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Over the last years, more stringent safety requirements for an increasing number of chemicals across
many regulatory fields (e.g. industrial chemicals, pharmaceuticals, food, cosmetics, ...) have triggered the
need for an efficient screening strategy to prioritize the substances of highest concern. In this context,
alternative methods such as in silico (i.e. computational) techniques gain more and more importance. In
the current study, a new prioritization strategy for identifying potentially mutagenic substances was
developed based on the combination of multiple (quantitative) structure-activity relationship ((Q)SAR)
tools. Non-evaluated substances used in printed paper and board food contact materials (FCM) were
selected for a case study. By applying our strategy, 106 out of the 1723 substances were assigned ‘high
priority’ as they were predicted mutagenic by 4 different (Q)SAR models. Information provided within
the models allowed to identify 53 substances for which Ames mutagenicity prediction already has
in vitro Ames test results. For further prioritization, additional support could be obtained by applying
local i.e. specific models, as demonstrated here for aromatic azo compounds, typically found in printed
paper and board FCM. The strategy developed here can easily be applied to other groups of chemicals

facing the same need for priority ranking.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Together with the high and continuously growing number of
chemical substances subject to safety assessment, comes the need
to establish adequate screening strategies to prioritize those of
highest concern for human and/or environmental health. One
notable example of a large group of substances urgently requiring a
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Contact materials Exposure Task; FCM, food contact materials; FIG, FACET Industry
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prioritization ranking for in-depth safety evaluation, are those used
in food contact materials (FCM). Food contamination due to leakage
of substances from FCM has become an increasing source of
concern for human health (e.g. Liu et al., 2016; Muncke et al., 2014).
Since 2011, an updated list of substances authorized as starting
product or additive for the manufacture of plastic FCM is available
(European Union, 2011). For non-plastic FCM, however, no
harmonized European regulation has been established yet.
Although national legislation exists in several Member States for
different types of FCM, a broad range of substances currently used
in FCM have not been evaluated for their safety (European
Parliament, 2016).

Printing inks and paper(board) constitute large groups of non-
plastic FCM substances. They are often used in combination and
have been at the origin of multiple contamination issues, examples
being the isopropylthioxanthone and the 4-methylbenzophenone
crises (EFSA, 2005; 2009). Most of the substances that can be
present in printed paper and board FCM have not been officially
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evaluated for their potential toxicity. Consequently, these non-
evaluated substances could give rise to future food crises (Van
Bossuyt et al., 2016).

Regarding plastic FCM, the European Food Safety Authority
(EFSA) requires a core set of test data in order to be able to evaluate
consumer safety of these materials. Genotoxicity data are always
requested, regardless of the (estimated) migration level (EFSA,
2012). Indeed, genotoxicity i.e. the ability to cause DNA damage,
can induce adverse human health effects including cancer (Claxton
et al., 2010). In line with new EFSA Scientific Committee's recom-
mendations on genotoxicity testing strategies, a battery of 2 in vitro
genotoxicity tests is required, i.e. a gene mutation test in bacteria
and an in vitro mammalian cell micronucleus test. If one of these
tests yields a positive or equivocal result, further (in vivo) testing
may be needed in order to investigate the genotoxic potential of the
substance (EFSA, 2016).

The bacterial reverse mutation assay (Ames test) is the most
commonly used in vitro test to detect gene mutations (OECD, 1997).
Although it is a suitable test to identify gene mutation-inducing
chemicals, its technical characteristics (in particular the test dura-
tion and the high quantity of test compound required) do not allow
testing of >1000 substances in a short period of time at reasonable
cost. The same obstacles are also encountered with the other assay
required in the genotoxicity testing battery. A promising approach
to detect mutagens without animal nor in vitro testing lies in the
application of in silico tools. These computer-assisted methodolo-
gies are based on available experimental data, and are increasingly
adopted in regulatory toxicology because of their time-, cost- and
animal-saving nature. In particular, (quantitative) structure activity
relationship ((Q)SAR) systems represent promising predictive
computational techniques to evaluate potential genotoxicity and
carcinogenicity of chemical substances (Serafimova et al., 2010).

(Q)SARs comprise both statistical QSAR and rule-based SAR
systems. Rule-based models perform predictions via detection of
so-called ‘structural alerts’ (SA), i.e. chemical fragments responsible
for the toxic effect as determined earlier based on human expert
knowledge. Statistical models, on the other hand, predict toxicity
using an algorithm obtained by investigating the mathematical
correlation between chemical properties (translated into molecular
descriptors) and toxic activity (Bakhtyari et al., 2013). In both sys-
tems, chemicals are typically processed by means of their simpli-
fied molecular-input line-entry system (SMILES) representation.
Most commercial (e.g. Derek Nexus®) and free (e.g. Toxtree) in silico
software programs include statistical QSAR and/or rule-based SAR
models to predict the induction of gene mutations in the Ames test
(‘Ames mutagenicity’). Furthermore, due to the abundance of
consistent Ames test results and due to the binary result type:
mutagenic/non-mutagenic, robust models for Ames mutagenicity
are available and therefore the prediction performance for this
endpoint is substantially better compared to other toxicological
endpoints (Kamath et al., 2015). Indeed, in silico models for geno-
toxic endpoints other than Ames mutagenicity (e.g. chromosome-
damaging potential in the micronucleus test) exist, but until now
their accuracy is limited and needs to be improved before these
models can become a more reliable screening tool.

Numerous publications on (Q)SAR evaluation of chemicals/
chemical groups are available, however mostly in the context of
model validation. Besides one study in which 2 SAR models were
used to rank heat-generated food contaminants (Cotterill et al.,
2008), to our knowledge, no study reports are available on the
application of (Q)SARs for prioritization of potential human geno-
toxicants. In the current study, a screening strategy based on (Q)
SAR tools is applied to identify, within the large number of non-
evaluated substances that can be used in printed paper and board
FCM, those that represent the highest concern for human health.

The non-evaluated substances were first selected from a recently
compiled inventory containing all substances which may be used in
this type of FCM (Van Bossuyt et al., 2016). Next, their potential to
induce gene mutations was predicted using a battery of Ames
mutagenicity (Q)SAR models. The models were selected by taking
into account existing recommendations such as the use of com-
plementary systems (in terms of prediction method). Moreover, the
combination of a SAR and a QSAR is already mandatory in certain
regulatory domains, for example in the case of impurity testing of
pharmaceuticals as described in the ICH M7 guidelines (ICH, 2014).
Using the combined (Q)SAR results, a priority list could be
composed of non-evaluated printed paper and board FCM sub-
stances requiring an urgent in-depth safety evaluation.

2. Materials and methods
2.1. Study substances

Substances that have not been officially evaluated were selected
from a recently compiled inventory including 6073 unique sub-
stances which may be used in printed paper and board FCM (Van
Bossuyt et al., 2016). Out of the 4690 non-evaluated compounds,
1769 single substances were retained for the current analysis. The
remaining 2921 non-evaluated substances are not eligible for
straightforward in silico processing, due to their chemical structure
(e.g. polymers, mixtures, complexes, inorganic substances). Sub-
sequently, the ChemSpider (Royal Society of Chemistry, 2016),
ChemlIDplus (National Institutes of Health (2016a)), PubChem
(National Institutes of Health (2016b)) and European Chemicals
Agency (ECHA, 2016) databases were consulted to collect missing
CAS numbers and SMILES for the 1769 non-evaluated single sub-
stances. ChemSpider was used as the primary information source,
whereas the ChemlIDplus, PubChem and ECHA databases were
consulted in case ChemSpider yielded no or ambiguous results.
Afterwards, the compound selection was further refined by
excluding substances for which no definite CAS number or SMILES
could be identified, reducing the final number to 1723 (Fig. 1).

Printed paper and
board substances
(#6073)

Non-evaluated
substances
(#4690)

Non-evaluated
single substances
(#1769)

Fig. 1. Selection of study substances.
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2.2. (Q)SAR models

The selected (Q)SAR models, specified in Table 1, are diverse not
only regarding their prediction method (SAR/QSAR), but also with
respect to their availability (free/commercial). For each system, the
prediction model(s) related to Ames mutagenicity was (were)
applied.

- Toxtree

Toxtree (www.toxtree.sourceforge.net) is an open source soft-
ware application of the Joint Research Centre of the European
Union (European Commission, 2016b). Toxic hazard of test com-
pounds is predicted based on a decision tree-approach, constructed
through the definition of rules flagging alerts for the selected
endpoint. For Ames mutagenicity, 44 SAs are incorporated. A QSAR
module for aromatic amines and of-unsaturated aliphatic alde-
hydes is also available and allows to refine the prediction of these
specific chemical classes (not considered in the current study).
Toxtree does not feature an applicability domain functionality.

- VEGA

The VEGA platform (www.vega-gsar.eu) has been developed by
the Istituto di Ricerche Farmacologiche Mario Negri (IRFMN) and
can be downloaded for free. It comprises an array of toxicity esti-
mation models, including 3 for the evaluation of Ames mutage-
nicity i.e. CAESAR, SarPy and ISS (IRFMN, 2016a). CAESAR and SarPy,
both QSAR models, were developed using the same training set of
4337 compounds. However, their prediction technique differs in
the sense that CAESAR combines a machine-learning algorithm
with 2 sets of sequential SAs (Ferrari and Gini, 2010), whereas SarPy
follows a purely quantitative approach to determine whether test
compounds are mutagenic or non-mutagenic (Ferrari et al., 2013).
The third Ames mutagenicity prediction model, ISS, contains a set
of SAs extracted from Toxtree, more specifically the SAs related to
mutagenicity as implemented in the Benigni-Bossa rulebase for
mutagenicity and carcinogenicity. In theory, this should result in
the same model as the Toxtree model described above. However, in
practice the outcome sometimes differs in VEGA/ISS and Toxtree. A
possible explanation for these differences may be found in the
rebuilding process that was used to translate the Toxtree rulebase
into VEGA/ISS.

In the current study, the separate results of the 3 Ames muta-
genicity models were combined into 1 final ‘VEGA consensus’
result, since this approach increases the prediction performance
compared to the use of the individual models (Cassano et al., 2014).
The output of the single models is integrated through their corre-
sponding applicability domain index (ADI) by means of the

following equation:

(£1)*ADlcagsar + (£1)*ADlsarpy + (+1)*ADliss

CONSENSUS =
ADICAESAR + AD[SarPy + AD[ISS

Each ADI in the numerator is multiplied by +1 for a positive
prediction and by —1 for a negative prediction. In case the final
outcome is negative, only prediction results with an ADI of at least
0.75 in all 3 models were considered negative. A similar approach
has been proposed by Cassano et al. (2014).

- Derek Nexus™

Derek is commercially available as part of the Lhasa Knowledge
Suite® (Lhasa Limited, 2016a) and is a SAR tool that runs predictions
for, among others, in vitro mutagenicity through expert-based rules.
The latter were developed from a variety of open literature and
confidential data. For this reason and because it is a rule-based
system, no defined training set nor applicability domain are avail-
able. However, a recently implemented structure classification
feature allows to substantiate negative predictions (Williams et al.,
2016). In case no alert for Ames mutagenicity is found, the software
labels the test compound as ‘inactive’ (i.e. negative). Additionally,
the compound structure is screened for ‘misclassified’ and ‘un-
classified’ features. If it contains a chemical fragment that is not
retrieved in the set of compounds on which the expert rules are
based, the graphic display will highlight this part of the molecule
and indicate that the structure contains unclassified features.
Misclassified features, on the other hand, refer to chemical sub-
structures that are not SAs, but have been found in experimentally
positive reference compounds that lack a SA in Derek. Since
negative predictivity generally remains high for both
(median = 84%), misclassified and unclassified features are regar-
ded as negative predictions that are flagged for expert review.
However, for the current prioritization strategy that does not
include elaborate expert reviewing, we followed a precautionary
approach. Hence only negative predictions without warnings were
considered negative.

- Sarah Nexus™

The Lhasa Knowledge Suite® also contains a QSAR-based Ames
mutagenicity model named Sarah (Lhasa Limited, 2016b). In this
statistical tool, the query compound is fragmented, after which the
fragments are reviewed for activity versus inactivity. A network of
hypotheses is then created by arranging meaningful fragments,
followed by the application of relevant hypotheses to inform an
overall mutagenicity prediction. A confidence score and applica-
bility domain check complete the final conclusion.

Table 1
Model description.
Abbreviation Software (version) Model name Method AD Availability
Global (Q)SARs
Toxtree Toxtree (2.6.0) In vitro mutagenicity alerts (Ames test) by ISS SAR / Freeware
VEGA VEGA (1.1.1) Mutagenicity (Ames test) model (CAESAR) v.2.1.13 QSAR VEGA ADI Freeware
Mutagenicity (Ames test) model (SarPy/IRFMN) v.1.0.7 QSAR VEGA ADI
Mutagenicity (Ames test) model (ISS) v.1.0.2 SAR VEGA ADI
Derek Derek Nexus™ (4.1.0) Mutagenicity in vitro SAR / Commercial
Sarah Sarah Nexus™ (1.2.0) Ames mutagenicity QSAR Sarah AD Commercial
Local QSARs for aromatic azo compounds
CORAL CORAL Ames mutagenicity QSAR DefectSMILES Freeware
istKNN istKNN (0.9) Ames mutagenicity QSAR / Commercial

AD(I): applicability domain (index); (Q)SAR: (quantitative) structure-activity relationship.
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- CORAL

CORAL (www.insilico.eu/coral) is a freely available standalone
application software for building regression or classification QSAR
models based on the Monte Carlo optimization method. It was
developed as part of the EU-funded CHEMPREDICT project (IRFMN,
2016b). A complete description of the Ames mutagenicity model for
aromatic azo compounds, built using the CORAL software, is pro-
vided by Manganelli et al. (2016). In brief, this model was generated
using local and global SMILES-based descriptors on 3 random splits
of data in training, calibration and validation sets. Test compounds
are checked for falling into the applicability domain by calculating
their DefectSMILES that should not exceed a predefined threshold
value.

- istKNN

istKNN is a recently developed commercial software tool that
can be used to build, evaluate and apply k-Nearest Neighbors (k-
NN) models. The k-NN approach identifies a number (k) of neigh-
boring compounds for the target compound to make a prediction.
Each ‘neighbor’ is assigned a similarity index, allowing to extract
the first k molecules with the closest similarity. In addition, specific
similarity thresholds are defined, resulting in predictions solely
based on molecules with a similarity index higher than the selected
threshold. This method and the istKNN program are described by
Manganaro et al. (2015). Details concerning the istKNN model for
Ames mutagenicity prediction of aromatic azo compounds were
recently published by Manganelli et al. (2016).

2.3. Model output processing

Each of the models described in section 2.2. Introduces its own
particular denomination method to label negative and positive
compounds (or -in the case of Derek- the probability of toxicity). In
the present study, the original model-specific classifications were
converted into 3 categories (negative, positive or undefined) for
reasons of uniformity (Table 2). The undefined category is
composed of:

e substances outside domain (in the case of Sarah),

e substances lacking sufficient similar compounds to make a
prediction (in the case of istKNN),

e substances for which negative predictions are less convincing
due to a low ADI (in the case of VEGA),

e substances with high DefectSMILES (in the case of CORAL) and

e substances with mis-/unclassified features (in the case of
Derek).

This conservative approach was adopted in order to minimize
the number of false negatives. Indeed, labelling mutagens

incorrectly as non-mutagenic should be avoided as much as
possible.

2.4. Determination and characterization of priority substances

All compounds were processed in 4 global (Q)SARs (i.e. Toxtree,
Vega, Derek Nexus™ and Sarah Nexus™), which are based on
structurally diverse compounds, reflecting a range of different ac-
tion mechanisms (Chaudry et al., 2010). Aromatic azo compounds
were also examined in 2 local QSAR models (i.e. CORAL and
istKNN), built from structurally similar compounds i.e. all con-
taining an aromatic azo structure. Substances positive in the 4
global tools are considered of highest priority with respect to
further safety testing. Among these, priority ranking was refined
based on the amount and reliability of available experimental
mutagenicity data. This is ideally investigated through database
and literature searches. However, a fair amount of information can
already be deduced by a more detailed investigation of the (Q)SAR
results. For example, substances predicted positive with a confi-
dence score of 100% in Sarah or an ADI of 1 in VEGA are chemicals
for which positive experimental Ames test results are already
available.

Furthermore, a recently compiled inventory of substances
which may be used in printed paper and board FCM was consulted
to roughly estimate the likelihood of the high priority substances to
migrate into the food and become bioavailable after oral intake. In
addition, the Flavours, Additives and food Contact materials
Exposure Task (FACET) tool was used to obtain a first indication of
their actual use. The inventory and FACET tool have been described
earlier (Van Bossuyt et al., 2016).

Also, the application of 2 local QSARs was investigated for
substances containing an aromatic azo bond, with the goal of pri-
ority ranking refinement. More specifically, aromatic azo sub-
stances positive in one or two of the additional QSAR tools were
considered of higher priority than those predicted negative by both.

3. Results and discussion
3.1. Individual models

An overview of the prediction outcome of the 1723 study sub-
stances as a function of (Q)SAR system used is presented in Fig. 2. At
least 229 up to 366 of the substances are predicted mutagenic in
silico. It must be noted that, in the case of VEGA, most of the sub-
stances (758) are outside domain when applying the ADI re-
quirements set out in 2.2. This is due to the differences between the
prediction methods and applicability domains of the 3 individual
VEGA tools constituting the consensus model. Apparently, several
substances do not reach an ADI >0.75 in all 3 models in order to
consider them as negative in the current approach (Table 2). For
these substances, together with the undefined substances in Derek

Table 2
Harmonization of positive, negative and undefined predictions.
Model Positive Negative Undefined
Global QSARs
Toxtree Structural alert for S. typhimurium mutagenicity No structural alerts for S. typhimurium mutagenicity N/A
VEGA 1 0 with ADI >0.75 for all models 0 with ADI <0.75 for at least 1 model
Derek ‘Equivocal’ to ‘Certain’ ‘Inactive without mis-/unclassified features’ to ‘Doubted’ Inactive with mis-/unclassified features
Sarah Positive Negative Outside domain
Local QSARs for aromatic azo compounds
CORAL 1 0 with DefectSMILES <1.83485 0 with DefectSMILES >1.83485
istKNN 1 0 No molecules were suitable for prediction

N/A: not applicable; ADI: applicability domain index.
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Fig. 2. Number of substances predicted negative (green), positive (red) and undefined (grey) for Ames mutagenicity in a series of (Q)SAR tools. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article.)

and Sarah, a positive outcome cannot be ruled out.

The positive rate is most divergent between Toxtree and Sarah.
Interestingly, these tools are at the same time most dissimilar with
regards to their prediction mechanism: Toxtree is a generic rule-
based SAR model without the possibility of AD determination,
whereas Sarah is a statistically-based QSAR model in which each
compound is checked for being in- or outside a predefined Ames
mutagenicity AD. Fig. 2 also shows that the numbers of positives
found in the individual models are very similar in Toxtree (366) and
VEGA (350) on the one hand, and in Derek (255) and Sarah (229) on
the other hand. This suggests that there might be a substantial
overlap in the compounds predicted positive by Toxtree and VEGA,
and by Derek and Sarah, respectively. As such, we found that for
Toxtree and VEGA, 269 of the substances were overlapping. The fact
that VEGA has implemented the Toxtree model contributes to this
overlap. For Derek and Sarah, the overlap was limited to 119 com-
pounds (Table 3). This observation demonstrates that the different
methods lead to a different outcome for several compounds.
Detailed examination of the non-overlapping compounds with
contradictory prediction results can therefore reveal chemical

Table 3

classes for which Ames mutagenicity prediction needs improve-
ment. Evidently, if a substance is positive in multiple tools - based
on various data sets and subsequent prediction rules - this could be
expected to imply solid reasoning, in turn associated with increased
prediction confidence for experimental mutagenicity. Therefore,
substances positive in a variety of (Q)SAR models are of higher
concern.

3.2. Combination of models

The combined prediction outcome using the 4 (Q)SAR systems is
depicted in Fig. 3. Out of the 1723 non-evaluated substances, 106
are predicted mutagens by all tools, whereas 572 are predicted to
be non-mutagenic. A substantial part of 1045 study substances was
not clearly identified as mutagenic or non-mutagenic, but either
positive in at least 1 but not in all tools, or negative in all tools but
with an outside domain notification in at least 1 tool. These sub-
stances were considered as ‘undefined’. In Fig. 4, a more detailed
overview of the prediction results is provided. The majority of
substances (1191) do not trigger a positive prediction in any of the

Number of substances predicted positive for Ames mutagenicity in a battery of 2 (left panel) and 3 (right panel) (Q)SAR tools.

Battery of 2 tools Battery of 3 tools
(Q)SAR VEGA Derek Sarah VEGA Toxtree
Toxtree 269 205 154 183
VEGA 195 172 147
Derek 119 110
Sarah 112
Derek Sarah (Q)SAR
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W Positive in 3 (#128)
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Fig. 3. Distribution of the substances according to overall negative (green), positive (red) or undefined (orange) prediction for Ames mutagenicity when combining 4 (Q)SAR tools
(pie). The undefined results are subdivided in substances generating a positive outcome in 1 up to 3 tools or substances negative in all 4 but outside domain (stacked bar). (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 4. Priority ranking and distribution of non-evaluated printed paper and board substances according to Ames mutagenicity prediction outcome using 4 (Q)SAR tools; the fraction
of substances outside domain in at least 1 remaining tool is mentioned between brackets. V: VEGA, T: Toxtree, D: Derek, S: Sarah.

four tools. However, many of these compounds (619) were outside
the AD of at least one tool. Consequently, in the context of this
study, ‘negative’ should be interpreted as ‘no positive response
reported’. On the other hand, only 8 out of the 128 substances
predicted positive in 3 tools are outside the domain of the 4th tool
of the in silico battery (4 in Derek and 4 in VEGA). It can be debated
what significance should be given to results based on outside
domain warnings. From a precautionary point of view, it is more
appropriate to consider compounds outside the AD as potential
mutagens, since this indicates a general lack of knowledge on the
(toxicological) properties of the specific chemical class. Hence, after
the 106 substances found to be positive in all tools, the 8 com-
pounds found as positive in 3 tools and outside domain in the 4th
tool are of second highest concern. Fig. 4 represents the detailed
priority ranking following this strategy.

3.3. Priority substances

The 106 substances predicted positive in all 4 (Q)SAR tools are
considered of highest priority for further investigation of potential
mutagenicity. Fifty-three of these are found in the model training
sets, hence they are presumed experimental Ames mutagens
(Table 4a). For these 53 compounds, if possible the primary litera-
ture should be consulted to verify the positive outcome, and if
confirmed, in vivo data are required to either endorse or overrule
the in vitro positive results. In case mutagenicity is confirmed

in vivo or no reliable negative in vivo data are available, they are of
highest priority for migration testing. Indeed, the mutagenic po-
tential of a FCM compound is only of concern in case it migrates
into the food. Furthermore, migrants need to become bioavailable
to be able to cause (mutagenic) effects. Consultation of the com-
bined inventory described in 2.4. shows that migration into food
followed by oral bioavailability is very likely for all these 53 com-
pounds (Table 5). The combination of the specific physicochemical
parameters considered in the current study has not yet been
described elsewhere, nevertheless all are historically known as
being indicative for migration and/or oral bioavailability (Van
Bossuyt et al., 2016). In line with the precautionary principle, a
combination of these parameters is thus highly relevant. Ideally, an
elaborate migration and bioavailability model could contribute to a
more complete picture, however so far no generally accepted
model is available.

Besides the 53 experimental Ames positives, for another 53
substances no experimental data are available in the (Q)SAR sys-
tems (Table 4b). Subsequently, their experimental mutagenicity
potential should be investigated urgently. All of them are likely to
migrate into food due to a molecular weight below 1000 g/mol, and
at least 42 out of the 53 meet typical criteria for bioavailability
(Table 5).

The majority (99) of the 106 priority compounds are printing ink
substances, in many cases (29) pigments or dyes (Table 4a and b). It
can be noted that in the context of food contamination with non-
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Table 4a

Overview of substances, listed for use in printed paper and board FCM, predicted positive for Ames mutagenicity in 4 (Q)SAR tools and confirmed Ames mutagens according to

(Q)SAR model training data.

CAS number Chemical name FACET number Use in FCM

57-14-7 N,N-Dimethylhydrazine 5914 Monomer in printing ink

74-87-3 Chloromethane 6081 Monomer in printing ink and additive in paper and board

75-00-3 Chloroethane 5491 Monomer in printing ink

75-55-8 2-Methylaziridine 4921 Monomer in printing ink

77-78-1 Dimethyl sulphate 7268 Monomer in printing ink, paper and board and
additive in paper and board

78-87-5 1,2-Dichloropropane / Additive in paper and board

78-94-4 Butenone 6090 Monomer in printing ink

80-40-0 Ethyl toluene-4-sulphonate 6903 Additive in printing ink

80-48-8 Methyl toluene-4-sulphonate / Monomer in paper and board

85-83-6 1-(2-Methyl-4-(2-methylphenylazo)phenylazo)-2-naphthol® / Dye and pigment (with aromatic azo structure) in printing ink

85-86-9 1-(4-(Phenylazo)phenylazo)-2-naphthol® / Dye and pigment (with aromatic azo structure) in printing ink

96-23-1 1,3-Dichloropropan-2-ol / Monomer in paper and board

98-88-4 Benzoyl chloride 5050 Additive in printing ink

100-44-7 a-Chlorotoluene 7367 Monomer in printing ink, paper and board

101-77-9 4,4'-Methylenedianiline 1079 Monomer in printing ink

101-80-4 4,4'-Oxydianiline 4902 Monomer in printing ink

106-50-3 p-Phenylenediamine 6832 Monomer in printing ink

106-87-6 7-0xa-3-oxiranylbicyclo[4.1.0]heptane 4456 Solvent in printing ink

106-88-7 1,2-Epoxybutane 5094 Monomer in printing ink, paper and board and
additive in paper and board

106-90-1 2,3-Epoxypropyl acrylate 2094 Monomer in printing ink, paper and board

106-92-3 Allyl 2,3-epoxypropyl ether 4807 Monomer in printing ink

107-02-8 Acrylaldehyde 4586 Monomer in printing ink, paper and board

107-05-1 3-Chloropropene 6867 Monomer in printing ink, paper and board

107-07-3 2-Chloroethanol 5471 Monomer in printing ink

111-44-4 Bis(2-chloroethyl) ether 5480 Monomer in printing ink and additive in paper and board

111-64-8 Octanoyl chloride 6256 Monomer in printing ink

122-60-1 2,3-Epoxypropyl phenyl ether 4128 Monomer in printing ink

123-73-9 (E)-crotonaldehyde / Monomer in paper and board

128-95-0 1,4-Diaminoanthraquinone / Dye and pigment in printing ink

130-15-4 1,4-Naphthoquinone 3961 Monomer in printing ink

140-95-4 1,3-Bis(hydroxymethyl)urea 2563 Additive in printing ink, paper and board and
monomer in paper and board

286-20-4 1,2-Epoxycyclohexane 4457 Additive in printing ink

302-01-2 Hydrazine 2647 Monomer in printing ink

556-52-5 2,3-Epoxypropan-1-ol 4127 Monomer in printing ink

558-30-5 2,2-Dimethyloxirane 6838 Monomer in printing ink

1854-26-8 4,5-Dihydroxy-1,3-bis(hydroxymethyl)imidazolidin-2-one / Additive in paper and board

2210-79-9 2,3-Epoxypropyl o-tolyl ether 4129 Monomer in printing ink

2224-15-9 2,2'-[Ethylenebis(oxymethylene)]bisoxirane 5412 Additive in printing ink

2386-87-0 7-Oxabicyclo[4.1.0]hept-3-ylmethyl 3447 Solvent in printing ink

7-oxabicyclo[4.1.0]heptane-3-carboxylate

2426-08-6 Butyl 2,3-epoxypropyl ether 5067 Monomer in printing ink

2451-62-9 1,3,5-Tris(oxiranylmethyl)-1,3,5-triazine-2,4,6(1H,3H,5H)-trione 7407 Monomer in printing ink

2461-15-6 [[(2-Ethylhexyl)oxy]methyl]oxirane 4197 Monomer in printing ink

3101-60-8 p-Tert-butylphenyl 1-(2,3-epoxy)propyl ether 6834 Monomer in printing ink

3252-43-5 Dibromoacetonitrile / Additive in paper and board

3266-23-7 2,3-Epoxybutane 5097 Monomer in printing ink

4016-14-2 2,3-Epoxypropyl isopropyl ether 6839 Additive in printing ink

4170-30-3 Crotonaldehyde 4171 Monomer in printing ink

6471-49-4 3-Hydroxy-4-[(2-methoxy-5-nitrophenyl)azo]- 2822 Dye and pigment (with aromatic azo structure) in printing ink

N-(3-nitrophenyl)naphthalene-2-carboxamide®

7665-72-7 (Tert-butoxymethyl)oxirane 6293 Monomer in printing ink

17557-23-2 1,3-Bis(2,3-epoxypropoxy)-2,2-dimethylpropane 6840 Monomer in printing ink

21490-63-1 Trans-2,3-dimethyloxirane 6297 Monomer in printing ink

26249-20-7 Epoxybutane 5098 Monomer in printing ink

857892-58-1 Oxirane 6299 Additive in printing ink

2 Aromatic azo compound predicted positive in 2 local QSARs.

plastic FCM, in particular constituents of printing inks are found as
a major contamination source. This is among others reflected in a
high number of notifications through the Rapid Alert System for
Food and Feed (RASFF) (European Commission, 2016a; Lago et al.,
2015). Up to now, the latter notifications mainly concern photo-
initiators originating from the UV-curing treatment of printing
inks.

The 106 compounds positive in the 4 (Q)SAR tools represent a
relatively large number of substances requiring experimental
(toxicological and/or migration) data. One option to establish a

refined priority ranking lies in the investigation of the actual use of
these substances. Although FCM manufacturing companies in
general do not wish to disseminate detailed information on this
matter, a first indication can already be found through consultation
of the Flavours, Additives and food Contact materials Exposure Task
(FACET) tool (Hearty et al., 2011). In the EU-funded FACET project, a
probabilistic modelling tool was developed to estimate consumer
exposure to food contact substances (Oldring et al., 2013). Infor-
mation on substance application and relative use was obtained
from a FACET Industry Group (FIG) consisting of 13 European FCM



Table 4b

Overview of substances, listed for use in printed paper and board FCM, predicted positive for Ames mutagenicity in 4 (Q)SAR tools and requiring experimental testing.

CAS number Chemical name FACET number Use in FCM
82-38-2 1-(Methylamino)anthraquinone / Dye and pigment in printing ink
136-84-5 1,3-Bis(hydroxymethyl)imidazolidin-2-one 4216 Additive in printing ink
624-65-7 3-Chloropropyne 6897 Monomer in printing ink
938-18-1 2,4,6-Trimethylbenzoyl chloride 5051 Monomer in printing ink
1208-52-2 2,4’ -Methylenedianiline 4134 Monomer in printing ink
1606-83-3 1,1'-[But-2-yne-1,4-diylbis(oxy)]bis[3-chloropropan-2-ol] 4252 Additive in printing ink
1719-57-9 Chloro(chloromethyl)dimethylsilane 7055 Monomer in printing ink
1742-95-6 4-Aminonaphthalene-1,8-dicarboximide 6178 Additive in printing ink
2095-03-6 2,2'-[Methylenebis(p-phenyleneoxymethylene)|bisoxirane 6296 Additive in printing ink
2238-07-5 2,2'-[Oxybis(methylene)]bisoxirane 5479 Additive in printing ink
2478-20-8 6-Amino-2-(2,4-dimethylphenyl)-1H-benz[de]isoquinoline-1,3(2H)-dione / Dye and pigment in printing ink
2530-83-8 [3-(2,3-Epoxypropoxy )propyl]trimethoxysilane 2638 Monomer in printing ink and additive in paper and
board
2602-34-8 [3-(2,3-Epoxypropoxy )propyl]triethoxysilane 2893 Monomer and additive in printing ink
2897-60-1 [3-(2,3-Epoxypropoxy )propyl]diethoxymethylsilane 7052 Additive in printing ink
3049-71-6 2,9-Bis[4-(phenylazo)phenyl]anthra[2,1,9-def:6,5,10-d'e'f']diisoquinoline- 2999 Dye and pigment (with aromatic azo structure) in
1,3,8,10(2H,9H)-tetrone” printing ink
3126-95-2 (Propoxymethyl)oxirane 6292 Monomer in printing ink
3176-79-2 1-[[3-Methyl-4-[(3-methylphenyl)azo]phenyl]azo]-2-naphthol® / Dye and pigment (with aromatic azo structure) in
printing ink
3271-22-5 2,4-Dimethoxy-6-pyren-1-yl-1,3,5-triazine 4135 Additive in printing ink
3454-29-3 1-(2,3-Epoxypropoxy)-2,2-bis[(2,3-epoxypropoxy )methyl]butane 7403 Additive in printing ink
4378-61-4 4,10-Dibromodibenzo[def,mno]chrysene-6,12-dione 5304 Dye and pigment in printing ink
4482-25-1 5,5'-[(4-Methyl-1,3-phenylene)bis(azo)]bis[toluene-2,4-diamine]* 3907 Additive (with aromatic azo structure) in printing ink
5026-74-4 p-(2,3-Epoxypropoxy)-N,N-bis(2,3-epoxypropyl)aniline 6358 Monomer in printing ink
6410-38-4 4-[(2,5-Dichlorophenyl)azo]-3-hydroxy-N-(2-methoxyphenyl)naphthalene-2- 2847 Dye and pigment (with aromatic azo structure) in
carboxamide” printing ink
6448-95-9 3-Hydroxy-4-[(2-methyl-5-nitrophenyl)azo]-N-phenylnaphthalene-2-carboxamide® 2829 Dye and pigment (with aromatic azo structure) in
printing ink
6471-50-7 4-[(4-Chloro-2-nitrophenyl)azo]-3-hydroxy-N-(2-methylphenyl)naphthalene-2- / Dye and pigment (with aromatic azo structure) in
carboxamide” printing ink
6539-67-9 3-[[2-(Acetylamino)-4-[(4-amino-6-chloro-1,3,5-triazin-2-yl)amino]phenyl]azo] / Dye and pigment (with aromatic azo structure) in
naphthalene-1,5-disulphonic acid printing ink
6655-84-1 3-Hydroxy-4-[(2-methyl-5-nitrophenyl)azo]-N-(o-tolyl)naphthalene-2-carboxamide® 2995 Dye and pigment (with aromatic azo structure) in
printing ink
7328-97-4 2,2',2" 2" -[Ethane-1,2-diylidenetetrakis(p-phenyleneoxymethylene)]tetraoxirane 5411 Additive in printing ink
12225-06-8 N-(2,3-dihydro-2-oxo-1H-benzimidazol-5-yl)-3-hydroxy-4-[[2-methoxy-5- 2997 Dye and pigment (with aromatic azo structure) in
[(phenylamino)carbonyl]phenyl]azo]naphthalene-2-carboxamide printing ink
12236-64-5 N-[4-(acetylamino)phenyl]-4-[[5-(aminocarbonyl)-2-chlorophenyl]azo]-3- 2979 Dye and pigment (with aromatic azo structure) in
hydroxynaphthalene-2-carboxamide printing ink
13236-02-7 1,2,3-Tris(2,3-epoxXypropoxy)propane 6836 Additive in printing ink
14228-73-0 1,4-Bis[(2,3-epoxypropoxy)methyl]cyclohexane 5250 Additive in printing ink
16096-30-3 2,2'-[(1-Methylethylene)bis(oxymethylene)]bisoxirane 6294 Additive in printing ink
16096-31-4 1,6-Bis(2,3-epoxypropoxy)hexane 3967 Additive and solvent in printing ink
16403-84-2 4-[(5-Carbamoyl-o-tolyl)azo]-3-hydroxynaphth-2-anilide 2828 Dye and pigment (with aromatic azo structure) in
printing ink
25188-42-5 7-Benzamido-4-hydroxy-3-[[4-[(4-sulphophenyl)azo]phenyl]azo|naphthalene-2- / Dye and pigment (with aromatic azo structure) in
sulphonic acid printing ink
28804-47-9 Methyl toluenesulphonate / Additive in paper and board
31482-56-1 3-[Ethyl[4-[(4-nitrophenyl)azo]phenyl]amino]|propiononitrile® / Dye and pigment (with aromatic azo structure) in
printing ink
36215-07-3 1-Chloro-3-methoxypropane 6841 Monomer in printing ink
36968-27-1 4-[[4-(Aminocarbonyl)phenyl]azo]-3-hydroxy-N-(2-methoxyphenyl)naphthalene-2- 2827 Dye and pigment (with aromatic azo structure) in
carboxamide printing ink
39817-09-9 2,2'-[Methylenebis(phenyleneoxymethylene)]bisoxirane 2347 Monomer in printing ink
50593-68-5 3-Chloro-6-nitro-1H-indazole 4033 Additive in printing ink
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Additive in printing ink

4125

1-Amino-4-(ethylamino)-9,10-dihydro-9,10-dioxoanthracene-2,3-dicarbonitrile
4-[[5-(Anilino)carbonyl-2-methoxyphenyl]azo]-3-hydroxynaphthalene-2-

carboxamide

52373-93-0

Dye and pigment (with aromatic azo structure) in

printing ink

56396-10-2

Dye and pigment (with aromatic azo structure) in

printing ink

2814

4-[[5-[[[4-(aminocarbonyl)phenyl]amino]carbonyl]-2-methoxyphenyl]azo]-N-(5-

chloro-2,4-dimethoxyphenyl)-3-hydroxynaphthalene-2-carboxamide

59487-23-9

Dye and pigment (with aromatic azo structure) in

printing ink

2815

Methyl 4-[[(2,5-dichlorophenyl)amino]carbonyl]-2-[[2-hydroxy-3-[[(2-

methoxyphenyl)amino]carbonyl]-1-naphthyl]azo]benzoate

61847-48-1

Dye and pigment (with aromatic azo structure) in

printing ink

N-(2,3-dihydro-2-oxo-1H-benzimidazol-5-yl)-3-hydroxy-4-[[5-methoxy-2-methyl-4-

[(methylamino)sulphonyl]phenyl]azo]naphthalene-2-carboxamide

61951-98-2

Dye and pigment in printing ink

3142
2829

1-Amino-4-(ethylamino)-9,10-dihydro-9,10-dioxoanthracene-2-carbonitrile

62570-50-7

Dye and pigment (with aromatic azo structure) in

printing ink

N-(5-chloro-2-methoxyphenyl)-3-hydroxy-4-[[2-methoxy-5-[(phenylamino)carbonyl]

phenyl]azo]naphthalene-2-carboxamide

67990-05-0

Dye and pigment (with aromatic azo structure) in

printing ink

2992

N-(5-chloro-2-methylphenyl)-3-hydroxy-4-[[2-methoxy-5-[(phenylamino)carbonyl]

phenyl]azo]naphthalene-2-carboxamide

68227-78-1

Dye and pigment (with aromatic azo structure) in

printing ink

N,N'-naphthalene-1,5-diylbis[4-[(2,3-dichlorophenyl)azo]-3-hydroxynaphthalene-2-

carboxamide]

68516-75-6

Additive in printing ink

4905

9,10-Diethoxyanthracene

68818-86-0

M. Van Bossuyt et al. / Food and Chemical Toxicology 102 (2017) 109—119 117

Dye and pigment (with aromatic azo structure) in

printing ink

2984

3-[(4-Chloro-2-nitrophenyl)azo]-2-methylpyrazolo[5,1-b]quinazolin-9(1H)-one*

74336-59-7

2 Aromatic azo compound predicted positive in 2 local QSARs.
b Aromatic azo compound predicted positive in 1 local QSAR.

trade associations representing among others the printing ink and
paper(board) industry (University College Dublin, 2012). As a
result, substances with a FACET number indicate substances for
which the FIG has confirmed current usage. Forty-four training set
Ames positives and 42 positives without experimental data, have a
FACET number, suggesting their priority is higher compared to the
20 substances without a FACET number. One weakness of the
FACET tool is its limited coverage, which is restricted to FCM sub-
stances applied in primary packaging, whereas for a complete
assessment secondary packaging and articles should also be
considered. The application of substances without a FACET number
cannot be ruled out either, as this information is currently lacking.
Despite this limitation and even though this approach does not
drastically minimize the number of priority substances to be
evaluated in-depth, it is reasonable to consider the substances
associated with a FACET number prior to the ones without such
number.

Another interesting refinement method is the provisional
exclusion of compounds predicted negative by local QSAR models,
i.e. specific for a particular group of compounds. Indeed, the pre-
diction capacity of a (Q)SAR model can be increased when the
chemical domain is well-defined. For example, it was found that 25
of the 106 substances contain an aromatic azo bond, a chemical
structure frequently found in pigments and dyes. Recently, the
IRFMN developed 2 QSAR models to estimate Ames mutagenicity of
aromatic azo substances, one based on CORAL software and a
second one based on a k-NN algorithm (Manganelli et al., 2016).
Application of the local QSARs resulted in 13 compounds predicted
negative in both models (low priority), 5 contradictory results
(medium priority) and 7 positive in both (high priority). Upon
combining this extended QSAR evaluation with the above-
mentioned consideration of the existence of a FACET number, 3
substances of highest concern (CAS# 6471-49-4 in Table 4a, CAS#
4482-25-1 and 74336-59-7 in Table 4b) could be identified. They
are positive in the 6 (Q)SAR tools and have in addition been
assigned a FACET number, confirming their current usage.

3.4. General remarks

Ideally, a (Q)SAR should meet the OECD principles for the vali-
dation of (Q)SAR tools in order to facilitate its consideration for
regulatory purposes (OECD, 2014). The principles state that it
should be associated with 1) a defined endpoint; 2) an unambig-
uous algorithm; 3) a defined domain of applicability; 4) appro-
priate measures of goodness-of-fit, robustness and predictivity and
5) a mechanistic interpretation, if possible. Moreover, a checklist
with questions is available to facilitate the evaluation of a (Q)SAR
for the abovementioned criteria. The guidance document itself
points out that these criteria are very difficult to fulfil in practice,
however they should be strived for as much as possible. All tools
applied in the current work are linked to a well-defined toxico-
logical endpoint, i.e. Ames mutagenicity. Most of the tools feature a
clearly established algorithm. Some of the tools dispose of appli-
cability domain indications and provide a mechanistic interpreta-
tion for the prediction results. None of the tools is completely
transparent when it comes to providing full details of external
validation performance. Although all tools have several short-
comings, their type and degree varies. Combining different tools
can therefore prove beneficial, especially for priority setting among
large groups of chemical substances, as demonstrated in the cur-
rent study. Evidently, validation of a (combination of) (Q)SAR
model(s) for a group of compounds with a specific application is
difficult. Indeed, validation requires a substantial number of eval-
uated compounds with reliable experimental Ames test data. In the
case of FCM substances, validation is not only complicated by the
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Table 5

Distribution of non-evaluated printed paper and board FCM priority substances according to physicochemical parameters related to migration and bioavailability. Substances
with results below the cut-off are likely to migrate (in the case of low molecular weight) or become bioavailable (other cases).

Parameter Cut-off <cut-off >cut-off <cut-off >cut-off

53 Experimental Ames positives 53 Experimental unknown

# % # % # % # %
Molecular weight 1000 g/mol 53 100 0 0 53 100 0 0
Lipinski rule of 5 violations 1 52 98 1 2 42 79 11 21
Polar surface area 140 Angstrom? 52 98 1 2 45 85 8 15
Rotating bonds 10 53 100 0 0 46 87 7 13

limited number of evaluated compounds, but also by the variety of
chemical classes to which they belong. Due to the current lack of
knowledge as to which model is most capable of generating
trustworthy predictions for printed paper and board FCM sub-
stances, it is thus deemed appropriate to use a screening battery of
complementary systems (i.e. SARs and QSARs).

4. Conclusion

In this study, the beneficial role of in silico tools in prioritization
strategies was demonstrated using non-evaluated printed paper
and board FCM substances as an example. However, a much wider
range of application domains can be anticipated. For instance, the
strategy could be useful in prominent issues among which the
prioritization of long-standing industrial chemicals lacking a
(recent) safety evaluation, and of secondary substances — found in
most chemical formulations — such as impurities or degradation
products. In the current work, the selection of model(s) had an
impact on the number of positives, as this was substantially lower
when using Derek Nexus™ or Sarah Nexus™ compared to using
Toxtree or VEGA. One hundred and six substances were consis-
tently predicted positive in a battery of 4 (Q)SAR Ames mutage-
nicity tools. Subsequent priority ranking to determine the urgency
for an in-depth safety evaluation was established by investigating
the availability (and quality) of experimental toxicological data
within the (Q)SAR tools. Furthermore, local QSAR systems also
proved useful for refining the prioritization of well-defined struc-
turally similar molecules. To conclude, the prioritized printed paper
and board FCM substances will be subjected to a more extensive
investigation of their potential genotoxicity consisting of literature
study and, if necessary, in vitro testing.
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