Invasive meningococcal disease (IMD) caused by Neisseria meningitidis can result in life-threatening meningitis and septicaemia. There are twelve serogroups of N. meningitidis, but most cases of IMD are caused by serogroups A, B, C, W, X and Y. In Europe, serogroup B (MenB) accounts for 51 % of documented cases as recently reported by the European Centre for Disease Prevention and Control (ECDC). As a major cause of IMD, genomic surveillance of circulating MenB strains and assessment of the potential impact of vaccination programs could help inform public health policy. In this study, a collection of 493 strains was analysed, collected in Belgium by the National Reference Centre between 2016 and 2022. Slide agglutination was used for serogroup determination and whole genome sequencing (WGS) was used to further characterize these strains. The observed serogroups were: MenB (n = 281), MenY (n = 95), MenW (n = 83), MenC (n = 30), non-groupable isolates (n = 2), MenE (n = 1) and MenX (n = 1). A higher prevalence of MenY and MenW was observed in older adults. MenB isolates were grouped into 110 sequence types (STs), 89 of which belonged to 16 clonal complexes (CCs). Coverage of the MenB-FHbp vaccine (Trumenba, bivalent rLP2086; Pfizer Inc., New York, NY, USA ipv Philadelphia) was predicted using the Meningococcal Deduced Vaccine Antigen Reactivity (MenDeVAR) index. Of the 281 MenB strains collected between 2016 and 2022, 89.1 % (lower limit - upper limit: 78.6-100.0 %) were predicted by MenDeVAR to be covered by the vaccine. This study highlights the benefits of a pathogen surveillance program and the need for experimental characterization of continuously evolving antigenic variants.