A brief overview of sample prediction by multiclass
modelling is represented in Table 7.

When comparing the results of the two approaches, similarities between sample
prediction for samples 1, 3, 6, 7, 8, 9, 10, and 11 were found. Whereas a comparative study
could depict the presence of multiple plants in the sample for binary modelling, there were
no such classifications for multiclass modelling. Therefore, we need to start a discussion
about the choice between the most feasible approach for modelling using PLS-DA.

2.3.3. Comparison of Results Obtained for 254 nm and for Selected Wavelengths

The same approach as described above was carried out for binary modelling using
two data sets, one comprising data obtained at 254 nm and the other with data obtained
for multiple wavelengths. From the results, it was observed that the error in prediction
of the external test set was higher for 254 nm for the considered plants when compared
with multidimensional data. For example, when comparing the result for Aristolochia
fanghi, the ccr for external test set prediction at 254 nm was 88%. On the other hand, a
ccr of 94% (Table 3) was observed for multidimensional data. For Hoodia gordonii, a ccr of
82% was obtained at 254 nm, while 94% (Table 3) was observed for the multidimensional
data. Moreover, for both Ilex paraguariensis and Garcinia cambogia, a ccr% of 76% was
observed when considering 254 nm, while ccr’s of 94% and 88%, respectively, were recorded
for multidimensional data. Even though the ccr values for modelling are sometimes
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comparable, the addition of multiple wavelengths adds to the specificity and robustness of
the models. Therefore, this approach is superior to the use of just a single wavelength.

3. Materials and Methods
3.1. Samples and Reagents

Reference material for Aristolochia fanghi, Ilex paraguariensis, Hoodia gordonii, and
Garcinia cambogia was obtained from the American Herbal Pharmacopoeia (Scotts Valley,
CA, USA), which authenticated the plant material through different macro- and microscopic
techniques and provided a validation certificate confirming its identity.

Reagents such as methanol (HPLC grade), acetonitrile (HPLC grade), and ethanol
(96% v/v) were obtained from Biosolve (Valkenswaard, The Netherlands). Formic acid
(99.7%), hydrochloric acid solution (37 w/w%), and ammonia solution (25 w/w%) were
all purchased from Merck (Darmstadt, Germany). A Millipore—MilliQ® system (Billerica,
MA, USA) was used to dispense milli-Q water. Lactose was also procured from Merck
(Darmstadt, Germany).

All botanical supplements used for triturations and samples were selected from the
samples seized by the Federal Agency for the Safety of the Food Chain (FASFC) (Brussels,
Belgium) and sent to the laboratory to be tested for chemical adulteration. A choice for the
botanical matrices to be used for triturations was made such that no concerned plant in
this paper was listed on the label, and the supplement itself did not mention slimming as
an indication. On the other hand, 12 samples were chosen, out of which 9 (samples 1–9)
were slimming aids while 3 (samples 10–12) were potency enhancers.

3.2. Sample Preparation
3.2.1. Preparation of Reference Solutions

The dried plant parts were crushed into powder using mortar and pestle and then
sieved through a 70 µm pore-sized sieve. For UHPLC, reference solutions (10 mg/mL)
were prepared using methanol and milli-Q water (50:50, v/v) as extraction solvent. After
mixing and vortexing for 30 s, they were placed in an ultrasound bath for 40 min. The
solutions were then filtered using a 0.2 µm PTFE filter and collected in vials.

3.2.2. Preparation of Triturations

Self-made triturations were prepared for each reference plant using 10 botanical ma-
trices and lactose. The triturations were prepared by mixing the reference plant and the
botanical supplement in a classical concentration range from 5% to 50% and 5 concentra-
tions: 1/20, 1/15, 1/10, 1/5, and 1/2 (reference/botanical supplement). Therefore, for each
plant, a set of 55 (11 × 5) triturations was obtained. This mixture was then homogenised us-
ing a mortar and pestle. The triturations with reference plant material and blanks (unspiked
matrices) were injected in the UHPLC-DAD system using the same extraction procedure as
the reference standards. The data collected was used for further chemometric processing.

3.2.3. Preparation of Samples

Twelve real samples were used for testing the developed models. All samples were
present in capsules, in powdered form. Hence, the procedure to extract and prepare
reference solutions was used. Out of the selected samples, samples 3 and 7 claimed the
presence of Garcinia cambogia and sample 6 claimed the presence of Ilex paraguariensis.

3.3. Instrumentation and Conditions
3.3.1. Preparation of Reference Solutions

All solutions from standards, triturations, and samples were injected into a UHPLC-
DAD system from Waters (Milford, MA, USA). The system consisted of a binary pump, a
column oven, and a temperature-regulated autosampler coupled with a DAD detector.
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Method Development

A previously developed HPLC-DAD method was used as starting point for Aristolochia
fanghi and Ilex paraguariensis [25]. This was transferred to a UHPLC system by adapting
and optimizing the chromatographic parameters.

For Hoodia gordonii and Garcinia cambogia, method development was started by conduct-
ing a full factorial experimental design to find the most optimal features. The parameters
considered were as follows: type of column, extraction solvent, pH of the aqueous phase,
and organic modifier. In order to select the most optimum conditions, a cutoff value of
1000 µV was set for absorbance. Four different reversed-phase columns were tested: C8
Acquity UPLC (2.1 mm × 100 mm, 1.7 µm), C18 Acquity UPLC BEH (2.1 mm × 100 mm,
1.7 µm), C18 Acquity BEH Shield (2.1 mm × 100 mm, 1.7 µm), and HSS T3 Acquity UPLC
(2.1 mm × 100 mm, 1.8 µm). The Waters Acquity BEH Shield column (2.1 mm × 100 mm,
1.7 µm) was found to be best suitable. Even though the C18 BEH and HSS T3 showed
13 peaks falling above the cutoff, the BEH Shield yielded many more peaks. Concerning the
choice of organic modifier and pH, it was found that methanol in combination with formic
acid (0.1%) showed the best response and separation of the peaks. In order to optimise
the gradient, different time points were tried. The most optimal gradient was found to
be the one described in Section 2.1. After testing different flow rates, 0.25 mL/min was
revealed to be the most suitable choice. The column temperature was also investigated and
after comparing the chromatograms at 30 ◦C, 35 ◦C, and 40 ◦C, 35 ◦C produced the best
chromatograms with good separation. The repeatability of extraction and injection was
further evaluated and good results were obtained for the chromatograms.

Similar results were obtained for Garcinia cambogia with differences in the gradient
and flow rate (0.30 mL/min). An effort was made to find a compromise method for the
four plants. However, it was found that two different chromatographic methods would be
better per set of two different plants (Ilex paraguariensis and Garcinia cambogia vs. Aristolochia
fanghi and Hoodia gordonii).

3.4. Selection of Wavelengths

To select orthogonal wavelengths that can provide maximum information for a certain
plant, a correlation analysis for the reference plants was performed between wavelengths
recorded from the DAD detector. In the first step, the whole data cube was exported from
Empower and imported into Matlab. A colour map was created between wavelengths
(represented as wavelength number) on both x- and y-axis. A gradient scale was added
to further distinguish between correlated and uncorrelated wavelengths. While blue
represented uncorrelated regions, yellow represented correlated regions. The wavelengths
falling within the blue region were then selected from the whole data set. Following this,
the correlation coefficients were calculated using Excel. Further filtering of wavelengths
by setting a cut-off limit of 0.95 between adjacent wavelengths was established. Finally, a
choice for the most orthogonal wavelengths was made.

3.5. Data
3.5.1. Data Set Preparation and Multidimensional Fingerprints

All recorded DAD data from Empower were exported to Excel to prepare the data sets.
A fingerprint region that represented the maximum information (most number of peaks)
characterising the plant, was visually selected on the chromatogram. This was found to be
from 1.5 to 6.6 min. Peaks occurring before and after this region were not considered for
further analysis.

In this paper, the whole data cube recorded on a UHPLC system was taken into
account, (i.e., absorbance×wavelength× retention time), thus creating a multidimensional
fingerprint. As conventional chromatographic fingerprints at 254 nm lack specificity in
cases of herbal mixtures, a multidimensional fingerprint should tackle this problem.

Two strategies for the preparation of the data set were followed. In the first one, a data
set containing orthogonal wavelengths based on correlation analysis was prepared. In the
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second approach, the whole data cube consisting of all the wavelengths was considered.
Both data sets were then imported into Matlab. Unfortunately, the size of the whole data
cube was too large for Matlab. Therefore, only the data set with orthogonal wavelengths
was selected.

3.5.2. Peak Alignment

Dealing with enormous chromatographic data comes with disadvantages. Due to
changes between days, such as small differences in mobile phase composition or tiny ma-
chine instabilities, shifts in peaks along the time axis may arise. This necessitates alignment
since such adjustments are prerequisites prior to further chemometric treatment [30].

The principle of COW is based on sequential stretching and compression along the
time axis. The optimal alignment is determined by the correlation coefficient between the
reference and the sample chromatogram [31]. The first step in this technique is to find
a target profile (T) in the chromatograms. This is carried out by calculating the highest
mean of correlation coefficients between the chromatograms. The sample chromatogram is
aligned using the target as a reference. Next, the sample chromatogram is to be aligned
and the reference chromatogram is divided into subsections. Each subsection (i) of the
sample is then compared with the ith section of the reference and warped accordingly. By
changing the position of the endpoint by a finite number of lengths, called slack parameters
(s), a segment can be stretched or compressed. The stretching and compression of the
sample chromatogram are linearly interpolated on the reference chromatogram. This
process is then continued with the endpoint of the previous section becoming the starting
point of the next section. The quality of the warped chromatograms is assessed by the
calculation of correlation coefficients between the section of the sample chromatogram and
its corresponding section on the target profile. Only the ideal combinations of warping are
kept while the suboptimal ones are discarded during dynamic programming. This ideal
combination constitutes the highest cumulative value of the correlation coefficients [30,32].

The data set with triturations was combined with those consisting of samples and
blanks, followed by COW. The segment length was varied between 10 and 50, whereas
1–5 slack parameters were tested for each segment. After warping, the data sets were split
again into their normal arrangements.

3.5.3. Data Pretreatment

Data pretreatment was carried out using various preprocessing techniques that in-
cluded autoscaling, snv, derivatives (1st and 2nd), and combination of different prepro-
cessing techniques, for example, autoscaling with derivatives. However, when comparing
treated data with untreated data, the modelling scores using PLS-DA were not significantly
different. Therefore, no pretreatment technique (after warping) was carried out.

3.5.4. Test Set Selection

The duplex algorithm was used for splitting the data set into representative sets,
involving a calibration and validation set, independent of each other. It started by choosing
two points that were farthest away by calculating the Euclidean distance between them
and placing them in the calibration set. Subsequently, the pair that was the second furthest
away was selected and added to the validation set. This alternation between grouping into
calibration and validation set continued until all the points were appointed. An optimal
validation set is one that contains about 20% of the samples from its total data set [33].

In this study, 25% of the data set was selected for the test set (validation set).

3.5.5. PLS-DA

PLS-DA is a supervised technique that is used to discriminate and classify different
samples. It is a dimension reduction technique that is an extension of PLS regression
when the response variable (y) is categorical. The technique defines PLS factors that are
linear combinations of original variables [34]. Cross-validation is very important when
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performing PLS-DA as they are prone to overfitting [35]. Tenfold cross-validation was done
and PLS factors showing maximum ccr% were selected for modelling. After modelling,
external test set validation was carried out to test the predictive ability of the model. The
misclassifications and ccr% were comprehended and compared between different models
of different plants or different approaches. The two different approaches applied here were
binary modelling and multiclass modelling.

3.5.6. Software

Empower 3 software from Waters (Milford, MA, USA) as used for data acquisition
from UHPLC-DAD. Matlab version 2016b from Mathworks (Natick, MA, USA) was used
for data processing and modelling. The ChemoAc toolbox, version 4 (Brussels, Belgium)
was used for the application of PLS-DA.

4. Discussion and Conclusions

In this paper, a feasibility study was carried out to combine the use of multidimensional
fingerprints with chemometric modelling. Classically, chromatographic fingerprinting is
used for differentiation using visual inspection or similarity analysis. However, these
techniques fall short when complex herbal matrices are considered.

Starting with the development of the chromatographic method, there were attempts
to find a compromise in order to analyse the plants simultaneously using one method.
However, two separate methods for the four plants were needed. The selection of wave-
lengths was carried out using correlation analysis. Five wavelengths were selected for
three plants; four, for Garcinia cambogia. The addition of more wavelengths in the data set
rendered the chromatogram more specific, which is of key importance when comparing
different fingerprints. This can also be confirmed when comparing the chromatograms for
all the plants at 254 nm and then comparing them to those occurring at the corresponding
wavelengths. All data were imported into Matlab for modelling with PLS-DA.

In this study, two modelling approaches were carried out. The binary models demon-
strated very good predictive abilities for all four plants. A maximum of two misclassifica-
tions were observed for the external test set of Garcinia cambogia. From these results, one
could conclude that PLS-DA was able to model the discrimination between plants in line
with the aim of this paper.

The multiclass models, surprisingly, showed acceptable results, but with higher mis-
classifications. In addition, another pattern was seen for the results since the negative class
5 could not be predicted during the external test set validation.

In a common pattern observed for both binary models and multiclass models, a high
number of PLS factors were chosen for modelling. This can be explained by taking into
consideration that the data set had high complexity along with considerable variations.
The optimal choice of PLS factors was carried out by reviewing the ccr% obtained through
cross-validation (for reference see Supplementary Material Figures S1 and S2).

As proof of concept, a small selection of samples was tested using the developed
models. This sample set consisted of nine samples sold as slimming aids and three as
potency enhancers. The testing of binary models revealed that all samples that claimed the
presence of a certain plant on the packaging were found positive for the concerned plant,
i.e., two for Garcinia cambogia and one for Ilex paraguariensis. In general, the popularity of
Ilex paraguariensis, Hoodia gordonii, and Garcinia cambogia is logical as their circulation in
the market increased considerably, especially for the latter two [26]. It was surprising that
Aristolochia fanghi was detected in the four plant samples. According to the Royal Decree
of 1997, it is banned as a food supplement in Belgium. Though these results should be
interpreted with caution, in this study we dealt with unnotified samples, i.e., originating
from the internet market. If Aristolochia fanghi would be detected in a notified product,
which is legally present on the market, the confirmatory analysis would be necessary using,
e.g., high-resolution mass spectrometry or DNA-based methods, such as PCR.
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Another observation made from the results was that multiple plants could be detected
in single samples, even though no claims for them were made on the label, thus making
it important to alert the national authorities. An additional consideration was made
regarding the three potency enhancers. Each sample tested positive for at least one of the
investigated plants. This indicates that there is a possibility that potency enhancers can be
contaminated or adulterated with slimming plants in order to provide two benefits through
one ‘magic bullet’.

On the other hand, sample prediction through multiclass models revealed a few
concerns with regard to the technique itself. Instead of predicting all present plants
considered in this paper in the samples, the predictive ability might be restricted to the
one having higher absorbance. Another shortcoming is that when new plants need to
be analysed using this model, all the plants should be reinjected, which is not practical.
Thus, these models should be constantly updated. So, binary models are preferred over
multiclass models.

Overall, it can be concluded that chromatographic fingerprinting in combination with
chemometrics can be used to classify regulated plants for their presence or absence in
complex plant matrices of suspected herbal supplements with a high degree of correctness.
The use of multiple wavelengths also shows advantages towards specificity and model
robustness compared with the use of single-wavelength fingerprints, especially when
dealing with complex herbal mixtures or matrices.

Based on the proof of concept using 12 real samples, it can be concluded that herbal
adulteration is a problem, especially with samples purchased from irregular sources, such
as uncontrolled websites, and may constitute a threat to consumer health.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules28083632/s1, Figure S1: Ccr% vs. number of PLS
factors (binary modelling); Figure S2: Ccr% vs. number of PLS factors (multiclass modelling).
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