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Abstract: The analysis of heroin samples, before use in the protected environment of user centra, could
be a supplementary service in the context of harm reduction. Infrared spectroscopy hyphenated with
multivariate calibration could be a valuable asset in this context, and therefore 125 heroin samples were
collected directly from users and analysed with classical chromatographic techniques. Further, Mid-
Infrared spectra were collected for all samples, to be used in Partial Least Squares (PLS) modelling, in
order to obtain qualitative and quantitative models based on real live samples. The approach showed
that it was possible to identify and quantify heroin in the samples based on the collected spectral data
and PLS modelling. These models were able to identify heroin correctly for 96% of the samples of the
external test set with precision, specificity and sensitivity values of 100.0, 75.0 and 95.5%, respectively.
For regression, a root mean squared error of prediction (RMSEP) of 0.04 was obtained, pointing at good
predictive properties. Furthermore, during mass spectrometric screening, 10 different adulterants and
impurities were encountered. Using the spectral data to model the presence of each of these resulted in
performant models for seven of them. All models showed promising correct-classification rates (between
92 and 96%) and good values for sensitivity, specificity and precision. For codeine and morphine, the
models were not satisfactory, probably due to the low concentration of these impurities as a consequence
of acetylation. For methacetin, the approach failed.

Keywords: adulterants; ATR-IR; chemometrics; diacetylmorphine; diluents; mobile detection approaches

1. Introduction

The principles of harm-reduction initiatives are deeply embedded in the EU Drugs
Strategy and Action Plan (2021–2025) [1]. These initiatives aim at reducing the health-
related risks linked to the use of illicit drugs by applying a more pragmatic approach. One
of these initiatives is drug checking, by which users of psychoactive substances can submit
their samples for chemical analysis and receive timely feedback about composition and
possible risks related to the samples submitted [2–6]. Furthermore, these services might
also provide consumption rooms, where people can self-administer drugs in a protected
and hygienic environment, overseen by qualified staff [7]. This is especially valuable for the
use of hard drugs or injected products such as heroin. In the latter case, the combination
of a chemical analysis of the product and use in the supervised environment of the user
centrum can significantly reduce the risk of incidents or even lethal consequences.

However, the effective testing of illicit drug samples in the context of drug checking
relies on the possibility of low-cost and fast analytical approaches. The latter results in the

Molecules 2024, 29, 1116. https://doi.org/10.3390/molecules29051116 https://www.mdpi.com/journal/molecules

https://doi.org/10.3390/molecules29051116
https://doi.org/10.3390/molecules29051116
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/molecules
https://www.mdpi.com
https://orcid.org/0000-0001-6980-6684
https://orcid.org/0009-0000-4308-4839
https://orcid.org/0009-0006-6948-843X
https://orcid.org/0000-0002-1596-6540
https://doi.org/10.3390/molecules29051116
https://www.mdpi.com/journal/molecules
https://www.mdpi.com/article/10.3390/molecules29051116?type=check_update&version=1


Molecules 2024, 29, 1116 2 of 22

fact that drug checking services often rely on colour tests and spectroscopic approaches
such as ultraviolet–visible, Fourier-transform infrared and Raman spectroscopy [2,8–10].
The colour test kits are often used as a first step in the analysis, and even if they are
purely presumptive in nature, they can be considered as fairly accurate in identifying
compounds or mixtures of compounds, especially when a battery of tests is used [8].
Although these techniques have many advantages, they are all limited when it comes to
the identification of multiple drugs in one sample, purity determination or the detection
of unknown molecules. Although some spectroscopic instruments come with software
allowing deconvolution, and thus the detection or identification of several compounds in
a mixture, this remains limited to the main compounds, while impurities or low-dosed
adulterants will be missed [9,11]. This is of particular interest for heroin, which is also
called 3,6-diacetyl morphine and represents about 8% of the world’s drug seizures. In its
pure form, it is a white powder with a bitter taste. However, heroin is rarely encountered
as such and often contains many impurities and adulterants, resulting in colours ranging
from white to dark brown. The wide variety in purity poses the greatest risk when using
heroin, due to the difficulty in dosing and thus the risk of (lethal) overdoses [12,13]. For
illustration, a Serbian study showed a variety in purity in their sample set from 1.7 to
58.8% w/w [13]. Diluents that are often encountered in these samples are inert powders
like chalk, flour, talcum powder and glucose, but also pharmacological active compounds
like acetaminophen and caffeine [12,13]. A whole range of impurities might be present,
originating from the production process. Two special cases in the context of adulteration
have become important in the last decade. The first is the well documented fentanyl crisis,
wherein heroin (and also cocaine) is adulterated with fentanyl [14,15]. This is done by
the producers and without the knowledge of the consumers. The second is the trend
in which substances are intentionally mixed with heroin. An example is a product sold
under the name “Speedball”, which consists of cocaine mixed with heroin [16]. Fentanyl
and its analogues caused the fentanyl crisis, mainly in North America, where they were
intentionally added to heroin and cocaine samples [14,15]. These fentanyls are considered
new psychotropic substances and are a major concern due to their prevalence, diversity and
potency [14,15]. It is especially their potency that is responsible for the numerous deaths
caused by this crisis [14,15]. They are present in the samples as low-dosed adulterants, and
therefore can be missed during analysis with the techniques available from drug checking
services [14,15]. Speedball, which consists of the simultaneous injection of cocaine and
heroin, recently showed an increased popularity. The mixture, causing the feeling of a high
to be more intense and to last longer, elevates the health risks for the user, since heroin acts
as a depressant, while cocaine is a stimulant, causing opposite side effects [16–18].

As illustrated before, heroin is a complex mixture of active and inert compounds and
represents a challenge for analysis with the techniques often available at consumption
rooms or drug checking services. In general, heroin samples are analyzed using gas or
liquid chromatography paired with mass spectrometry (GC/LC–MS), possibly followed
by other techniques for purity determination or quantification of certain adulterants [8,9].
From the techniques available at the majority of the drug checking services, infrared
spectroscopy (IR) shows the highest potential, especially when it is used together with
multivariate calibration techniques [12,13,19–23]. The combination of infrared spectroscopy,
both mid- and near IR, and multivariate calibration was already applied in a plethora of
fields, ranging from illegal medicines [24] and cosmetics [25], through e-liquids [26,27] and
food analysis [28–30] to the analysis of illicit drug samples. In the context of the latter, it
was also applied for the analysis of heroin. The applications using a combination of IR and
multivariate calibration for the analysis of illicit drug samples were recently reviewed [19].
Unfortunately most of these applications focus on the identification and quantification of
heroin [12,20,21], while the applications taking into account some diluents and adulterants
only did so for standard mixtures or self-prepared samples [13,22,23].

Therefore, this paper explores the possibilities of mid-IR spectroscopy coupled with
multivariate calibration for the identification and quantification of heroin, as well as the de-
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tection of 10 adulterants and impurities in real samples previously analyzed with standard
laboratory techniques, namely GC–MS and LC–diode array detection (LC–DAD) analysis.
In total, 125 samples were collected and analysed using GC–MS and LC–DAD. Next, the
mid-IR spectra were collected and the data were analysed. As a first step, data exploration
was performed using principal component analysis (PCA) followed by qualitative and
quantitative modeling by partial least squares (PLS). Both PCA and PLS are often used
in combination with spectroscopic data and were already applied in the analysis of illicit
drugs and more specifically for heroin samples [19].

2. Results
2.1. Characterisation of the Samples

All collected samples were screened for the presence of illicit drugs, adulterants and
impurities using the previously mentioned GC–MS method (Section 3.3.2). For the samples
positive for heroin, the dosage/purity was consequently determined using the UHPLC
method described in Section 3.3.3. Table 1 gives an overview of the results obtained for the
full characterisation of the 125 samples.

Overall, it was observed that only seven samples could not be identified as contain-
ing heroin, from which two were positive for acetaminophen and caffeine. The most
encountered adulterants or impurities in the heroin samples were caffeine, acetylcodeine,
diacetamate, acetaminophen, papaverine, morphine and noscapine. Morphine, codeine,
noscapine and papaverine are common alkaloids present in the samples, since these phenan-
threnes (morphine and codeine) and benzylisoquinolines (noscapine and papaverine) are
components of opium and frequently remain as impurities after extraction [31,32]. It has to
be noted that only 23% of the heroin samples in our sample set contained codeine. This
is probably due to the fact that the majority of the present codeine was acetylated during
the extraction process used during heroin production. Next to these expected impuri-
ties and adulterants, three samples were found to be adulterated with cocaine, one with
bromazepam, a benzodiazepine, and one with ketamine. The purity of the 118 samples
identified as heroin varied between 0.21% m/m and 56.53% m/m, with a median purity of
11.01% m/m and a mean purity of 13.01% m/m.

In our sample set, no fentanyl or fentanyl analogues could be detected.
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Table 1. Overview of the results obtained by the GC–MS and UHPLC analysis of the 125 samples in the sample set. Presence (+) and absence (−) of contaminants
and adulterants and results of the assay of 3,6-Diacetyl Morphine.

Purity
Heroin (%)

3,6-Diacetyl
Morphine

Aceta-
Minophen Diacetamate Caffeine Codeine Morphine Acetyl-

Codeine
6-Monoacetyl

Morphine Papaverine Noscapine Methacetin

S1 0.00% − − − − − − − − − − −

S2 1.01% + + + + + + + + − + −

S3 13.90% + + + + + + + + + + +

S4 17.44% + + + + + + + + − + +

S5 14.19% + + + + + + + + − + −

S6 12.78% + + + + + + + + + + +

S7 10.80% + + + + + + + + + + +

S8 19.32% + + + + + + + + + + +

S9 9.56% + + + + + + + + + + +

S10 0.00% − − − − − − − − − − −

S11 0.00% − − − − − − − − − − −

S12 12.09% + + + + + + + + + + −

S13 11.90% + + + + + + + + + + −

S14 9.92% + + + + + + + + + + +

S15 10.08% + + + + + + + + + + −

S16 10.48% + + + + + + + + + + −

S17 10.28% + + + + + + + + + + −

S18 9.63% + + + + − + + + + + −

S19 11.86% + + + + + + + + + + −

S20 12.40% + + + + − + + + + + −

S21 22.72% + + + + − + + + + + −

S22 12.02% + + + + + + + + + + −

S23 11.04% + + + + + + + + + + +

S24 8.98% + + + + − + + + + + −

S25 10.22% + + + + − + + + + + −

S26 9.98% + + + + + + + + + + −

S27 10.04% + + + + + + + + + + −

S28 15.05% + + + + − + + + + + −

S29 16.74% + + + + + + + + + + −

S30 11.84% + + + + + + + + + + −
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Table 1. Cont.

Purity
Heroin (%)

3,6-Diacetyl
Morphine

Aceta-
Minophen Diacetamate Caffeine Codeine Morphine Acetyl-

Codeine
6-Monoacetyl

Morphine Papaverine Noscapine Methacetin

S31 9.99% + + + + − + + + + + −

S32 12.29% + + + + − + + + + + −

S33 56.53% + − + + − − + + + + −

S34 9.60% + + + + − + + + + + −

S35 10.43% + + + + − + + + + + −

S36 17.55% + + + + + + + + + + −

S37 17.22% + + + + + + + + + + −

S38 9.51% + + + + + + + + + + −

S39 14.44% + + + + − + + + + + −

S40 14.32% + + + + + + + + + + −

S41 17.17% + + + + − + + + + + −

S42 13.76% + + + + + + + + + + −

S43 10.01% + + + + − + + + + + −

S44 12.00% + + + + − + + + + + −

S45 13.76% + + + + − + + + + + −

S46 9.76% + + + + − + + + + + −

S47 9.89% + + + + − + + + + + −

S48 0.21% + + − + − − − + − − −

S49 36.61% + − − − − − + + + + −

S50 17.37% + + + + + + + + + + −

S51 17.77% + + + + + + + + + + −

S52 13.19% + + + + − + + + + + −

S53 9.17% + + + + − + + + + + −

S54 6.16% + + + + − + + + + + −

S55 9.29% + + + + − + + + + + −

S56 10.41% + + + + − + + + + + −

S57 20.23% + + + + − + + + + + −

S58 35.69% + + + + − + + + + + −

S59 14.95% + + + + − + + + + + −

S60 10.06% + + + + − + + + + + −

S61 18.76% + + + + − + + + + + −
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Table 1. Cont.

Purity
Heroin (%)

3,6-Diacetyl
Morphine

Aceta-
Minophen Diacetamate Caffeine Codeine Morphine Acetyl-

Codeine
6-Monoacetyl

Morphine Papaverine Noscapine Methacetin

S62 10.49% + + + + − + + + + + −

S63 10.71% + + + + − + + + + + −

S64 13.72% + + + + − + + + + + −

S65 10.08% + + + + − + + + + + −

S66 10.16% + + + + − + + + + + −

S67 10.16% + + + + − + + + + + −

S68 10.20% + + + + − + + + + + −

S69 0.42% + + + + − − + + − + −

S70 9.96% + + + + − + + + + + −

S71 5.31% + + + + − + + + + + −

S72 10.97% + + + + − + + + + + −

S73 7.61% + + + + − + + + + + −

S74 9.50% + + + + − + + + + + −

S75 18.35% + + + + − + + + + + −

S76 8.18% + + + + + + + + + + −

S77 10.97% + + + + − + + + + + −

S78 10.82% + + + + − + + + + + −

S79 10.91% + + + + − + + + + + −

S80 10.71% + + + + − + + + + + −

S81 17.74% + + + + − + + + + + −

S82 17.61% + + + + − + + + + + −

S83 0.00% − − − − − − − − − − −

S84 12.01% + + + + − + + + + + −

S85 12.16% + + + + − + + + + + −

S86 9.85% + + + + − + + + + + −

S87 9.03% + + + + − + + + + + −

S88 0.00% − − − − − − − − − − −

S89 12.33% + + + + − + + + + + −

S90 7.13% + + + + − + + + + + −

S91 17.55% + + + + − + + + + + −

S92 1.82% + + + + − − + + + + −

S93 4.93% + + + + − + + + + + −
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Table 1. Cont.

Purity
Heroin (%)

3,6-Diacetyl
Morphine

Aceta-
Minophen Diacetamate Caffeine Codeine Morphine Acetyl-

Codeine
6-Monoacetyl

Morphine Papaverine Noscapine Methacetin

S94 11.84% + + + + − + + + + + −

S95 11.62% + + + + − + + + + + −

S96 11.43% + + + + − + + + + + −

S97 6.66% + + + + − + + + + + −

S98 10.16% + + + + − + + + + + −

S99 14.31% + + + + − + + + + + −

S100 22.35% + + + + − + + + + + −

S101 11.31% + + + + − + + + + + −

S102 4.92% + + + + − + + + + + +

S103 4.30% + + + + − + + + + + −

S104 12.45% + + + + − + + + + + −

S105 11.34% + + + + − + + + + + −

S106 47.78% + + + + − − + + + + −

S107 10.16% + + + + − + + + + + −

S108 10.02% + + + + − + + + + + −

S109 14.41% + + + + − + + + + + −

S110 14.20% + + + + − + + + + + −

S111 13.01% + + + + − + + + + + +

S112 20.96% + + + + − + + + + + −

S113 44.67% + + + + − + + + + + −

S114 0.00% − + − + − − − − − − −

S115 0.00% − + − + − − − − − − −

S116 19.68% + + + + − + + + + + −

S117 1.97% + + + + − + + + + + −

S118 5.74% + + + + − + + + + + −

S119 9.60% + + + + − + + + + + −

S120 8.81% + + + + − + + + + + −

S121 23.67% + + + + − + + + + + −

S122 10.52% + + + + − + + + + + −

S123 14.21% + + + + − + + + + + −

S124 14.22% + + + + − + + + + + −

number positive samples 117 117 115 118 29 111 116 117 112 116 10
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2.2. Unsupervised Analysis

As a first step, the spectral data for the 125 samples in our sample set were explored
using the unsupervised data analysis technique PCA, though the figures were interpreted
for each compound separately, reflecting the clustering of negative and positive samples
for heroin and each of the found adulterants and impurities. The analysis was performed
four times using autoscaling, SNV, mean centering and the second derivative as data
pre-treatment, respectively. Figure 1 shows the best PCA score plots obtained for each
of the targeted molecules. Figure 1a clearly shows a clustering of the negative samples
for heroin, except for two samples. This is probably due to the fact that these samples
contain caffeine and acetaminophen, which makes them more closely related to the positive
samples. This hypothesis is supported by the fact that these samples were also clustered
when the presence of acetaminophen and caffeine was used for interpretation of the PCA
results (Figure 1b,e). Results similar to those for heroin were obtained for acetylcodeine,
mono-acetylmorphine, diacetamate and noscapine (Figure 1c,d,g,j), where each time the
two heroin-negative samples containing acetaminophen and caffeine were not clustered
with the other negative samples. On the other hand, for the presence of codeine (Figure 1f)
and methacetin (Figure 1h), no clustering could be observed separating the negative
and positive samples. For morphine (Figure 1i) and papaverine (Figure 1k), clustering
could be observed in, respectively, 9 of the 13 and 8 of the 12 negative samples, and
this in the plane defined by PC1 and PC2. No clear explanation could be given for the
negative samples clustered with the positive samples. In order to check that the observed
clusterings are indeed related to the presence of the different targeted components, the
loadings were investigated for each of the PCA analyses performed. Figure 2 shows the
loading plots for the first PC, obtained after autoscaling (Figure 2a) (best clustering for
heroin, acetaminophen, acetylcodeine, mono-acetylmorphine, morphine and noscapine)
and mean centering (Figure 2a) (best clustering for caffeine, diacetamate and papaverine).
The loadings reflect the importance of the spectral regions for the definition of the latent
variable, and so also for the observed clustering. The importance can be either negative
or positive. If highly positive or negative loadings can be related to specific signals of the
IR spectrum of the targeted molecule, this indicates that the distinction between positive
and negative samples is indeed due to the presence of this compound. For some of the
molecules, the loadings could be related to specific areas in the IR spectrum. Figure 2a,b
therefore also shows the reference spectra for the components where there was a clear
correspondence between the loadings and the absorbances. These correspondences prove
that the clustering is clearly related to the differences in infrared spectra between the
samples and thus to the composition, which is in fact a mixture of different compounds.
The loadings on the higher PCs display less correspondence, which is to be expected.
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Figure 1. Cont.
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Figure 1. Three-dimensional PCA score plots (negative samples red, positive samples green) for
(a) heroin (autoscaling); (b) acetaminophen (autoscaling); (c) acetylcodeine; (d) acetylmorphine
(autoscaling); (e) caffeine (mean centering); (f) codeine (autoscaling); (g) diacetamate (mean centering);
(h) methacetin (autoscaling); (i) morphine (autoscaling); (j) noscapine (autoscaling); (k) papaverine
(mean centering).
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Figure 2. (a) Loading plot obtained after autoscaling with the MIR reference spectra for heroin,
acetaminophen and noscapine and the indication of the correspondences; (b) loading plot obtained
after mean centering with the MIR reference spectra for caffeine and papaverine and the indication of
the correspondences.

Overall, it could be concluded that the recorded spectral data relate quite well to the
presence of heroin and the different encountered adulterants and impurities, justifying the
application of supervised PLS analysis to create classification and regression models.

2.3. Supervised Analysis

A duplex algorithm was applied to select an external test set containing 25 of the
125 samples. Since it was decided in this research to use only real-life samples, the data set
is not equilibrated between negative and positive samples. Therefore, after each selection
of a test set, it was verified whether the ratio between negative and positive samples in the
test set reflected the ratio of the whole sample set. The ratios of positive to negative samples
for each of the targeted compounds can be found in Table 2. For all compounds, qualitative
models were constructed using PLS–Discriminant Analysis (DA), and an overview of the
modelling and validation parameters can be found in Table 2.
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Table 2. Modelling parameters for qualitative PLS–DA models.

Compound

Nr. Training
Samples (Ratio

Positive/
Negative)

Nr. Test Set Samples
(Ration Positive/

Negative

Data
Pre-Treatment

Nr. PLS
Factors

Ccr for
Calibration (%)

Ccr for Cross
Validation (%)

Ccr for
Prediction (%)

Sensitivity (%)
CV-Test Set

Specificity (%)
CV-Test Set

Precision (%)
CV-Test Set

Heroin 100 (97/3) 25 (21/4) 2nd derivative 9 98.99 98.99 96.00 100.00–100.00 66.67–75.00 98.98–95.45
Acetaminophen 100 (97/3) 25 (21/4) SNV 2 100.00 98.99 96.00 100.00–95.45 66.67–100.00 98.98–100.00
Acetyl codeine 100 (97/3) 25 (20/5) SNV 5 98.99 98.99 96.00 100.00–100.00 66.67–80.00 98.98–95.00

Mono-
acetylmorphine 100 (97/3) 25 (21/4) 2nd derivative 9 98.99 98.99 96.00 100.00–100.00 66.67–75.00 98.98–95.23

Caffeine 100 (97/3) 25 (22/3) 2nd derivative 8 100.00 98.99 96.00 100.00–95.45 66.67–100.00 98.98–100.00
Codeine 100 (24/73) 25 (5/20) Autoscaling 15 92.93 82.83 80.00 62.50–60.00 90.41–85.00 68.18–50.00

Diacetamate 100 (96/4) 25 (20/5) 2nd derivative 14 98.99 97.98 96.00 100.00–100.00 50.00–80.00 97.96–95.23
Methacetine 100 (6/94) 25 (4/21) - - - - - - - -

Morphine 100 (94/6) 25 (21/4) SNV 3 96.97 96.97 88.00 100.00–100.00 50.00–25.00 96.90–87.50
Noscapine 100 (97/3) 25 (20/5) SNV 5 98.99 98.99 96.00 100.00–100.00 66.67–80.00 98.98–95.23
Papaverine 100 (95/5) 25 (19/6) Autoscaling 5 97.98 97.98 92.00 100.00–100.00 97.89–89.47 97.94–90.48

Since only 3,6-diacetylmorphine or heroin was quantified, only for this compound
was PLS applied to become a regression model for the purity of the heroin samples.

2.3.1. Heroin

For heroin, the best qualitative model was obtained using nine PLS factors and the
second derivative as data pre-treatment method. This model showed a correct classification
rate (ccr) for cross validation of 98.99% and for the test set of 96.00%, both corresponding
to one sample that was incorrectly classified as a positive sample. Both misclassifications
correspond to the samples negative for heroin but positive for acetaminophen and caffeine.
It seems that these samples are too similar to the positive heroin samples to be distinguished
based on their mid-IR spectrum, as was also the case during unsupervised analysis. Good
values for sensitivity and precision are obtained for this model. The lower values for
specificity are only due to the very low number of negative samples in the sample set,
but as said before, the model only showed one false-positive sample both in the training
and test set. Although the good predictive results for the external test set indicate a lack
of overfitting of the model, a permutation test was performed for the selected PLS–DA
model. The test was performed both on the self-prediction residuals and on the cross-
validated residuals [33]. The pairwise Wilcoxon signed-rank test, the pairwise sign test and
the randomization t-test were used to prove that the obtained model is not significantly
different from one created by randomly shuffling the response variables (classes), and this
at the 5% probability level. All statistics showed values between 0.000 and 0.012, so less
than 0.05, indicating no significant difference and thus a low risk of overfitting [33]. A
visual interpretation of the permutation test is possible based on the plot of sum squared Y
(SSQY) versus Y-block correlation (Figure 3). The plot shows the SSQY values for both self-
prediction (green) and cross-validation (blue) as a function of the Y-block correlation. The
model is unlikely to overfit, since the cross-validated and self-predicted values are relatively
close to each other, but significantly different from the results for the non-permuted Y-block
(on the far right side of the plot) [33].

Figure 3. SSQY versus Y-block correlation plot for the PLS–DA model obtained for heroin (blue:
results for cross validation; green: results for self-prediction (calibration)).
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After the removal of the negative samples, a PLS model was built using the purities de-
termined by UHPLC as response variables. Similarly, the different pre-treatment methods
were explored, and the best model was obtained using SNV and seven PLS factors. This
model showed a root mean squared error of calibration (RMSEC) of 0.02 and a determina-
tion coefficient for calibration of 0.91. Figure 4 shows the correlations between the real and
predicted values for the samples, both for cross-validation (internal validation) and for the
test set (external validation). The determination coefficients were 0.88 and 0.92, respectively.
With root mean squared error of cross-validation (RMSECV) and root mean squared error
of prediction (RMSEP) values of 0.03 and 0.04, respectively, one can say that this PLS model
was able to closely relate the spectral data to the purity values of the heroin samples and
was able to provide good predictions for new samples, both in cross-validation and with
an external test set.

Figure 4. Correlation plots between real and predicted purity values for the heroin-positive samples
(blue: results for cross validation; orange: results for the external test set).

2.3.2. Acetaminophen

Similar results were obtained for the classification of the different samples according
to the presence of acetaminophen. The best performing model consisted of two PLS factors
using SNV as data pre-treatment. The model showed ccr values of 98.99% and 96.00% for
cross-validation and the test set, respectively, which correspond to one sample classified
as a false positive in cross-validation and one sample considered a false negative in the
test set. Similar to the heroin analysis, very promising results were obtained for sensitivity,
precision and specificity, taking into account the limited number of true negative samples
in the sample set. No clear explanation could be found for both misclassifications. Possibly,
the false-negative sample could contain a low amount of acetaminophen, but this should be
confirmed by a quantitative analysis, which was not performed due to the limited amount
of sample available. The permutation tests showed a maximum value of 0.038 for the
randomization t-test, pointing to a low risk of overfitting (at the 95% level), as all values
were lower than 0.05.

2.3.3. Acetylcodeine

The best model obtained for the presence of acetylcodeine in the samples is the PLS–
DA model using five PLS factors and SNV as data pre-treatment. The model showed a ccr
for cross validation of 98.99% and one for the test set of 96.00%. Both in the training and in
the test set, one sample was classified as a false positive. The two samples misclassified
here were the same as the ones misclassified by the heroin model, namely the one positive
for acetaminophen and caffeine but negative for heroin. This seems logical, as basically
the same spectral data are used for all compounds, and the presence of acetylcodeine as an
impurity is highly related to the presence of heroin. Once more, very good results were
obtained for specificity, sensitivity and precision, taking into account the low number of
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negative samples in the sample set. The permutation tests showed a maximum value of
0.007 for the randomization t-test, pointing to a low risk of overfitting (at the 95% level), as
all values were lower than 0.05.

2.3.4. Mono-Acetyl Morphine

Highly similar results were obtained with the optimal model for mono-acetyl mor-
phine using the second derivative and nine PLS factors. Here also, ccr values of 98.99% and
96.00%, respectively, were obtained for cross-validation and the test set, corresponding to
the two samples negative for heroin but positive for acetaminophen and caffeine, which
were also considered here to be false positives. The same trend was also seen in the values
for sensitivity, specificity and precision. The permutation tests showed a maximum value
of 0.019 for the randomization t-test, pointing to a low risk of overfitting (at the 95% level),
as all values were lower than 0.05.

2.3.5. Caffeine

For caffeine, the optimal model was obtained with eight PLS factors and the second
derivative and showed cross-validation and test set ccr values of 98.99% and 96.00%,
respectively. In cross-validation, there was one false-positive sample, while in the test set
one false-negative sample could be observed. No clear explanation for these misclassified
samples could be found. It could be a low dosage in the case of the false negative, or could
just be due to random modelling errors. Sensitivity, specificity and precision were also
acceptable for this model. The permutation tests showed a maximum value of 0.015 for the
randomization t-test, pointing to a low risk of overfitting (at the 95% level), as all values
were lower than 0.05.

2.3.6. Codeine

Codeine proved to be quite difficult to model, probably due to the low number of
positive samples in the sample set and the low concentrations. In all the analysed samples,
codeine is present as a low-level impurity, since normally the majority of the codeine present
is acetylated and thus present under the form of acetylcodeine. This was also shown by the
relative intensities between the different signals in the GC–MS chromatogram.

The best-performing PLS model was the one using autoscaling as data pre-treatment
method and 15 PLS factors. Ccr values of 88.82% for cross-validation and of 80.00% for
the external test set were obtained. Taking a closer look at the predictions shows that in
cross-validation, seven samples were considered false positives, while nine samples were
false negatives. Similarly, for the test set, three false positives and two false negatives could
be observed. It could be observed that all misclassified samples had a quite low purity for
heroin, but a real explanation could not be found. We have to consider these as random
modelling errors, caused by the low concentration of this impurity in the heroin samples,
which can be considered as complex mixtures.

The inadequate results obtained for codeine is also reflected in the values for sensitivity,
specificity and precision.

2.3.7. Diacetamate

The classification of the samples according to the presence of diacetamate was found
best with a PLS model constructed with 14 PLS factors and the second derivative of the
mid-IR spectra. Ccr values of 97.98% and 96.00% were obtained for cross-validation and
the test set, representing two false-positive samples during cross-validation and one for
the test set. The false positive for the test set and one of the misclassified samples in
cross-validation correspond to the two samples negative for heroin and positive for caffeine
and acetaminophen, which were also badly clustered during the exploratory PCA analysis.
Sensitivity, specificity and precision values showed promising values, considering the low
number of negative samples. The permutation tests showed a maximum value of 0.005 for
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the randomization t-test, pointing to a low risk of overfitting (at the 95% level), as all values
were lower than 0.05.

2.3.8. Methacetin

For methacetin, no significant model could be found. All models classified all samples
as negative, both in cross-validation and in the test set. Here, it could only be concluded
that methacetin cannot be detected using an approach combining mid-IR spectroscopy and
PLS–DA.

2.3.9. Morphine

As for codeine, the modelling of the presence of morphine was more challenging,
probably due to the same issue that morphine is present as a low-dosed impurity, since the
majority of the present morphine was acetylated during the production/extraction process.

The best model for morphine was obtained using SNV and three PLS factors. Ccr
values of 96.97% and 88.00% were obtained, respectively, for cross-validation and the
test set, representing three false-positive samples for each. No sound explication for the
misclassified samples could be found. The challenge to modelling is also reflected by the
low values for specificity of the model, meaning that at least 50% of the negative samples is
predicted as a false positive. During the interpretation of the values, the very low number
of morphine negative samples should be kept in mind.

2.3.10. Noscapine

A PLS model using SNV and five PLS factors was found to be the most suitable for the
classification of the samples according to the presence of noscapine. The model has a ccr
for cross-validation of 98.98% and one of 96% for the external test set, representing a false-
positive sample in both. These two misclassified samples corresponded again to the two
samples negative for heroin but positive for acetaminophen and caffeine. Considering the
low number of noscapine-negative samples, satisfying values were obtained for sensitivity,
specificity and precision. The permutation tests showed a maximum value of 0.012 for the
randomization t-test, pointing to a low risk of overfitting (at the 95% level), as all values
were lower than 0.05.

2.3.11. Papaverine

Autoscaling and five PLS factors resulted in the best-performing model for papaverine,
another alkaloid impurity, originating from opium. Validation of the model resulted in a ccr
of 97.98% for cross-validation and 92.00% for the external test set. These values correspond
to two false-positive samples in, respectively, cross-validation and external validation.
Two of the false-positive samples were the ones found negative for heroin but positive
for acetaminophen and caffeine, and the two others were heroin samples with purities of
14 and 17%, which were positive for the other alkaloid impurities originating from opium,
but which seemed to have amounts of papaverine lower than the detection limits of the
GC–MS screening method. Nevertheless, the model showed good results for sensitivity,
specificity and precision.

The permutation tests showed a maximum value of 0.007 for the randomization t-test,
pointing to a low risk of overfitting (at the 95% level), as all values were lower than 0.05.

3. Methods and Materials
3.1. Standards and Samples

The heroin reference standard was purchased from Lipomed AG (Arlesheim, Switzerland).
In total, 125 heroin samples were collected in the period between February and May

2023. The samples were collected by three different harm-reduction services, also called
grassroot organisations. These organisations are in close contact with the drug users and
build strong and confident relationships with them. First, the organisation informed the
users through face-to-face contact about the different goals of collecting the samples, and
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once they were willing to participate, a consent form was signed and a questionnaire was
filled in about the context of epidemiologic studies, which is outside of the scope of this
paper. A heroin sample of 100 mg was collected in an Eppendorf and uniquely labelled. As
an incentive, participants were paid to compensate for the sample.

3.2. Sample and Standard Preparation

For the qualitative analysis using GC–MS, the samples were first ground, and then
about 1 mg was dissolved in 1.5 mL of methanol absolute HPLC grade (Biosolve B.V.;
Valkenswaard, The Netherlands) in a GC vial (Agilent Technologies, Santa Clare, CA, USA).
All manipulations of the samples were performed under a laminar flow hood. The vials
with the solutions were vortexed for 20 to 30 s.

For the quantitative analysis using LC–DAD, about 25 mg of the sample was brought
into a 5 mL volumetric flask and diluted with a solvent consisting of a 90/10 mixture of a
0.1% formic acid (98–10%, Merck, Darmstadt, Germany) solution in water and acetonitrile
HPLC grade (Biosolve B.V., Valkenswaard, The Netherlands). The samples were sonicated
for 25 min, after which they were diluted five times and filtered through a 0.22 µm mixed
cellulose ester syringe filter (BGB Analytik Benelux, Harderwijk, The Netherlands).

The calibration standards were prepared in a similar way. About 10 mg of the heroin
reference standard was brought in a 20 mL volumetric flask and diluted with the same
solvent as the samples. After sonication, the stock solution was diluted with a factor
2, 4 and 10 to obtain the calibration standards for the calibration line and check the validity
of the measurements.

3.3. Data Acquisition
3.3.1. FT-Mid-IR

A Nicolet iS10 FTIR (ThermoFisher Scientific, Waltham, MA, USA), equipped with a
Smart iTR accessory and a deuterated triglycine sulfate (DTGS) detector, was used to collect
the mid-IR spectra for the samples. The Smart iTR accessory (attenuated total reflectance
accessory) uses a single-bounce diamond crystal and allows us to measure the spectra
immediately from the powdered sample, by deposing a small amount of the sample on
the crystal, without further sample preparation. The accessory was calibrated once a week
using a polystyrene film.

Infrared spectra were recorded in the wavenumber range from 4000 to 400 cm−1, at a
spectral resolution of 4 cm−1. Each measurement consisted of 32 co-added scans. Spectral data
were treated using the OMNIC Software version 8.3 (Thermo Scientific, Madison, WI, USA).
Between the different samples, the crystal was cleaned using a soft tissue soaked with methanol,
and after drying in ambient air, a blank measurement was performed to check the crystal for
contamination and carry-over using the absorbance limits for contamination defined by the
European Directorate for the Quality of Medicines and HealthCare (EDQM) [34]. Every hour, a
background spectrum against air was measured as well.

3.3.2. GC–MS

Qualitative GC–MS analysis was performed using an Agilent 7890A GC-system (Agi-
lent Technologies, Santa Clare, CA, USA) equipped with an Agilent 7683B Series injector
and paired with an Agilent 5975C Mass Selective Detector (single quadrupole). Hardware
control, data acquisition and data handling were done using the Agilent Masshunter and
Data analys® software version 10.0. Chromatographic separation was achieved using an
Agilent J&W VF-5ms capillary column (40 m × 0.25 mm; 0.25 µm) with a temperature
gradient that started at 80 ◦C, which was held for two minutes, followed by a gradient at
a rate of 15 ◦C per minute until a temperature of 280 ◦C was reached. This temperature
was held for 17 min, resulting in a total runtime of about 32.3 min. The injection volume
was set at 1 µL and helium was used as carrier gas at a constant flow rate of 1.5 mL/min.
The injector was operated in split mode (ratio 1:10) and the temperatures of the injection
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port, the ion source, the quadrupole and the interface were set at 250 ◦C, 230 ◦C, 150 ◦C
and 280 ◦C, respectively. Mass data were recorded in full scan mode.

The mass spectra of the signals of interest were compared to the reference spectra in
the eNIST20 Mass Spectral Library. A match factor above 85% was considered as reliable.
If lower, the peaks were manually integrated to confirm the result.

3.3.3. High Pressure Liquid Chromatography–Diode Array Detection (LC–DAD)

The quantitative analysis to determine the purity of the heroin samples was performed
on an Acquity UPLC system (Waters, Milford, CO, USA) consisting of a binary pump,
column oven, temperature-regulated autosampler and a diode array detector (DAD). The
separation of 3,6-diacety morphine was achieved on a Waters Acquity UPLC C18-BEH
column (2.1 mm × 100 mm, 1.7 µm) using a 0.1% v/v formic acid solution in water (A)
as aqueous and acetonitrile (B) as organic mobile phase in gradient mode. The gradient
started at 95% A, decreasing to 90% A in 10 min, after which 20% A was reached in 5 min
and held for 3 min before returning to the initial conditions. The seal wash consisted
of 10% methanol in water, the weak wash of a 30% acetonitrile solution in water and
the strong wash of an equal mixture of methanol, acetonitrile, isopropanol and water
containing 5% formic acid. The flow rate was set at 0.4 mL/min, the injection volume was
10 µL, the column temperature 30 ◦C, the autosampler temperature 15 ◦C and the detection
wavelength 280 nm.

3.4. Data Pre-Processing

For the chemometric analysis, the so-called fingerprint region, defined by the pseudo-
absorbance (−log(1/R)) obtained between 2000 and 650 cm−1, was selected. Figure 5
shows an example of a mid-IR spectrum for a sample with low (10%) and high purity (56%).
Although clear differences can be observed for two of the extreme samples, differences
become smaller with the changes in purity. Small differences due to the presence of impuri-
ties and adulterants could not be differentiated visually. Therefore, chemometrics will be
necessary to extract the information of interest from the spectral data and to discriminate
between the samples based on the different adulterants and impurities and on the purity of
3,6-diacetyl morphine.

Figure 5. Examples of mid-IR spectra for a low-purity (red) and a high-purity sample (black).

Before the application of chemometric techniques, the pseudo-absorbance spectra
were pre-treated to eliminate or reduce variations introduced into the data by external
sources other than the sample itself. Several pre-treatment techniques were explored. First,
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two scaling techniques were applied, namely autoscaling and mean centering. These
techniques allow us to correct differences in scale within the data, which could influence
the selection of the variables or the importance of some variables during modelling. Further,
standard normal variate (SNV) was one of the explored pre-treatment techniques. SNV is a
normalisation procedure eliminating the variation in the data due to the measurement itself,
e.g., differences in path length, scattering effects, variations in the detector, etc. [35]. Finally,
the second derivative was applied. The latter technique removes the background from the
spectra and accentuates the spectral framework, and therefore highlights the differences
between spectra. The derivative was calculated using the Savitzky–Golay method [36] with
a second-order polynomial and a window size of 17.

All chemometric models need to be validated, and therefore, there is a need for a
validation or an external test set consisting of samples/data that were not used for building
the models. Hence, an external test set comprising roughly 20% of the complete sample
set was selected using the Duplex algorithm [37]. This algorithm is based on a pairwise
selection of samples. It starts with the selection of two samples in the data space, with
the highest Euclidean distance between them for a first set. The next two samples with
the highest Euclidean distance are selected for the second set. This procedure continues
by iteratively selecting sample pairs for the first and the second set, until the predefined
number of samples is reached in the second set, the test set. The first set and the remaining
samples will be used as the training set. Before applying multivariate calibration techniques,
it was checked that the ratio of positive/negative samples in the test set was similar to the
ratio in the complete sample set (qualitative models). For the quantitative models, it was
made sure that the test set covered the whole range of purities in the sample set.

3.5. Principal Component Analysis (PCA)

PCA is a feature reduction technique, allowing the visual representation of high-
dimensional data by defining new latent variables, which are defined as linear combinations
of the manifest variables. These latent variables are called principal components (PC) and
are defined in such a way that they represent the highest variance in the data (PC1) or
the highest remaining variation (further PCs). This results in the fact that the different
calculated PCs are orthogonal to each other by definition. In PCA, the scores are the
projection of the samples on the different PCs and are a measure of the similarity between
samples, while the loadings show the respective contribution of the manifest variables to a
given PC [35].

In this study, PCA is used as an exploratory technique before supervised modelling.

3.6. Partial Least Squares (PLS)

PLS is by the most popular multivariate calibration technique and is in fact a super-
vised projection technique, similar to PCA. The technique also defines new latent variables,
called PLS factors (PLS), as linear combinations of the manifest variables, calculated to
represent the highest (PLS1) or remaining (higher PLS factors) co-variance between the
data and a response. PLS is applied for regression purposes and used in this study to model
the purity of the heroin samples. PLS–DA is an adapted form of PLS allowing classification
modelling and thus the use of categorical responses. In this study, PLS–DA is used to
create binary classification models based on the recorded IR spectra for the identification of
heroin samples and the detection of the 10 different adulterants and impurities encountered
during the GC–MS analysis of the samples in our sample set.

During the calculation, the optimal number of PLS factors to be included in the models
was selected based on 10-fold cross-validation. The validation of the different models was
based on the root mean squared error of cross-validation (RMSECV, internal validation) for
the training set and the root mean squared error of prediction (RMSEP, external validation)
for the selected test set. For the regression models (PLS), the coefficients of determination
between real and predicted values were calculated as well, for both training and test
set. RMSECV and RMSEP were expressed as correct classification rates (ccr) in the case of
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classification models (PLS–DA), and the sensitivity, specificity and precision were calculated
as additional features.

3.7. Software

Data processing and modelling were performed using Matlab version R2020b (The
Mathworks, Natick, MA, USA) with the PLS-toolbox v8.9.2 (Eigenvector Research, Inc.,
Manson, WA, USA).

4. Discussion and Conclusions

In this project, we attempted to characterise “street level” heroin samples based
on the presence and the purity level of heroin, as well as the present adulterants and
impurities encountered in the sample set, based on mid-IR spectroscopy and PLS modelling,
requiring only pulverisation of the samples under investigation. As mentioned previously,
infrared spectroscopy and PLS modelling were already applied before in this context for
the qualitative and quantitative analysis of 3,6-diacetyl morphine in heroine samples [19].
However, previous studies were limited by a small number of samples, or employed only
self-prepared samples and targeted only 3,6-diacetyl morphine [19]. To our knowledge,
this study is the first using models based solely on spectra from real-life street samples,
including the variety present in a representative set of samples circulating in Belgium,
and represents a first step towards a practical approach in the context of onsite testing
for harm reduction. It is also the first study in which the combination of spectroscopy
and multivariate calibration has been explored for the identification of the encountered
adulterants and contaminants.

It may be shown that the presented approach is able to identify heroin samples and
perform a semi-quantitative analysis on 3,6-diacetyl morphine. The models showed a
classification error of 4% for identification and a RMSEP for regression of 0.04, with a
determination coefficient of 0.92 for the external test set. Based on these two models, harm-
reduction services could be able to analyse the heroin samples of people who used drugs
without destroying their samples, and thus potentially prevent complications or overdose.
One of the requirements to do so is the integration of the model in the vendor software,
allowing automatic interpretation without the need of expert knowledge in spectroscopy
and chemometrics.

Next to the analysis of the heroin content, it was also attempted to create models for
the adulterants and impurities encountered during the standard analysis of the samples.
In total, 10 different adulterants and impurities were modelled and, except for codeine,
morphine and methacetin, performant models could be obtained. The inability of the
presented approach to model the presence of morphine and codeine is probably due to the
fact that these molecules are present in very low amounts, as most of these compounds
originating from opium itself are acetylated during the extraction and production process.
For methacetin, the approach failed completely. This could also be due to the low concen-
tration of this adulterant in the samples, or simply the fact that the models were unable to
extract the information related to this molecule from the spectrum. Heroin samples should
be considered as complex mixtures and, therefore, the matrix and the other adulterants
and impurities might mask the signal of methacetin in the mid-IR spectrum. In general,
it should also be mentioned that our research was limited by the very low amount of
negative samples encountered in our sample set. However, the samples collected reflect the
real situation, as they all originate from people who use drugs, giving insight into street
heroin. A regular update of these models is of prime importance if the approach is to be
implemented routinely; this includes gathering new samples in order to update the model
for changes in matrices, adulterants, samples and so on. It is plausible that the continuous
update of the models will remove the limitations of this paper by including more and more
negative samples sold as heroin.

As NIR spectroscopy might also be available at harm-reduction services, this technique
could also be explored in a similar approach, especially for the adulterants that were not
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able to be modelled based on mid-IR data. A drawback here is the fact that NIR often
requires more material and the spectra are less specific. The latter have already been
shown to have an influence on the qualitative modelling of, e.g., MDMA [38] and illicit
drugs, presented in the form of white powders [39]. The other spectroscopic technique
often mentioned for onsite testing of illicit drugs is Raman spectroscopy. However, to
our knowledge, no direct Raman spectroscopic approach was described in the literature
for the analysis of heroin samples [19]. This is probably due to the complex nature of
the heroin matrix and the inconvenience of fluorescence, a phenomenon well known in
Raman spectroscopy. Also, these spectra are less specific than the ones of mid-IR, and
Raman spectroscopy suffers from low sensitivity. These disadvantages could be partly
solved by applying surface-enhanced Raman spectroscopy (SERS), allowing increased
sensitivity with several factors, which is already applied for the detection of fentanyl
analogues in heroin samples [40–43] and detection of heroin and its metabolites in human
samples [44–46]. Although SERS is a promising emerging technique, the more extensive
sample preparation and its destructive character make it perhaps less suited for onsite
testing in a harm-reduction context, especially since personnel in these centers often do not
have an analytical background.

To conclude, it can be stated that the approach combining mid-IR spectroscopy and
PLS modelling is promising for the total characterisation of heroin samples and could be
a valuable asset to harm-reduction initiatives. Depending on the samples, the approach
could also be broadened to other adulterants, e.g., fentanyl analogues, as was demonstrated
by Tobias et al. [47]. The advantage of working with models based on real-life samples
is that the real-life variability within the samples is incorporated in the models, allowing
more performant and robust models. On the other hand, models can only be built for
compounds that occur in the sample set and, thus, compounds that are not part of the
approach can be missed. For the latter, it would therefore also be important to always
compare the recorded spectrum of the samples to a spectral library with reference spectra
containing other compounds of interest, in order to enhance the detection of adulterants
not part of the modelling approach.
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