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Abstract 

Background In many countries, the prevalence of non-communicable diseases risk factors is commonly assessed 
through self-reported information from health interview surveys. It has been shown, however, that self-reported 
instead of objective data lead to an underestimation of the prevalence of obesity, hypertension and hypercholester-
olemia. This study aimed to assess the agreement between self-reported and measured height, weight, hypertension 
and hypercholesterolemia and to identify an adequate approach for valid measurement error correction.

Methods Nine thousand four hundred thirty-nine participants of the 2018 Belgian health interview survey (BHIS) 
older than 18 years, of which 1184 participated in the 2018 Belgian health examination survey (BELHES), were 
included in the analysis. Regression calibration was compared with multiple imputation by chained equations based 
on parametric and non-parametric techniques.

Results This study confirmed the underestimation of risk factor prevalence based on self-reported data. With both 
regression calibration and multiple imputation, adjusted estimation of these variables in the BHIS allowed to gener-
ate national prevalence estimates that were closer to their BELHES clinical counterparts. For overweight, obesity 
and hypertension, all methods provided smaller standard errors than those obtained with clinical data. However, 
for hypercholesterolemia, for which the regression model’s accuracy was poor, multiple imputation was the only 
approach which provided smaller standard errors than those based on clinical data.

Conclusions The random-forest multiple imputation proves to be the method of choice to correct the bias related 
to self-reported data in the BHIS. This method is particularly useful to enable improved secondary analysis of self-
reported data by using information included in the BELHES. Whenever feasible, combined information from HIS and 
objective measurements should be used in risk factor monitoring.
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Background
Worldwide, 63% of deaths are caused by non-commu-
nicable diseases (NCDs). A high proportion of NCDs 
are preventable by addressing their main physiological 
risk factors, such as high blood pressure, obesity and 
hypercholesterolemia [1]. Accurate data on the preva-
lence of these risk factors is therefore essential to build 
evidence-based prevention programs and policies [2]. 
In many countries, the prevalence of NCDs risk factors 
is commonly assessed through self-reported informa-
tion from health interview surveys. It has been shown, 
however, that relying on self-reported data lead to an 
underestimation of the prevalence of overweight and 
obesity [3–6], hypertension [7–10] and hypercholester-
olemia [11–16]. Social desirability or lack of knowledge 
may explain the overall validity problem. In addition 
to biased prevalence estimates, the measurement error 
related to self-reported data can also bias the estimated 
association between exposure and disease [17, 18]. In 
particular, exposure-disease associations are often 
attenuated when based on self-reported exposures [19, 
20]. Although a large body of literature already exists 
on methods to obtain more accurate surveillance data 
by correcting for measurement error related to self-
reported data, few epidemiologic studies use them in 
practice [21, 22].

Promising methods to correct for measurement error 
are based on validation sampling, whereby an accu-
rate measure is collected for a random subset of units 
of a large study, which are sampled according to a pre-
specified design [20]. Regression calibration is the most 
commonly applied method to correct for measurement 
error related to self-reported data [22]. This method 
uses the information that maps objective clinical values 
to self-reported values by fitting a regression model for 
the clinical values [23]. All self-reported values in the 
regression model of interest are then replaced by the pre-
dicted clinical values. This method is popular because of 
its simplicity, but known to leave residual bias; standard 
error calculations are moreover complicated by the fact 
that they must acknowledge uncertainty in the predicted 
clinical values [24, 25]. For the correction of BMI, in 
particular, it has been shown that the characteristic pat-
tern of error associated with self-reported BMI is practi-
cally impossible to correct by the use of linear regression 
models [26]. Although regression calibration may be an 
adequate tool to produce valid prevalence estimates of 
obesity, hypertension or hypercholesterolemia in a popu-
lation, this method is limited if researchers are interested 
in using these adjusted factors as predictor variables for 
modelling disease. A previous study showed that both 
self-reported and corrected BMI from regression model 
resulted in biased estimates of association [27].

Some of these concerns can be overcome via multi-
ple imputation, a well-established method of handling 
missing data that is also useful in dealing with exposure 
measurement error, known as MIME (Multiple Imputa-
tion for Measurement Error) [23, 25, 28–30]. It fills in 
the missing data with plausible clinical values, which are 
randomly drawn from a distribution of predicted values. 
This process is repeated multiple times, the final analy-
sis is carried out on each filled-in dataset, and the results 
are pooled using Rubin’s rules [31]. Multiple imputation 
has the advantage to produce unbiased estimates and 
valid inference for data that are correctly modelled and 
obey missingness at random (MAR) [32]. In the case of 
measurement error where a validation study is avail-
able, MAR is satisfied because the validation subset is 
chosen completely at random so that people with ver-
sus without error-prone measurements are comparable 
[18]. Within the multiple imputation by chained equa-
tions algorithm (MICE), imputed values for one variable 
are drawn from a predictive model based on all other 
variables. The process then cycles through each variable 
imputation until convergence. A misspecified imputation 
model may however give biased estimates and invalid 
inferences. Attention is therefore shifting towards the use 
of a machine-learning-based imputation technique, the 
random-forest algorithm [32–35].  Random-forest is an 
algorithm which combines the output of multiple deci-
sion trees to solve classification or regression problems. 
Besides their ability to handle data with complex interac-
tion or non-linearity, those techniques do not require to 
specify an imputation model and allow the inclusion of a 
large number of predictors [25, 34, 36]. Furthermore, It 
has been demonstrated that, in complex settings, those 
methods produce more plausible imputations and more 
reliable inferences than standard regression imputation 
techniques [34, 37].

In Belgium, the prevalence of physiological risk factors 
is assessed on a regular basis via self-reported informa-
tion from the Belgian Health Interview surveys (BHIS 
1997–2018) [38]. Additionally, small-scale surveys such 
as the Food consumption surveys (FSC 2004, 2014) [39], 
the Belgian Health examination survey (BELHES 2018) 
[40] provide objective measurements, albeit on a smaller 
subset of the population. Since the BELHES 2018 was 
conducted on a sub-sample of the BHIS 2018, this joint 
dataset provides a unique opportunity to assess the valid-
ity of self-reported information on physiological risk 
factors.

The objective of this study is threefold: 1) to assess 
the agreement between self-reported and measured 
information on height, weight, hypertension and hyper-
cholesterolemia in Belgian adults and examine how the 
use of self-reported data impacts the estimates of the 
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prevalence of those risk factors, 2) to identify an ade-
quate approach for valid measurement error correction 
by comparing regression calibration with MICE based 
on parametric and non-parametric techniques and 3) to 
enrich the BHIS 2018 dataset with imputed clinical val-
ues for height, weight hypertension and hypercholester-
olemia allowing researchers to improve their analysis of 
self-reported data in the BHIS 2018.

Methods
Study area, study population and data
The study area is the entire Belgian territory with a popu-
lation of 11.4 million inhabitants.

The study sample consists of 9439 participants of the 
BHIS 2018 older than 18 years including a subset of 1184 
participants who additionally participated to the BEL-
HES 2018.

The BHIS is a national cross-sectional population sur-
vey carried out every five years by Sciensano, the Bel-
gian institute of health, in partnership with Statbel, the 
Belgian statistical office. Data are collected through a 
stratified multistage, clustered sampling design (approxi-
mately 10,000 participants) and weighting procedures are 
applied to obtain results which are as representative as 
possible of the Belgian population. Data are obtained on 
socio-economic status, physical and mental health, life-
style and use of health care [38, 40, 41].

In the BELHES, objective health information was col-
lected among a random subsample of the BHIS partici-
pants. In the BELHES, objective health information was 
collected among a subsample of the BHIS participants. A 
random subsample of eligible BHIS participants (at least 
18 years and having participated in the BHIS themselves) 
was invited to participate in the BELHES. Recruitment 
from among this subsample continued until a prede-
fined number of participants was reached. Finally, 1184 
individuals participated in the BELHES. The BELHES 

followed as much as possible the methodological guide-
lines provided in the framework of the European Health 
Examination Survey initiative [42].

Data were collected at the participant’s home by 
trained nurses. The BELHES included a short additional 
questionnaire, a physical examination and the collection 
of a blood sample. The physical examination consisted of 
the measurement of height, weight, waist circumference, 
blood pressure and for people aged 50  years and above 
a handgrip measurement. Laboratory blood analyses 
included the measurement of total and HDL serum cho-
lesterol. Details on the data collection are available in the 
BELHES publication [40].

Statistical analyses
In a first step, the merged BHIS/BELHES 2018 data-
base was used (n = 1184) to assess the validity of the 
self-reported data related to height, weight, overweight, 
obesity, hypertension and hypercholesterolemia. The def-
initions of the variables for measured and self-reported 
data are given in Table  1. The difference in the preva-
lence of self-reported versus measured risk factors was 
assessed using the McNemar test for paired data. Con-
fusion matrix and Kappa coefficients were used to assess 
the agreement between self-reported and measured 
hypertension, hypercholesterolemia and WHO BMI 
categories. Bland & Altman plots and Intra Class Cor-
relation coefficients (ICC) were used to assess agreement 
between self-reported and measured height, weight and 
BMI [43]. The mean difference was assessed using the 
paired-t test. In Bland & Altman plots,

Horizontal lines are drawn at the mean difference, and 
at the limits of agreement, defined as the mean differ-
ence plus and minus 1.96 times the standard deviation 
of the differences. Sensitivity, specificity, positive pre-
dictive value (PPV) and negative predictive value (NPV) 
were calculated for each risk factor (overweight, obesity, 

Table 1 Definition of indicators from the Belgian health interview survey (BHIS) and the Belgian health examination survey (BELHES)

SR Self-reported

Indicator Variable definition in the BHIS
(SR data)

Variable definition in the BELHES
(Measured data)

BMI SR weight (kg)/(SR height (m)) 2 Measured weight (kg)/(Measured height (m)) 2

Weight SR weight (kg) Measured weight (kg)

Height SR height (cm) Measured height (cm)

Overweight BMI, based on SR data ≥ 25 kg/m2 BMI, based on measured data ≥ 25 kg/m2

Obesity BMI, based on SR data ≥ 30 kg/m2 BMI, based on measured data ≥ 30 kg/m2

Hypertension Has answered “Yes” to question “Did you suffer from 
hypertension in the last 12 months?”

Systolic blood pressure ≥ 140 mmHg or diastolic blood 
pressure > 90 mmHg or medication use for hyperten-
sion

Hypercholesterolemia Has answered “Yes” to question “Did you suffer from 
high cholesterol in the last 12 months?”

Total serum cholesterol > 190 mg/dl
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hypertension and hypercholesterolemia). The parameters 
of accuracy were stratified by age, gender and education 
level.

In a second step, different methods to correct for 
measurement error related to the self-reported risk fac-
tors were applied to the complete BHIS 2018 dataset 
(n = 9439). Prevalence of overweight, obesity, hyperten-
sion and hypercholesterolemia were compared using 
regression calibration, MICE based on parametric and 
non-parametric techniques.

To correct for measurement error with regression 
calibration, a regression model was fitted to predict the 
measured health condition based on the self-reported 
health condition, age, sex and highest educational level 
in the household of the participant. Interaction terms 
between the self-reported health condition and covari-
ates were added in the model when they significantly 
improved the accuracy of the model at the 5% signifi-
cance level (Wald test). The sample was separated in a 
training (70%) and a test dataset (30%) to calculate the 
predictive power of each regression model, assessed by 
the means of the  R2 for the linear regression model and 
by the means of the Area Under the Curve (AUC) for 
the logistic regression models. The self-reported values 
were then replaced by the predicted values obtained from 
the linear regression (for height and weight) and logistic 
regression (for hypertension and hypercholesterolemia) 
and the corrected BMI value was finally calculated based 
on the predicted values for height and weight.

To correct for measurement error with multiple impu-
tation, the measurement error related to self-reported 
data was treated as a missing data problem. This means 
that all BHIS participants who were not included in the 
BELHES were considered with missing values for the 
measured height, weight, hypertension, and hypercho-
lesterolemia. The missing data pattern of the variables of 
interest of the merged BELHES/BHIS 2018 dataset can 
be visualized in Additional file 1.

Unlike the regression calibration, the model was used 
to multiply impute the measured values for the BHIS. A 
MICE algorithm [25] was used to multiply impute the 
missing values of the measured height, weight, hyper-
tension and hypercholesterolemia for every BHIS 2018 
participant. Two multiple imputation techniques were 
compared: a parametric approach based on the predic-
tive mean matching method and logistic regressions and 
a non-parametric random-forest approach. The imputa-
tion model included the same variables that were used 
for the regression calibration: main effects of age, sex, 
education level and the self-reported health condition 
[21]. In addition, variables related to the sample design, 
such as household size and province were also taken into 
account in the imputation model.

The number of imputations was limited to 10 to cre-
ate a small number of completed datasets in public-use 
data for the convenience of analysts. The relative effi-
ciency was computed to assess if an additional num-
ber of completed datasets could reduce the SE of the 
parameters. The relative efficiency above 99% indicated 
that 10 completed dataset was sufficient. In particular, 
using infinitely many imputations would only reduce 
the variance of the estimators by 1%. The number of 
iterations of the MICE algorithm was 100. For the ran-
dom-forest based imputation, the defined number of 
trees was set to 100. All missing values of the covariates 
included in the imputation models were imputed in the 
same process. The convergence of the algorithm was 
assessed by plotting the mean and standard deviation 
of the synthetic values against the iteration number for 
the imputed BHIS data.

Risk factor prevalence estimates were calculated in 
each completed dataset and results of the multiple analy-
sis were pooled using the standard Rubin rules [31]. Cor-
rected prevalence estimates were obtained by taking the 
survey weights relative to the sample design into account. 
Standard errors of the prevalence estimates were 
obtained as the square root of the total variance (taking 
into account the within and between imputation variance 
and a correction factor for using 10 imputations).

Sensitivity analyses were carried out using a wider set 
of self-reported variables that could potentially be related 
to the measured health conditions of interest such as 
socio-economic, lifestyle and health condition variables 
(the list of the wide set of variables is available in Addi-
tional file 2). Missing data of all variables included in the 
imputation model were imputed in the same process. 
Finally, the ability of the imputation model to predict 
valid national estimates for the previous BHIS waves was 
assessed by applying the random-forest multiple imputa-
tion model to the complete BHIS2008/2013/2018 dataset 
and adding the year in the imputation model.

All statistical analysis were performed by taking into 
account the survey weights, strata and clusters relative 
to the sample design. For multiple imputation, the vari-
ables used in the weighting procedure (province, number 
of persons by household, age and sex) were included in 
the imputation model. All analyses were fit and evalu-
ated using the statistical software R [44], version 4.2.1 (R 
Development Core Team, 2006) and the “MICE” package 
[45].

Results
Data description
Summary statistics of all considered variables are dis-
played in Additional file 3.
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Validity of self‑reported height, weight, bmi, hypertension 
and hypercholesterolemia
Height, weight and BMI
There was a high agreement between self-reported and 
measured data for height and weight (ICC for height: 
0.95; 95% CI [0.94;0.95], ICC for weight: 0.96; 95% CI 
[0.95;0.97]). On average, people tended however to over-
estimate their height by 1.05 (95% CI [-0.83;1.29]) cm and 
underestimate their weight by 1.50  kg (95% CI [-1.81;-
1.20]) (Table  2). This trend was more pronounced for 
women and older people. While the bias for height was 
higher among low educated people, the bias for weight 
was higher among high educated people. Bland–Altman 
plots illustrating the agreement between self-reported 
and measured height and weight stratified by age, gender 
and education level are available in Additional files 4, 5, 6, 
7, 8 and 9.

The agreement between self-reported and measured 
BMI was slightly lower than for height and weight (ICC: 
0.92; 95% CI [0.86;0.95]). Figure  1 illustrates the agree-
ment between self-reported and measured BMI sepa-
rately for men and women. The mean bias for the whole 
population was close to zero (-0.84  kg/m2) indicating a 
very good agreement at the population level.

The lower limit of agreement (LLOA) and upper limit 
of agreement (ULOA) revealed however a wider vari-
ability at the individual level (Table 2). The plots in Fig. 1 
show that people with overweight (> 25  kg/m2) were 
more likely to underestimate their BMI. The stratified 
analysis indicated a more pronounced misreporting bias 
among women, older and low educated people (Table 2). 
Bland–Altman plots for BMI stratified by age and educa-
tion level are available in Additional files 10 and 11.

The agreement between self-reported and measured 
BMI categories was high with 82% of the participants 
correctly classified (Kappa: 73%). The prevalence of obe-
sity (BMI > 30  kg/m2) was however significantly under-
estimated when based on self-reported body weight and 
height (Table  3). Using self-reported BMI allowed us to 
detect only 78% of BHIS participants with overweight 
and 69% of BHIS participants with obesity (Table 3).

By contrast, the high specificity rates indicates that 
self-reported BMI is a reliable indicator to rule out the 
existence of overweight and obesity. Prevalence estimates 
stratified by age and education level are available in Addi-
tional files 12 and 13.

Hypertension and hypercholesterolemia
There was a moderate agreement between self-reported 
and measured hypertension, with a Kappa coefficient of 
0.49 (Fig.  2). The agreement was slightly worse for men 
(Kappa: 0.43) than for women (Kappa: 0.56). The strati-
fied analysis by age category and education level did 

not show any specific trend (Additional files 14 and 15). 
Using self-reported data, the prevalence of hypertension 
was significantly underestimated and only 45% of the 
BHIS participants with a measured hypertension were 
detected (Table  3). The high specificity rates indicate 
however that self-reported hypertension is a reliable indi-
cator to rule out the existence of hypertension.

For hypercholesterolemia, there was a very poor agree-
ment between self-reported and measured data, with 
a Kappa coefficient of 5% (Fig.  2). The agreement was 
slightly worse for men, older people and high educated 
people (Additional files 16  and  17). Using self-reported 
data allowed to detect only 22% of the BHIS participants 
with a measured hypercholesterolemia. By contrast, the 
high specificity rates indicate that self-reported hyper-
cholesterolemia is a reliable indicator to rule out the 
existence of hypercholesterolemia.

Correction for measurement error
Regression calibration
With regression models based on the self-reported health 
condition, age, sex and education level, the measured 
height and weight could be predicted with relatively 
good accuracy  (R2: 93% for height,  R2: 95% for weight). 
The accuracy of the model for hypertension was relatively 
moderate (AUC: 86%) and poor for the hypercholester-
olemia model (AUC: 65%). Using predicted values instead 
of self-reported data yielded higher estimates of people 
suffering from overweight (+ 8% relative increase), obe-
sity (+ 12%), hypertension (+ 24%) and hypercholes-
terolemia (+ 36%). Forest plots of the estimates of the 
regression models for height, weight, hypertension and 
hypercholesterolemia are available in Additional file 18.

Multiple imputation for measurement error (mime)
The missing data pattern of the variables (age, sex, edu-
cation level and self-reported risk factors) of the merged 
BELHES/BHIS 2018 dataset is visualized in Additional 
file 1.

In Fig. 3, the prevalence estimates of overweight, obe-
sity, hypertension and hypercholesterolemia were com-
pared in the different datasets BHES 2018 and BHIS 2018 
adjusted with the three correction methods. The conver-
gence of the classic and random-forest multiple imputa-
tion is visualized in Additional file 19.

Prevalence estimates based on the predicted values 
(regression calibration) and the multiply imputed clini-
cal values (random-forest and classic multiple imputa-
tion) were closer to their BELHES clinical counterparts 
than were the BHIS estimates based on self-reported 
data. Furthermore, for overweight, obesity and hyperten-
sion, prevalence estimates based on the adjusted datasets 
(using regression calibration and multiple imputation) 
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had smaller estimated standard errors than those based 
solely on the BELHES clinical data (Table  4). By con-
trast, for hypercholesterolemia, which had a poor model 
accuracy, regression calibration was less effective than 

multiple imputation (with standard errors larger than the 
one obtained in the BELHES measured data).

By looking at the distribution of BMI in the different 
adjusted datasets, it appears that the distribution of the 

Table 2 Estimates of the Bland–Altman plots for analysis of agreement between self-reported and measured height, weight and Body 
Mass Index (BMI) stratified by age

LLOA Lower limits of agreement, ULOA Upper limits of agreement (mean difference ± 2 standard deviations)

Weighted mean difference LLOA ULOA

BMI (kg/m2)
[95% CI]

Whole population -0.87 [-1;-0.74] -4.31 [-4.48;-4.14] 2.63 [2.45;2.80]

Age category
18/24 -0.59 [-0.95;-0.23] -3.41[-4.03;-2.79] 2.23 [1.61;2.85]

25/44 -0.67 [-0.83;-0.52] -3.74 [-4.0;-3.48] 2.40 [2.13;2.66]

45/64 -0.74 [-0.92;-0.55] -4.72 [-5.04;-4.4] 3.25 [2.93;3.58]

> 65 -1.35 [-1.54;-1.16] -4.36 [-4.68;-4.04] 1.64 [1.32;1.97]

Gender
Men -0.61 [-.077;-0.45] -4.24 [-4.50;-3.98] 2.94 [2.68;3.02]

Women -1.12 [-1.30;-0.94] -4.34 [-4.57;-4.11] 2.31 [2.08; 2.34]

Education level
No diploma/ prim -1.27 [-2.11;-0.42] -7.34 [-8.80;-5.86] 4.80 [3.34;6.25]

Lower secondary -0.93 [-1.27;-0.58] -4.55 [-5.14;-3.95] 2.69 [2.10;3.29]

Higher secondary -0.87 [-1.09;-0.65] -5 [-5.40;-4.65] 3.27 [2.87;3.64]

Higher -0.7 [-0.86-;-0.66] -3.31 [-3.48;-3.13] 1.78 [1.60;1.95]

Height (cm)
[95% CI]

Whole population 1.05 [0.83;1.29] -4.7 [-4.99;-4.41] 6.71 [6.42;7]

Age category
18/24 0.38 [-0.27;1] -4.75 [-5.88;-3.63] 5.51 [4.39;6.64]

25/44 0.35 [0.10;0.60] -4.69 [-5.12;-4.25] 5.40 [4.97;5.84]

45/64 0.78 [0.53;1.03] -4.57 [-5.0;-4.14] 6.14 [5.71;6.58]

> 65 2.56 [2.16;2.96] -3.76 [-4.45;-3.03] 8.89 [8.20;9.58]

Gender
Men 0.69 [0.43;0.94] -4.37[-4.74;-3.99] 5.99 [5.62;6.37]

Women 1.41 [1.06;1.75] -3.74 [-3.48;-4.0] 7.31 [6.88;7.74]

Education level
No diploma/ prim 2.32 [0.80;3.83] -8.55 [-11.55;-5.94] 13.19 [10.6;15.79]

Lower secondary 1.35 [1.82;1.88] -4.13 [-5.03;-3.23] 6.84 [5.93;7.75]

Higher secondary 1.30 [0.99;2.96] -4.49 [-5.01;-3.97] 7.10 [6.57;7.63]

Higher 0.64 [0.43;0.82] -4.01 [-4.36;-3.72] 5.32 [4.99;5.64]

Weight (kg)
[95% CI]

Whole population -1.50 [-1.81;-1.20] -9.75 [-10.2;-10.3] 6.89 [6.47;7.31]

Age category
18/24 -1.42 [-2.46;-0.37] -9.64 [-11.44;-7.8] 6.80 [5;8.60]

25/44 -1.62 [-2;-1.23] -9.20 [-9.54;-8.54] 5.95 [5.30;6.61]

45/64 -1.33 [-1.83;-0.85] -11.4 [-12.2;-10.6] 8.77 [7.96;9.59]

> 65 -1.76 [-1.71;-1.01] -6.87 [-7.47;-6.27] 4.15 [3.15;4.74]

Gender
Men -1.26 [-1.72;-0.81] -11.1 [-11.9;-10.4] 8.66 [7.93;9.38]

Women -1.73 [-2.14;-1.32] -8.20 [-8.65;-7.74] 4.95 [4.45;5.41]

Education level
No diploma/ prim -0.89 [-2.32;0.53] -11.13 [-13.59;-8.68] 9.34 [6.88;11.79]

Lower secondary -1.26 [-2.04;-0.48] -9.44 [-10.74;-8.06] 6.88 [5.53;8.22]

Higher secondary -1.29 [-1.87;-1.72] -12.1 [-13.15;-11.16] 9.55 [8.57;10.54]

Higher -1.62 [-1.88;-1.37] -7.91 [-8.35;-7.48] 4.66 [4.23;5.1]
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Fig. 1 Bland–Altman plot for analysis of agreement between self-reported and measured Body Mass Index (BMI), for the whole population and 
by gender. A Whole study population, B: Men, C: Women. The solid line represents the mean difference. The dashed lines represent the upper and 
lower limits of agreement (mean difference ± 2 standard deviations)

Table 3 Prevalence estimates of overweight, obesity, hypertension and hypercholesterolemia using self-reported data (BHIS 2018) 
and measured data (BHES 2018). Sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) using self-
reported data

* CI Confidence interval. Significant underestimation of the prevalence estimates for obesity, hypertension and hypercholesterolemia in the BHIS (P < 0.001)

Overweight (%) Obesity (%)

Total Men Women Total Men Women

Prevalence BELHES [95% CI] 34 [31-38] 39 [34-45] 29 [25-34] 22 [19-25] 20 [16-24]  22 [18-27]

Prevalence BHIS [95%IC] 34 [30-37] 39 [34-44] 29 [24-33] 15 [13-18] 14 [11-18]  16 [13-21]

Sensitivity 78 80 73 69 69 65

Specificity 88 86 89 99 99 99

PPV 78 80 75 94 95 93

NPV 88 86 85 92 92 91

Hypertension (%) Hypercholesterolemia (%)

Total Men Women Total Men Women

Prevalence BELHES [95% CI] 33 [29-36] 33 [28-38] 33 [28-38] 47 [43- 51] 46 [40-51] 48 [43-53]

Prevalence BHIS [95%IC] 16 [13-19] 15 [12-19] 17 [13-21] 21 [18- 24] 18 [14-2] 22 [17-27]

Sensitivity 45 41 51 22 41 18

Specificity 99 97 98 83 78 87

PPV 90 88 91 56 45 66

NPV 79 74 83 52 54 51
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imputed BMI (random-forest and classic imputation) is 
the best approximate of the distribution of the measured 
BMI (Fig. 4).

Sensitivity analyses
Sensitivity analyses included a wider set of variables in 
the imputation model such as income, smoking status, 
handicap or chronic disease (variables listed in Addi-
tional file  2). Prevalence estimates and standard errors 
obtained from the multiply imputed datasets using the 
wider set of variable were similar to the one obtained 
using the small set of variables. In addition, the random-
forest multiple imputation model using the small set 

of variables was applied to the merged BHIS data from 
2008, 2013 and 2018 (n = 27,536). The imputation model 
provided valid prevalence rates for the previous BHIS 
waves 2008 and 2013, assuming that the trend in the 
prevalence estimates remained approximately the same 
across the last ten years (Additional file  20). It is also 
interesting to note that the imputation-based analysis 
provided valid results for hypercholesterolemia includ-
ing for the year 2008, for which the self-reported data on 
hypercholesterolemia was not available. Finally, apply-
ing the imputation model to the larger dataset including 
the three BHIS waves resulted in even smaller standard 
errors (Additional file 21).

Fig. 2 Confusion matrix comparing self-reported and measured high blood pressure and hypercholesterolemia, for the whole population and by 
gender. A and D: Whole study population, B and E: Man, C and F: Women
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Discussion
Main findings
Consistent with previous literature, this study 
showed an underestimation of the prevalence of obe-
sity, hypertension and hypercholesterolemia based 
on self-reported data [3, 5–7, 10, 13, 14, 16, 46–50]. 
The observed under-reporting for weight and over-
reporting for height, resulting in a underestimation 
of the BMI, is a general trend observed in many stud-
ies although the degree of the trend varies for men and 
women and the characteristics of the population being 
examined [6].

The self-reported prevalence of obesity was six per-
centage points lower for both men and women but did 
not show an underestimation of the prevalence of over-
weight, confirming a higher misreporting bias among 
people with obesity. In a literature review, Maukonen 
et al. reported similar results with an underestimation of 
obesity ranging from 0.7% points to 13.4% points [3] and 
highly heterogeneous results regarding overweight prev-
alence [3, 51]. The higher self-reporting bias observed in 
specific subgroups such as women, older people and par-
ticipants with obesity has been observed in several previ-
ous studies [3, 52–56]. Social desirability, leading people 

Fig. 3 Prevalence estimates of overweight, obesity, hypertension and hypercholesterolemia in Belgium using self-reported, measured and adjusted 
2018 BHIS data. Classical MI: classical multiple imputation. RF MI: random-forest multiple imputation. Regression calibration and multiple imputation 
model included age, sex, education level and the self-reported health conditions. Error bars represent one standard deviation of uncertainty of the 
estimates

Table 4 Ratio of estimated standard errors: BELHES 2018 clinical data/adjusted BHIS 2018 data

BHIS Belgian health interview survey, BELHES Belgian Health examination survey

Regression calibration Classic multiple imputation Random‑
forest multiple 
imputation

Overweight 1.77 2.10 2.10

Obesity 2.13 1.86 1.93

Hypertension 1.10 2.07 2.10

Hypercholesterolemia 0.32 1.71 1.73
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to report values that are closed to their ideal, could par-
tially explain this observation [57]. The over-reporting of 
height in older people may be due to the fact that peo-
ple have their height measured over a decade ago but 
became shorter with age.

The weak validity of self-reported hypertension 
observed in our study is in line with several study results 
showing that approximately half of patients with hyper-
tension would not be identified by self-reporting in epi-
demiological studies [7–10, 13, 16]. In the same trend, 
our study shows that the prevalence of elevated total 
serum cholesterol based on measurements was much 
higher (47%) than the self-reported prevalence of hyper-
cholesterolemia (21%). Using self-reported data only, 78% 
of the population suffering from hypercholesterolemia 
was missed compared with data from objective measure-
ments. Similar results were obtained in previous studies 
[13, 42]. Specificity, by contrast, provided accurate results 
for all risk factors (> 99% for obesity and hypertension 
and 83% for hypercholesterolemia), which means that 
self-reported measures can be considered reliable to rule 
out the existence of the risk factors in the population.

The inaccuracy of self-reported hypertension and 
hypercholesterolemia could be explained by the fact that 
they are usually asymptomatic and remain therefore eas-
ily undetected. This might also be related to clinicians 
using different threshold values to identify and commu-
nicate the risk factor. For hypertension for example, it is 
worth noting that some medical staff may continue to 
use the old diagnosis criterion (which changed in 1999 
from 160/95 to 140/90 mmHg) and thereby wrongly clas-
sify patients with hypertension as not having the disease. 
Regarding hypercholesterolemia, people may only report 

it if their physician told them they had a high cholesterol 
risk factor, which is in fact the ratio total cholesterol/
HDL cholesterol. Even if an elevated total cholesterol 
(defined as total cholesterol > 190 mmol/l) is a WHO rec-
ommended indicator to monitor NCDs [58], it does not 
represent in itself a risk factor.

The frequency of physician visits, educational level, 
urban living and access to healthcare have been identified 
as factors associated with the accuracy of self-reporting 
hypertension and hypercholesterolemia [7]. The under-
estimation of self-reported hypertension and hyper-
cholesterolemia demonstrates that screening for those 
cardiovascular risk factors needs to be strengthened and 
population awareness of early detection of those risk fac-
tors to be increased.

With both regression calibration and multiple impu-
tation, adjusted estimation of height, weight, hyper-
tension and hypercholesterolemia in the BHIS 2018 
allowed to generate national prevalence rates that were 
closer to their BELHES clinical counterparts. For over-
weight, obesity and hypertension, all methods provided 
smaller standard errors than those obtained with clini-
cal data alone. However, for hypercholesterolemia, for 
which the regression model’s accuracy was poor, MIME 
has better performance than regression calibration. This 
result should however be taken with caution because the 
random-forest MIME might potentially give underesti-
mated standard errors as a result of ignoring the uncer-
tainty in the imputation models fitted via random-forest 
[34]. One theoretical reason for expecting MIME to per-
form better than regression calibration is because MIME 
uses the measured risk factor when it is available, rather 
than imputing it, whereas regression calibration always 

Fig. 4 BMI distribution using self-reported, measured and adjusted 2018 BHIS data. For the imputed BMI, only the first imputed dataset was 
represented for more visibility
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predicts the measured risk factor from the self-reported 
risk factor [23]; another reason is that imputations 
obtained by MIME resemble real data better by acknowl-
edging that real data vary around the (predicted) mean.

Sensitivity analyses demonstrated that the imputation 
model based on a small set of variables (self-reported 
health condition, age, sex and education) was largely 
sufficient to correct the measurement error in the BHIS 
data. Since the self-reported measure is such a strong 
predictor, additional variables in the imputation model 
had little influence and did not improve the efficiency 
of the imputations. Furthermore, by applying the impu-
tation model to the complete BHIS dataset from 2008 
to 2018, results shows that the method could correctly 
predict the missing clinical values for the previous BHIS 
waves 2008 and 2013.

Regression calibration or multiple imputation?
While regression calibration is quite easy to imple-
ment, this method should however be used with caution 
because of its inherent limitations. First, this is so because 
predictive equations to correct for self-reporting bias will 
only work if the percentage of explained variance is very 
high [25]. Secondly, regression calibration does not take 
into account the uncertainty in the estimated prediction 
because the method is based on single predicted values, 
which may result in potentially biased standard errors 
[18]. Even if the method may be appropriate to model the 
population distribution of the risk factor, this method is 
not recommended if the researcher is interested in using 
the adjusted risk factor as a predictor variable for model-
ling disease [27]. Finally, with regard to the bias related 
to self-reported BMI, studies have shown that predictive 
equations were unsuitable as correction methods because 
they had a systematic downward bias [24, 26]. Because 
the relationship of self-reported BMI to measured BMI is 
characterized by a “flat slope syndrome” (over reporting 
of low values and underreporting of high values), the self-
reported bias in BMI is highly correlated with measured 
BMI [26].

Among the different methods explored in this study, 
the random-forest multiple imputation proved to be 
preferred to correct the self-reported bias in the BHIS. 
Although this method is only applicable if a validation 
study is available (where a “true” exposure is measured 
in a subsample) [59], its offers numerous advantages. 
Unlike the regression calibration, the random-forest mul-
tiple imputation has the advantage to explicitly account 
for the uncertainty in the predicted clinical measure-
ment and, hence, produce more reliable statistical infer-
ences [25]. Additionally, MIME allows to easily handle 
the missing data problem of all covariates in the same 
process, which increases the statistical power when 

assessing the risk factor disease association in survey 
data. Finally, the random-forest MIME brings two addi-
tional benefits compared to classic multiple imputation. 
Unlike the standard imputation approach, the random 
forest-based imputation handles data with complex inter-
actions or non-linearity and does not assume normality 
or require specification of parametric models. Secondly, 
because of this additional complexity, the random forest-
based imputation does not suffer from the “congeniality” 
problem that it must obey the form of the final analysis 
model. This assumption required by the standard impu-
tation approach may not be met if the goal is to allow 
researchers to use these imputations in subsequent anal-
yses. In view of this, the random-forest MIME was the 
chosen method to impute 10 clinical values of the risk 
factors of interest for all BHIS participants from 2008 
to 2018. While researchers are aware that measurement 
error related to self-reported data could affect the results 
of their studies, very few adjusted their analysis for the 
error. Furthermore, they often do not provide a com-
plete discussion of the potential effects of measurement 
error on their results. By providing 10 imputed clinical 
values for height, weight, BMI, hypertension and hyper-
cholesterolemia in the BHIS 2008/2013/2018 we aimed 
to enable secondary analysts to improve their analysis of 
self-reported BHIS data by using information included 
in the BELHES. However, caution is needed when using 
the imputed clinical values. Those imputed values may be 
used to model an exposure-disease association or to pro-
vide prevalence estimates using the Rubin ‘s rule. They 
should not be used in combination with risk estimates 
based on unadjusted self-reported data only. For exam-
ple, to calculate a population attributable fraction (PAF), 
the risk estimate should not be taken from the literature 
but rather computed from the adjusted BHIS data. The 
PAF is used to estimate the burden of a risk factor and 
is based on the risk estimate of the risk factor and the 
prevalence of the disease in the population. Calculating a 
PAF using a risk estimate based on self-reported data and 
a prevalence of the risk factor based on corrected data 
would be the same as comparing apples and oranges.

Strengths and limitations
The main added value of this study resides in the novelty 
of the approach. To our knowledge, this study is the first 
to consider a random forest-based multiple imputation to 
correct the measurement error related to self-reported 
data in health interview surveys. This has been made pos-
sible thanks to the validation sample, the BELHES 2018, 
where data on self-reported medical conditions could 
be compared with objective measurements for the same 
individuals. Furthermore, this study is based on a nation-
wide, large scale population survey, using standardized 



Page 12 of 15Pelgrims et al. BMC Medical Research Methodology           (2023) 23:69 

methods, regarding the sampling, questionnaires and 
measurement protocols, which makes our results compa-
rable across countries.

The findings of this study must nevertheless be seen 
in the light of some limitations. The definitions and 
selected cut-off values for the measured risk factors 
could be questioned, since according to the reference 
standards considered, results on the agreement with 
self-reported data may vary substantially. If WHO cat-
egories are widely used to determine obesity, a higher 
heterogeneity of gold standards was found to diagnose 
hypertension and hypercholesterolemia across stud-
ies. In our study, hypertension was defined as a sys-
tolic blood pressure ≥ 140  mmHg or a diastolic blood 
pressure > 90  mmHg or medication use for hyperten-
sion; and hypercholesterolemia as a total cholesterol 
level > 190 mg/dl (> 5 mmol/l). In other studies, hyper-
tension was sometimes diagnosed using a 160/90 cut-
off and reference ranges for hypercholesterolemia 
varied from 5 to 6.5  mmol/l. Medication was further-
more not always taken into account in the definition 
of the risk factor [13]. In our definition of the meas-
ured hypercholesterolemia (Table  1), we decide to 
not include the use of medication because statins are 
often used as preventive treatment. Regardless of the 
selected cut-off, the prevalence of specific risk factors 
in health examination surveys could still be over- or 
under-estimated because measurements are taken on a 
single occasion while a medical diagnosis of hyperten-
sion or hypercholesterolemia is generally based on sev-
eral subsequent measurements. In self-reported data, 
the format of questions may also impact the validity 
results. In our study, the self-reported health condition 
relied on the question: “Did you suffer from…in the last 
12 months?”, but in some other studies, only diagnosed 
conditions or conditions that a health professional 
had ‘told’ about were enquired. The main challenge of 
a diagnostic method is to obtain a satisfactory balance 
between high sensitivity and high specificity, yielding 
a minimum of both false positives and false negatives. 
Sensitivity estimates related to self-reported obesity, 
hypertension and hypercholesterolemia are particu-
larly important in health interview surveys, as they 
ensure identification of the largest number of people 
at risk of developing NCDs. A second limitation of our 
study is related to the underrepresentation of low edu-
cated people in the validation sample. Because of the 
second stage recruitment of the BELHES, this under-
representation, which was already present in the BHIS, 
was reinforced. Unfortunately, educational level was 
not taken into account in the survey weights, because 
this information was not available. Thirdly, the imputed 
clinical values in the BHIS 2008/2013/2018 were all 

based on the available validation sample BELHES 2018, 
which implies that our analysis assumes self-reporting 
bias not to change over time. This assumption may 
however not be met, since the awareness of one’s own 
condition may have increased due to the common use 
of digital devices at home for measuring blood pressure 
and the wider availability of blood glucose measure-
ments in pharmacies. Subsequent BELHES data in the 
coming years, when available, should therefore be used 
to update the imputed clinical values in the following 
BHIS datasets.

Finally, it is important to have in mind that, in epidemi-
ology, measurement error in confounders might be even 
more challenging than measurement error in exposure. 
Measurement error in confounders can lead to over-
estimation of exposure–disease associations whereas 
measurement error in exposures typically dilutes the 
associations. Future analysis could therefore be con-
ducted to extend the MIME correction to other impor-
tant self-reported risk factors or confounders such as 
smoking or diabetes in the BHIS data.

Conclusions
Obesity, hypertension and hypercholesterolemia are 
leading biomedical risk factors of NCDs with surveil-
lance often based on self-reported data. With a general 
increase in these risk factors rates in Belgium it is of par-
amount importance to obtain accurate prevalence data 
to correctly assess the effectiveness of NCD prevention 
programs. Results of this study confirm that using self-
reported data alone leads to a severe underestimation of 
the prevalence of obesity, hypertension and hypercholes-
terolemia in Belgium. By exploring different approaches 
to correct for measurement error, this study shows how 
information from the BHIS and BELHES 2018 can be 
combined to provide a valid correction of those risk fac-
tors. Both regression calibration and MIME techniques 
generate accurate national prevalence rates of these risk 
factors, that could in turn be used by decision makers 
to allocate resources and set priorities in health. Our 
results suggest however that the random-forest multiple 
imputation is the most appropriate choice to correct the 
measurement error related to self-reported data in health 
interview surveys. Besides its ability to handle data with 
complex interaction or non-linearity, the technique has 
the advantage that it does not require to specify an impu-
tation model which is particularly useful to allow second-
ary analysts to improve their analysis of self-reported 
data by using information included in the BELHES. 
Whenever feasible, combined information from health 
interview survey and measurements should be used in 
risk factor monitoring.
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