Colloidal iron(III) oxyhydroxides (FeOx) are important reactive adsorbents in nature. This study was set up to determine the size of environmentally relevant FeOx colloids with new methods, i.e. Flow Field Flow Fractionation (FlFFF-UV-ICP-MS) and single-particle ICP-MS/MS (sp-ICP-MS) and to compare these with standard approaches, i.e. dynamic light scattering (DLS), nanoparticle tracking analysis (NTA), microscopy (TEM), membrane filtration, centrifugation and dialysis. Seven synthetic nano- and submicron FeOx with different mineralogy and coating were prepared and two soil solutions were included. The FlFFF was optimized for Fe recovery, yielding 70-90%. The FlFFF determines particle size with high resolution in a 1 mM NHHCO (pH 8.3) background and can detect Fe-NOM complexes <5 nm and organo-mineral FeOx particles ranging 5-300 nm. The sp-ICP-MS method had a size detection limit for FeOx of about 32-47 nm. The distribution of hydrodynamic diameters of goethite particles detected with FlFFF, NTA and DLS were similar but the values were twice as large as the Fe cores of particles detected with sp-ICP-MS and TEM. Conventional fractionation by centrifugation and dialysis generally yielded similar fractions as FlFFF but membrane filtration overestimated the large size fractions. Particles formed from Fe(II) oxidation in the presence of NOM showed strikingly smaller organo-mineral Fe-Ox colloids as the NOM/Fe ratio increased. The soil solution obtained with centrifugation of an acid peat was dominated by small (<30 nm) Fe-OM complexes and organo-mineral FeOx colloids whereas that of a mineral pH neutral soil mainly contains larger (30-200 nm) Fe-rich particles. The FlFFF-UV-ICP-MS is recommended for environmental studies of colloidal FeOx since it has a wide size detection range, it fractionates in an environmentally relevant background (1 mM NHHCO) and it has acceptable element recoveries.