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Since the evaluation of nanomaterial (NM) hazards by animal testing is expensive, time-consuming and

critical from an ethical point of view, much interest is being given to the development of alternative testing

strategies such as computational (predictive) models based on in vitro testing. However, the variations in

in vitro experimental conditions can influence the outcome of computational modelling. In this study, we

aim to identify nanodescriptor(s) and biological endpoint(s) capable of predicting the toxicity of titanium-

di-oxide (TiO2) NMs, and demonstrate how experimental variations determine the outcome of modelling

using three case studies. We used TiO2 in vitro data from our previously published study as case study 1

and two other external case studies (case study 2 and 3) performed under different exposure conditions

(presence and/or absence of serum). Firstly, we identified the nanodescriptor(s) closely associated to

biological endpoints. Secondly, we determined the strength of association of the identified

nanodescriptor(s) with the respective biological endpoint. The results indicate that the experimental

conditions influence the outcome of the computational modelling. Agglomerate size as a nanodescriptor

was well associated with biological endpoints such as DNA damage and/or cytotoxicity. We conclude that,

agglomerate size is an important nanodescriptor to assess the toxicological effects of TiO2 NMs in vitro.

However, the agglomeration state of NMs can be potentially influenced by in vitro exposure conditions and

such influences could be just a confounder in broader contexts such as safety-by-design approaches,

which require linking of material specific properties to the toxicological outcome.

Introduction

Decades of nanotoxicological research revealed that because
of their small size and enhanced surface reactivity,

nanomaterials (NMs) can induce adverse effects in animals
(in vivo) and in cell cultures (in vitro).1–3 While animal models
can closely mimic the response associated with real-life
human exposure, current trends in nanotoxicology research
show that evaluating NM hazards by animal testing is
practically challenging because it is expensive, time-
consuming and not ethical/legal in many countries. Thus,
much emphasis is being given to the development of
alternative testing strategies such as computational
(predictive) models based on in vitro testing, for initial
toxicity screening and to reduce animal testing.4,5 Extensive
efforts are needed to make progress in this direction.

Efforts have been made to predict the toxicity of NMs
using different computational approaches such as multiple
regression,6 decision trees7 and artificial neural networks.8 A
major drawback in many of these computational approaches
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is the selection of NM characteristics and probable
multicollinearity, which can lead to bias in toxicity
prediction. Because feature selection and machine learning
(ML) approaches are data-driven and exploratory in nature,
they are being used to select the characteristics of
maximum relevance and to improve the accuracy in toxicity
prediction.9 Several other major issues need to be
considered in computational toxicity prediction approaches.
In a recent systematic review, Forest et al.10 found that
nearly 75% of the papers reporting computational
approaches to predict the toxicity of NMs used only
cytotoxicity/cell viability for evaluation and only a few used
other biological endpoints such as oxidative stress and/or
pro-inflammatory responses. Therefore, the predictability of
selected biological endpoints in comparison to other
endpoints is not always clear. While there are some
consensus on the set of physicochemical properties (e.g.,
size, shape, chemical composition and surface modification)
that are essential to be evaluated in NM toxicological
assessment,11 the influence of experimental conditions in
linking these characteristics to the biological responses is
unknown. These discrepancies indicate that reliable
prediction strategies are not yet possible to rapidly evaluate
the hazardous potential of the NMs.

Titanium dioxide (TiO2) NMs are widely produced and
used in many practical applications such as in paints, food
and in personal care products12,13 and, exposure to these
NMs via inhalation, dermal or oral routes is becoming more
and more evident. Several in vitro studies showed that TiO2

NMs can induce adverse effects such as cytotoxicity, oxidative
stress, pro-inflammatory responses and genotoxicity14 and
therefore, it is essential to understand their toxicological
behaviour in relation to their characteristics.

In this study, we aim to identify nanodescriptor(s) (i.e.
physicochemical properties of NM) and biological
endpoint(s) to predict the toxicity of TiO2 NMs using
multivariate modelling approaches. To have a view on the
influence of different experimental conditions in predicting
the toxicity of TiO2 NMs, we composed three case studies
with different datasets: the first case study (only in vitro)
was built from data reported in Murugadoss et al.;15 the
two other case studies were composed from external data,
studies performed with different TiO2 NMs and at different
in vitro experimental conditions. Using our case study 1, we
performed a cluster analysis of experimental parameters
such as NM concentration and cell type against all
biological endpoints to identify their effect on the
responses. Secondly, we aimed at identifying the
nanodescriptors most associated with different biological
endpoints using a feature selection approach. We then
detected the strength of association between a given
biological endpoint and the most associated nanodescriptor
using linear and non-linear multivariate modelling. Similar
analysis was repeated for case 2 and 3. Finally, to have a
view on the overall impact, all case studies were combined
and analyses were reiterated.

Methodology
Selection of studies

Studies/articles (i) reporting minimal characteristics such as
constituent (primary) particle size, agglomerate size in stock
and in cell culture medium, and (ii) at least reporting DNA
damage and cell viability were taken into account for creating
different case studies.

Case studies

Case study 1. This case study includes the in vitro data
from Murugadoss et al.15 In this study, cytotoxic effects
induced by two TiO2 NMs of identical chemical composition
and shape (near-spherical) but with different constituent
(primary) particle sizes (17 and 117 nm) was evaluated, and
compared their in vitro toxicity in different agglomeration
states (small and large agglomerates). First, the TiO2 NMs in
different agglomeration state (four dispersions in total) were
comprehensively characterized for nanodescriptors (see
Table 1) that might influence the toxicity under experimental
conditions. Then, we evaluated the biological endpoints
in vitro by exposing cell cultures to different dispersions.
Results include the measurements of the effects in multiple
cell types and at different concentrations on the cell
metabolic activity (measured by WST-1 assay), cell viability
(lactate dehydrogenase assay), barrier integrity
(transepithelial/transendothelial electrical resistance [TEER]),
oxidative stress (changes in total glutathione level), pro-
inflammatory mediators (interleukin 8 [IL-8], IL-6, tumor
necrosis factor α [TNF-α] and IL-1β proteins measured by
ELISA) and DNA damage (alkaline comet assay). Cells were
exposed to the TiO2 NMs for 24 h in serum-free exposure
conditions. Number of data rows (N) = 144. We are aware that
a set of just two materials of the same composition in case
study 1 naturally limits the variations of the descriptors, but
we included this data in our study to validate our statistical
approach by confirming the previously obtained results.

Case study 2. This case study includes data extracted from
11 articles that were systematically selected from EMBASE
database (Fig. S1†). Case study 2 includes the measurements
of cell viability (different colorimetric assays) and DNA
damage (alkaline comet assay) induced by TiO2 NMs with
different constituent particle sizes, crystal phases and surface
charge, in multiple cell types and at different concentrations
(μg mL−1). In these studies, cells were exposed to the TiO2

NMs for 24 h. This case study also includes data from
experiments performed with and without serum conditions.
N = 49 (DNA damage) and 66 (cell viability).

Case study 3. This case study includes data extracted from
a published study16 performed in the ENPRA project (Risk
assessment of engineered nanoparticles, European
framework 7). The case study 3 includes measurements of
cell viability and DNA damage (alkaline comet assay) induced
by TiO2 NMs with different constituent particle sizes and
crystal phases, in multiple cell types and at different
concentrations (μg mL−1). The duration of exposure was 4 h
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and experiments were performed in the presence of serum
(10%) conditions. N = 201 (DNA damage) and 135 (cell
viability).

The raw datasets of case study 1, 2 and 3 (and all case
studies combined) are provided in GitHub open repository
https://github.com/Nilzkool/NanoQSARproject.

Nanodescriptors

Nanodescriptors in case study 1 – correlation based
reduction. Certain nanodescriptors included in this case
study are relatively similar, or based on similar
measurements. Using the same information multiple times
(multicollinearity) can lead to overfitting of data in a model
and to skewed and/or biased results. Therefore, the

correlation among the nanodescriptors is checked using
cross correlation. The resulting correlation matrix is shown
in Table 1. There was a very high correlation among size-
based descriptors (multicollinearity) characterized by
quantitative TEM [Feret min, Feret max, maximum inscribed
circle (MIC) diameter, area equivalent circle (AEC) diameter
and area]. From this set of descriptors, we selected minimum
Feret diameter of agglomerates in further analysis as it was
highly correlated with the other measures and can be
considered as a representative estimate for the agglomerate
size measured by TEM, and relevant in terms of the NM
definition (external dimension).17 The constituent (primary)
particle size was not included in this analysis, as they could
not be influenced by agglomeration. There was also a high
correlation between the size, assessed by DLS as the

Table 1 Correlation matrix of nanodescriptors obtained from the characterization of agglomerated suspensions using different techniques

Table 2 TiO2 nanodescriptors measured using different techniques (TEM, DLS and PTA). # – reported characteristics in the article; TEM – transmission
electron microscopy; DLS – dynamic light scattering; PTA – particle tracking analysis

Case
study Techniques Nanodescriptors

1 TEM Constituent particle size (minimum Feret diameter)
TEM (in stock dispersions) Minimal external dimension (minimum Feret diameter) and elongation (aspect ratio) of

agglomerates
DLS (in stock and in cell culture
medium)

Hydrodynamic size (Z-average)

DLS (in stock) Zeta potential
PTA (in stock) Hydrodynamic size (mean size)

2 TEM Constituent particle size
DLS (in stock and in cell culture
medium)

Hydrodynamic size (Z-average)

# Crystal phase
3 TEM Constituent particle size

DLS (in stock and in cell culture
medium)

Hydrodynamic size (Z-average)

DLS (in stock) Zeta potential
# Crystal phase
# Coating
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Z-average, and the aspect ratio of agglomerates. Large
agglomerates tend to be more elongated than the small
agglomerates and this possibly explains the high correlation
between the Z-average and aspect ratio. However, we used
both nanodescriptors in further analyses as they describe two
different characteristics such as the agglomerate size
(Z-average) and its shape (aspect ratio), and are assessed
using different techniques. Table 2 shows different
nanodescriptors and the techniques used to assess them. For
case studies 2 and 3, no correlation analysis was needed
since a very low number of descriptors was presented and
measured with different techniques.

Clustering of cell type and concentration effect

For case study 1, clustering and visualization of cell type and
concentration effect against all biological responses were
performed with 2D principal component analysis (PCA)
(https://www.rdocumentation.org/packages/stats/versions/
3.6.2/topics/prcomp) and non-linear t-distributed stochastic
neighbor embedding (t-SNE) clustering (https://CRAN.R-
project.org/package=Rtsne) approaches with Rstudio v1.1.463
(https://rstudio.com/).

Ranking of nanodescriptors and multivariate modelling

Fig. S2† shows the design for statistical analyses and
modelling. Because feature selection and machine learning
(ML) approaches are data-driven and exploratory in nature,
they are being used to select the characteristics of maximum
relevance and to improve the accuracy in prediction.9

Therefore, we used a feature selection method (mRMR) in
this study to identify nanodescriptors that are closely
associated with biological responses. Firstly, datasets of each
response variable (biological endpoint) in case study 1 was
randomly split into a training (70%) and validation set (30%).
In the training set, we first applied the minimal-redundancy-
maximal-relevance (mRMR) technique18 (https://cran.r-
project.org/web/packages/mRMRe/vignettes/mRMRe.pdf) to
rank the nanodescriptors associated with different biological
endpoints (response variables). The nanodescriptors with
positive mRMR scores represent the highest relevance with
response variables, and nanodescriptors with negative mRMR
values represent redundancy. Therefore, descriptors with
positive mRMR scores were only used in modelling. Before
modelling, the data were standardized by calculating the
mean and standard deviation for each variable, and from
each observed value of the respective variables, the mean was
subtracted and divided by the standard deviation. Then
machine learning approaches such as multiple linear
regression (in-build testing in R studio) and a non-linear
model called random forests regression19 (https://www.
rdocumentation.org/packages/stats/versions/3.6.2/topics/lm)
was used to predict the biological endpoints in the training
dataset (data not shown). Then the trained models were used
to predict respective biological endpoints in the validation
data set (30%) and in other case studies. All analyses involved

use of Rstudio v1.1.463 (https://rstudio.com/). Results of
validation data are in the Results section.

The codes for the entire workflow are provided in GitHub
open repos i to r y h t tps : / / g i thub . com/Ni l zkoo l /
NanoQSARproject together with datasets.

Results
Case study 1

Clustering of cell type response and concentration effect.
In case study 1, different cell types (human bronchial epithelial
cells [16HBE14o-] human colon epithelial cells [Caco2] and
human monocytes [THP-1]) and exposure concentrations (4,
64, 256 μg mL−1) were used. To verify the effect of cell type and
concentration used, we clustered all biological endpoints/
response variables (see Table 3 for the list of response
variables) by cell type (Fig. 1a and b) and by concentration
(Fig. 1c and d) with use of linear 2D PCA and non-linear tSNE.
We observed a clear differential response based on cell type
with both approaches, whereas for concentration, the
difference was less pronounced in t-SNE than PCA.

Ranking of nanodescriptors. Fig. S3† shows the ranking of
nanodescriptors for different response variables and Table 3
shows the nanodescriptor(s) with a positive mRMR score. We
discarded nanodescriptors with negative mRMR values
because this represents redundancy. For case study 1,
Z-average size in cell culture medium (CCM; Z-average in
CCM) was most associated with all biological endpoints
except metabolic activity and DNA damage, for which aspect
ratio and z-average size in stock dispersions, respectively,
were the most associated.

Multivariate modelling. Our clustering analysis of cell type
and concentration for case study 1 revealed that toxicity
induced by TiO2 NMs was cell type- and to some extent
concentration-dependent – this is not a surprise and has
been documented before. Since we aim to identify
nanodescriptors that predicts the toxicity of TiO2 NMs, we
started with a basic linear regression model with cell type
and concentration as inputs (basic model) to predict a given
response, and we added most associated nanodescriptor(s) to
the model. Then we noted the corresponding changes in
coefficient of determination (R2) and mean absolute error
(MAE) quantifying the goodness of fit. This procedure was
repeated for non-linear RF modelling. Variable importance
was assessed by the increase in R2 and subsequent decrease
in MAE. It is also important to mention here that our aim is
not to build quantitative prediction models such as QSAR but
only to identify the strength of association of nanodescriptors
with biological endpoints. This also explain why we focussed
on goodness of fit parameters R2 and MAE. Table 4A and B
summarize the effect on these statistical parameters for
validation dataset when the most relevant descriptor was
added to the basic model in linear and non-linear
multivariate models, respectively.

Linear model (Table 4A). For case study 1, R2 for the basic
model (cell type + concentration) was high for response
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variables such as IL-6 (R2 = 0.958), IL-1β (0.904),
transepithelial electrical resistance (TEER) (0.830) and IL-8
(0.777), indicating that the cell type and concentration alone
captured the most variability for these response variables.
Other response variables had low R2 value, such as cell
viability (0.469), glutathione depletion (0.454), DNA damage
(0.320), metabolic activity (0.053) and TNF-α (0.00). Adding

the most associated nanodescriptor (see Table 3) to these
models did not affect R2 and MAE (or only slightly).

RF model (Table 4B). In RF modelling, R2 for the basic
model was similar to the linear models [IL-6 (R2 = 0.955), IL-
1β (0.904), IL-8 (0.795), TEER (0.782); glutathione (0.595), cell
viability (0.488), DNA damage (0.209), metabolic activity
(0.019) and TNF-α (0.008)]. Adding the most associated

Fig. 1 Clustering of all biological responses against cell type (a and b) and concentration (c and d) using linear 2D PCA (a and c) and non-linear
t-SNE (b and d). HBE, human bronchial epithelial cells; Caco2, human colon epithelial cells; THP-1, human monocytes. The concentrations are
expressed as μg mL−1.

Table 3 Nanodescriptors identified by mRMR approach that are associated closely to different response variables. Z-Average – hydrodynamic size
measured by DLS; CCM-cell culture medium; mRMR-maximum relevance minimum redundancy

Biological endpoints/response variables Assays
Most relevant descriptor
(mRMR score > 0)

Case study 1 Metabolic activity WST-1 assay Aspect ratio
Cell viability LDH assay Z-Average in CCM
Total glutathione (GSH) depletion GSH assay Z-Average in CCM
Trans-epithelial electrical resistance (TEER) Measurements by epithelial voltohmmeter Z-Average in CCM
IL-8 levels ELISA Z-Average in CCM
IL-6 levels ELISA Z-Average in CCM
TNF-α levels ELISA Z-Average in CCM
IL-1β levels ELISA Z-Average in CCM
DNA damage Alkaline comet assay Z-Average in stock dispersions

Environmental Science: NanoPaper
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nanodescriptor to these basic models did not affect R2 or
MAE except for DNA damage, for which adding Z-average in
stock dispersions strongly affected R2 (0.209 to 0.670), with a
decrease in MAE (5.31 to 3.63).

These findings indicate that under the experimental
conditions of case study 1, experimental parameters such as
NM concentration and cell type were the well associated with
several biological responses such as IL-6, IL-1β, IL-8, TEER
and GSH while agglomerate size measured in stock
dispersions was strongly associated with the DNA damage
induced by TiO2 NMs.

Case studies 2 and 3

Ranking of nanodescriptors. In case study 1, serum-free
exposure conditions were used. To compare the findings with
case study 1, we used two other external case studies (2 and
3) fed with data collected under different experimental
conditions. Because we identified DNA damage as the only
biological endpoint influenced by a NM descriptor (Z-average
in stock dispersions) in case study 1, we primarily focused on
DNA damage in the other two case studies. The datasets for
case study 2 were extracted from 11 systematically selected
studies, which were performed in the presence and/or in the
absence of serum. However, when analysing these studies in
detail for more endpoints, we found only cytotoxicity/cell
viability reported in all the articles, with other endpoints
such as oxidative stress and/or pro-inflammatory responses
were rarely reported (see Table S1†). Therefore, we used DNA
damage and cytotoxicity/viability results in case study 2 for

further analysis. Datasets for case study 3 were from a single
study (part of the ENPRA project) with testing performed only
in the presence of serum.16 DNA damage and cytotoxicity/cell
viability were the only endpoints consistently reported in this
study. Multiple cell types and concentrations were included
in both case studies. Fig. S4A–D† shows the ranking of
nanodescriptors for different biological endpoints, and
Table 5A shows the nanodescriptor(s) closely associated with
DNA damage and cell viability for these case studies. For case
study 2, mRMR analysis revealed that constituent particle
size and crystal phase were the only nanodescriptors
associated with DNA damage and cell viability, respectively
(among 4 nanodescriptors, see Table 2). Similar to case study
1, in case study 3, Z-average size in stock dispersions was
most associated with DNA damage, but for cell viability,
Z-average in CCM (among 5 nanodescriptors) was most
associated.

Multivariate modelling. As observed for case study 1,
adding the most associated descriptor to the basic linear
model did not affect R2 and MAE in any case study 2 and 3
(Table 5B).

However, for DNA damage, adding the constituent particle
size and Z-average size (well associated descriptor for case
studies 2 and 3, respectively) to the basic model in non-linear
modelling contributed strongly to the increase in R2 in case
study 2 (0.014 to 0.658) and moderately in case study 3 (0.186
to 0.367) (Table 5C). A decrease in MAE was also observed in
case study 2 (2.08 to 1.16) and case study 3 (0.57 to 0.49). For
cell viability, in case study 3, Z-average in CCM increased the
R2 of the non-linear basic model (0.199 to 0.586), whereas

Table 4 Influence of statistical parameters that quantifies goodness of fit when the most associated nanodescriptor added to the basic model (cell type
+ concentration) in linear (A) and RF non-linear modelling (B). R2 – coefficient of determination; MAE – mean absolute error

(A)
Biological
endpoint (s) Basic model

Validation
dataset

Model with TiO2 descriptor

Validation
dataset

R2 MAE R2 MAE

Case study 1 Metabolic activity Cell type + Concentration 0.053 8.17 Cell type + concentration + Aspect ratio 0.115 8.10
Cell viability Cell type + Concentration 0.469 4.54 Cell type + concentration + Z-average in CCM 0.462 4.55
GSH depletion Cell type + Concentration 0.454 5.74 Cell type + concentration + Z-average in CCM 0.476 5.62
TEER Cell type + Concentration 0.830 610.24 Cell type + concentration + Z-average in CCM 0.832 608.61
IL-8 levels Cell type + Concentration 0.777 17.74 Cell type + concentration + Z-average in CCM 0.822 15.99
IL-6 levels Cell type + Concentration 0.958 6.94 Cell type + concentration + Z-average in CCM 0.958 6.97
TNF-α levels Cell type + Concentration 0.019 2.08 Cell type + concentration + Z-average in CCM 0.00 2.04
IL-1β levels Cell type + Concentration 0.904 3.39 Cell type + concentration + Z-average in CCM 0.905 3.42
DNA damage Cell type + Concentration 0.320 4.76 Cell type + concentration + Z-average 0.37 4.62

(B)
Biological
endpoint Basic model

Validation
dataset

Model with TiO2 descriptor

Validation
dataset

R2 MAE R2 MAE

Case study 1 Metabolic activity Cell type + concentration 0.019 8.08 Cell type + concentration + Aspect ratio 0.020 8.27
Cell viability Cell type + concentration 0.488 4.17 Cell type + concentration + Z-average in CCM 0.515 4.00
GSH Cell type + concentration 0.595 4.70 Cell type + concentration + Z-average in CCM 0.652 4.20
TEER Cell type + concentration 0.782 759.35 Cell type + concentration + Z-average in CCM 0.856 628.88
IL-8 Cell type + concentration 0.795 17.13 Cell type + concentration + Z-average in CCM 0.845 15.73
IL-6 Cell type + concentration 0.955 6.96 Cell type + concentration + Z-average in CCM 0.969 5.72
TNF-α Cell type + concentration 0.036 2.05 Cell type + concentration + Z-average in CCM 0.008 2.19
IL-1β Cell type + concentration 0.904 4.45 Cell type + concentration + Z-average in CCM 0.895 3.73
DNA damage Cell type + concentration 0.209 5.31 Cell type + concentration + Z-average 0.670 3.63
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crystal phase, the most associated descriptor in case study 2,
did not affect R2 of the non-linear basic model (Table 5C).

Altogether, these results indicate that DNA damage was
affected by a nanodescriptor (agglomerate size in stock or
constituent particle size) of TiO2 NMs in case studies 2 and
3, whereas only in case study 3, cell viability/cytotoxicity was
influenced by a nano-descriptor (agglomerate size in cell
culture medium).

All case studies

To have a view on the overall influence on the outcome, all
case studies were combined together (indicated as “all case
studies”) and similar analyses were performed. Among other
nanodescriptors (constituent particle size, Z-average in stock
and CCM, crystal phase and coating), agglomerate size and
constituent particle size were determined as the most
associated nanodescriptor for DNA damage and cytotoxicity,
respectively (Fig. S4E and F† and Table 6A). As observed in all

Table 5 Statistical analyses of other case studies 2 and 3. Most associated nanodescriptors identified by mRMR approach (A) and influence of statistical
parameters that quantifies goodness of fit (R2 and MAE) when the most associated nanodescriptor was added to the basic model (cell type +
concentration) in linear (B) and RF non-linear modelling (C). R2 – coefficient of determination; MAE – mean absolute error

(A)

Biological
endpoints/response
variables

Most relevant descriptor
(mRMR score >0)

Case study 2 DNA damage Constituent particle size
Cell viability Crystal phase

Case study 3 DNA damage Z-Average
Cell viability Z-Average in CCM

(B)
Biological
endpoint Basic model

Validation
dataset

Model with TiO2 descriptor

Validation
dataset

R2 MAE R2 MAE

Case study 2 DNA damage Cell type + concentration 0.471 1.22 Cell type + concentration + Constituent particle size 0.471 1.23
Viability Cell type + concentration 0.049 0.08 Cell type + concentration + Crystal phase 0.049 0.08

Case study 3 DNA damage Cell type + concentration 0.246 0.57 Cell type + concentration + Z-average 0.257 0.56
Viability Cell type + concentration 0.006 0.04 Cell type + concentration + Z-average in CCM 0.085 0.04

(C)
Biological
endpoint Basic model

Validation
dataset

Model with TiO2 descriptor

Validation
dataset

R2 MAE R2 MAE

Case study 2 DNA damage Cell type + concentration 0.014 2.08 Cell type + concentration + Constituent particle size 0.658 1.16
Viability Cell type + concentration 0.011 0.07 Cell type + concentration + Crystal phase 0.011 0.07

Case study 3 DNA damage Cell type + concentration 0.186 0.57 Cell type + concentration + Z-average 0.367 0.49
Viability Cell type + concentration 0.199 0.04 Cell type + concentration + Z-average in CCM 0.586 0.03

Table 6 Statistical analyses of combined case studies. Most associated nanodescriptors identified by mRMR approach (A) and influence of statistical
parameters that quantifies goodness of fit (R2 and MAE) when the most associated nanodescriptor was added to the basic model (cell type +
concentration) in linear (B) and RF non-linear modelling (C). R2 – coefficient of determination; MAE – mean absolute error

(A)

Biological
endpoints/response
variables

Most relevant descriptor
(mRMR score >0)

All case studies DNA damage Z-Average
Cell viability Constituent particle size

(B)
Biological
endpoint Basic model

Validation
dataset

Model with TiO2 descriptor

Validation
dataset

R2 MAE R2 MAE

All case studies DNA damage Cell type + concentration 0.256 0.04 Cell type + concentration + Z-average 0.273 0.04
Viability Cell type + concentration 0.108 0.07 Cell type + concentration + constituent particle size 0.104 0.07

(C)
Biological
endpoint Basic model

Validation
dataset

Model with TiO2 descriptor

Validation
dataset

R2 MAE R2 MAE

All case studies DNA damage Cell type + concentration 0.301 0.04 Cell type + concentration + Z-average 0.528 0.03
Viability Cell type + concentration 0.162 0.07 Cell type + concentration + constituent particle size 0.306 0.06
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other case studies, adding the most associated
nanodescriptor to the biological endpoint did not influence
the R2 and MAE in linear models (Table 6B). In RF modelling,
R2 and MAE was moderately influenced for DNA damage and
cytotoxicity when adding the most associated nanodescriptor
(Z-average and primary size, respectively) (Table 6C). Overall
analysis of all case studies indicate that, as observed in case
study 1 and 3, agglomerate size was the most associated
nanodescriptor to DNA damage while the constituent particle
size, in contrast to what was observed in case study 2, was
more closely associated to cytotoxicity than DNA damage.

Discussion

In this study, we statistically analysed three independent sets
of data (case studies) performed under distinct experimental
conditions to identify nanodescriptors affecting the toxicity
of TiO2 NMs. Considering all case studies, agglomerate size
was found to strongly influence the biological endpoints such
as DNA damage and/or cytotoxicity in two case studies (case
study 1 and 3) while the constituent particle size was found
to influence the DNA damage only in one case study (case
study 2).

Case study 1 was well controlled and systematically
designed to determine the influence of agglomeration on
toxicity and therefore, the association between agglomerate
size and DNA damage could possibly be a bias due to the
design of the experiment. In case study 3, the NMs
agglomerate size found to be most relevant descriptor
influencing both DNA damage and cytotoxicity, although the
study was not designed to determine the influence of
agglomeration on toxicity. It needs to be noted that
agglomerate size is not a material specific property and can
be influenced/driven by exposure conditions/situations such
as pH, ionic strength and motion of the carrier medium.20

In case study 2, constituent particle size, a material
specific property, was found to be the most relevant
parameter. Studies in case study 2 were performed under
different experimental conditions (with and without serum).
It is known that the alterations in serum concentrations are
shown to affect agglomeration stability, particle–cell
interaction and toxicological outcome (genotoxicity) of TiO2

NMs, both in vitro21,22 and in vivo.23 Moreover, there is wide
variability in the dispersion protocol used in these studies
(see Table S2†), which again could affect the agglomerate size
and stability in stock and in exposure conditions. Altogether,
when including studies performed in similar experimental
conditions (as in case 1 & 3), agglomeration appeared in the
analysis, but when including studies performed in varying
experimental conditions in the analysis (different
agglomeration conditions and different stability) the factor
did not appear as a good predictor. This indicates that the
models built from the data used in this study may be useful
to predict the toxicity of NMs and associated NM parameters
in a given experimental condition but may not be meaningful
in a broader context.

We found that agglomerate size of TiO2 NMs in stock
dispersions (case studies 1 and 3) and in cell culture medium
(case study 3) as a nanodescriptor closely associated with
DNA damage and cytotoxicity, respectively. Agglomerate size
in stock suspensions also found to be the most associated
nanodescriptor to DNA damage when all case studies
combined. These findings agree with another study that
determined a strong positive correlation between TiO2

agglomerate size and micronucleus frequency in human
lymphocytes.24 Likewise, other studies have also
demonstrated that agglomerate size was found to be the most
important factors in determining the cytotoxicity of NMs.25,26

In in vitro studies, it is often discussed that large
agglomerates tend to sediment faster, which could affect the
toxicity due to higher biologically effective dose.21 However,
in our previous study, we determined that TiO2 NM
sedimentation was influenced rather by raw material and
effective density of NMs than their size.15 In addition, we
observed that TiO2 NMs were effectively taken up as
agglomerates by the epithelial cells (HBE) and monocytes
(THP-1) cells. Therefore, the association between agglomerate
size and cellular uptake may be more relevant to understand
the effect of agglomerate size on biological response, and
more systematic research is needed in this aspect. We found
several in vitro studies in which the agglomerate size is only
assessed in stock dispersions or in cell culture medium, but
not in both,15,27–30 making it difficult to use these data in a
toxicity prediction model. Furthermore, we and other authors
found that large TiO2 agglomerates induced stronger
pulmonary responses in vivo31,32 and systemic DNA damage
in blood.15 Therefore, agglomeration size could also be a
relevant parameter to predict TiO2 toxicity in vivo, although
more and better data are needed to verify this.

Recently, effective density of NMs in in vitro exposure
condition is recognised as an important parameter in
determining their sedimentation, delivered dose and
toxicity.33 Depending on the nature of agglomerates formed
by NMs, such as, soft or hard agglomerates, their effective
density can vary. For instance, the softer the agglomerate the
lower the effective density and hence, the lower the dose
reaching the cells. In that case, soft agglomerates of large
sizes can reach the cells relatively slower than that of hard
agglomerates of small sizes. This indicate that, in addition to
agglomerate size, effective density could also influence the
cell dosimetry. VCM method is widely used to characterise
the effective density of NMs as it is simple, cost effective, and
experimentally validated for wide range of NMs. Therefore,
we used VCM and estimated effective density in our study
(case study 1).34 However, the effective density was not
reported in any of the studies that we used in case study 2
and 3. Therefore, we did not use the effective density in the
analyses of case study 1 to make it comparable with case
study 2 and 3. In the future, it is strongly recommended to
estimate the effective density of NMs in exposure conditions,
to not to miss the conceptual link between exposure
conditions and observed toxicological effects.
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Size and bio-available surface area, which are major
determinants of biological interactions, cellular uptake and
toxicity can be influenced by agglomerate and aggregate (AA)
formation. Surface related properties such as optical and
photocatalytic properties of TiO2 and ZnO NMs are shown to
be reduced by AA formation;35,36 and vice versa de-
agglomerated/de-aggregated NMs showed increased optical
and photocatalytic properties. Spherical NMs, when
agglomerated/aggregated, form different secondary structures
such as chains and clusters, with different fractal dimensions
and aspect-ratios.37,38 In the case of soluble NMs such as
ZnO and Ag, AA formation reduced the solubility of metallic
ions in aqueous medium.39,40 These information indicate
that AA formation due to experimental variations can
significantly affect the NM properties and hence the
toxicological outcome.

Other issues. As DNA damage found to be better
predictable endpoint for TiO2, it is also essential to discuss
the artifacts introduced by comet assay. Interaction of NMs,
such as, decrease or increase of fluorescence of comet could
also leads to bias in the scoring.41 Moreover, studies have
reported that TiO2 NM tested in his study was not inherently
toxic but their photoactivation leading to DNA damage.42

Therefore, it is highly recommended to be critical in selecting
the exposure concentration and to conduct the entire comet
assay procedure in the dark to avoid potential artefacts
induced by photoactivation.

The relationship between nanodescriptor(s) and toxicity/
biological changes (response variable) of NMs was analysed
in both linear and non-linear models to predict the biological
endpoints induced by TiO2 NM exposure. We found that
nanodescriptors better accounted for the variability in the
response variable in RF multivariate modelling than in linear
models, which is in line with earlier studies reporting that
non-linear models score better to predict cytotoxicity in vitro
compared with linear models.6,43 Moreover, Kimberly To T.
et al.44 reported that NM characteristics have non-linear
dependence with developmental toxicity in zebrafish. These
results suggest that non-linear rather than linear models
could be more appropriate to predict the biological endpoints
of NMs.

From our well-controlled study (case study 1), cell type
and concentration explained most of the variability observed
in several biological responses. It is well established that
toxicity of NMs is cell type- and concentration-dependent, but
in the literature, cell type- and concentration-dependent
responses were often ignored in modelling approaches.10

From our case study 1, it also appears that the influence of
cell type and NM concentration is also biological endpoint
dependent, and should therefore be included when building
computational models to predict the toxicity of NMs.

In several computational studies, cytotoxicity/cell viability
has been used as the (only) response variable to predict the
in vitro toxicity of NMs.6,43,45 However, some NMs, such as
TiO2, exhibit no or very mild cytotoxicity but strong DNA

damage.46–48 In this study, DNA damage was, in addition to
concentration and cell-type, significantly affected by a
nanodescriptor in all three case studies while cell viability/
cytotoxicity popped-up in only one case study (case study 3).
DNA damage also appears to have better predictability
(higher R2 value) than cytotoxicity/cell viability under the
same experimental conditions (case study 1 and 2). The
inclusion of multiple response variables can allow us to
identify biological endpoints with better predictability and to
make the predictive model more robust, but as evident from
the Table S1,† studies reporting multiple endpoints are
scarce.

How can we proceed from here to reliable toxicity
prediction?. First step would be the standardization of
dispersion protocols. This way one can utilize the data from
the literature to perform a meta-analysis with minimal bias
introduced by experimental conditions. In recent years,
tremendous effort has been made in that direction,49,50 but
ideally general protocols are required that are applicable for
many types of NMs. Exposure conditions should also be
standardized and closely mimic the real exposure situation.

Secondly, systematic studies should be designed to
establish in-depth understanding of the influence of material
specific properties such as primary size, crystal phase, surface
functionalization and modification on agglomeration in
different experimental conditions. Alternatively, the same NM
should be tested under different experimental condition such
as with and without serum and NM characteristics such as
catalytic property, release of ions etc. should be thoroughly
characterized in each condition. This way, we can establish
the scientific understanding of the link between material
specific properties and agglomeration and therefore, better
understanding on the association of material specific
properties to the observed toxicity.

Conclusion

In conclusion, in the case of TiO2, agglomerate size was
identified as an important nanodescriptor to predict the
biological/toxicological effects. However, agglomeration is
strictly spoken not a material specific property and could
therefore, be a potential confounding factor in broader
context such as safety-by-design approaches. Further, in
addition to constituent particle size, agglomerate size in
stock and in media (at the start of the exposure) should be at
least reported to consider the study as “usable or reliable”
and at least two biological endpoints should be included to
consider such nanotoxicity data as metadata. Furthermore, it
is worth to mention that, in order to feed datasets in
automised ML approaches, more focus should be given in
the future to control/standardize dispersion protocols and
exposure conditions.
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